Journal of

The Chemical Society,

Chemical Communications

NUMBER 11/1976

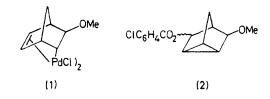
2 JUNE

Reaction of Transition-metal Complexes with Hydroperoxides: Oxidation of Carbonyl, Phosphine, and Carbon Ligands

By IAN J. HARVIE and FRANCIS J. McQuillin*

(Department of Organic Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU)

Summary $[Rh(CO)Cl(PPh_3)_2]$, $[Ir(CO)Cl(PPh_3)_2]$, and $[{Rh (CO)_2Cl}_2]$ react with Bu^tO_2H to give CO_2 in what appears to be a stoicheiometric reaction; with m-ClC₆H₄CO₃H the carbon-metal bond in $[MCl(CH_2Ph)(PPh_3)_2]$ (M = Pt or Pd) is cleaved to give m-ClC₆H₄CO₂CH₂Ph, and di- μ -chloro-bis {endo- η -2,3; η -5-(6-methoxybicyclo[2.2.1]hept-2-enepalladium(II) } yields a methoxytricyclo[2.2.1.0]-heptyl m-chlorobenzoate.


TRANSITION-METAL complexes may be expected to react with a hydroperoxide either (a) by electron transfer: ML_n + $RO_2H \rightarrow M^+L_n + RO + HO^-$; $M^+L_n + RO_2H \rightarrow ML_n$ + $RO_2 + H^+$; $RO + RO_2H \rightarrow ROH + RO_2$, or (b) by co-ordination at a vacant site, with the possibility of oxygen transfer to oxidisable ligands. Route (a) is implicated¹ in the catalytic decomposition of hydroperoxides by e.g. [Ir(CO)Cl(PPh₃)₂]. We now report what appear to be stoicheiometric processes of type (b).

 $[Rh(CO)Cl(PPh_3)_2]$ in benzene under nitrogen consumed 1 equiv. of Bu^tO₂H to give CO₂ (0.95 equiv.), and [{RhCl-(PPh_3)_2}₂], compared with authentic material, and with hydrogen yielding material showing a ¹H n.m.r. signal (τ 26.6, d of t, J 20 and 16 Hz) characteristic² of the dihydride. No Ph₃PO was detected, and it is of interest that the carbonyl is oxidised in preference to a phosphine ligand.

The carbonyl ligands in $[{Rh(CO)_2Cl}_2]$ were found to be oxidised in the same manner; $Bu^{t}O_2H$ (4 equiv.) gave CO_2 (4 equiv.), a little oxygen, and from the benzene solution a brown solid showing no v_{CO} . This with CO in ethanol at 60 °C dissolved to give material (v_{CO} 2100 and 2050 cm⁻¹) closely similar³ to $[{Rh(CO)_2Cl}_2]$.

The reaction of $[Ir(CO)Cl(PPh_3)_2]$ proved to be more complex. Bu^tO₂H (2 equiv.) gave CO₂, Ph₃PO, and, from

the benzene solution by chromatography, the known^{1,4} yellow complex, $[Ir(CO)Cl(PPh_3)_2(Bu^{\dagger}O_2)_2]$, and a blue substance containing Ph_3P residues (i.r., n.m.r.), but showing no v_{co} , and giving C and H analyses suggesting an Ir: PPh_3: Cl ratio of 1:1:1.

Formation of the blue Ir-complex could be suppressed by carrying out the oxidation in dimethylformamide (DMF), by adding Et_3N to the benzene solvent, or by oxidation in benzene in a stream of CO. Conversely oxidation in benzene containing 2,4-di-t-butylphenol (2 equiv.) suppressed formation of the yellow peroxy complex, but not of the blue Ir-derivative. The latter clearly arises by ligand oxidation, and the peroxy complex probably by co-ordination of $Bu^{t}O_2$. radicals to $[Ir(CO)Cl(PPh_3)_2]$. We suggest that Et_3N , DMF, and CO may competitively exclude co-ordination of RO_2H , but not the electron transfer process leading to RO_6 radicals.

 $[RhCl(PPh_3)_3]$ with Bu^tO_2H (1 equiv.) gave, as expected, $[{RhCl(PPh_3)_2}_2]$. In this case oxidation *via* prior phosphine dissociation cannot be excluded. However, oxidation of the carbonyls noted above requires oxygen transfer from co-ordinated Bu^tO_2H .

The carbon-transition metal σ -bond was also shown to be oxidisable under similar conditions. The benzyl com-

plexes, $[MCl(CH_2Ph)(PPh_3)_2]$ (M = Pt or Pd), were found to react rapidly with m-ClC₆H₄CO₃H (2 equiv.) in benzene. Removal of solvent and chromatography (silica gel) of a light petroleum extract gave benzyl m-chlorobenzoate, τ 2–3 and 4.67, m/e 248, 246, and 211 (M – Cl), and a little benzyl alcohol; Ph₃PO was also isolated. Oxidation in the presence of 2,4-di-t-butylphenol gave the same result.

Similarly the Pd-complex (1) in CH₂Cl₂, treated successively with pyridine $(C_5H_5N: Pd = 1)$ and $m-ClC_6H_4CO_3H$ (5 equiv.) gave, by chromatography of the product, material m/e 280, 278, 249, 247 (M - OMe), and 122 (M - ClC₆H₄ CO_2H), τ 5.17, 6.53, 6.66, 8.83, 8.93, and 8.97. These data are consistent with a structure (2); exo-3-methoxytricyclo-[2.2.1.0]heptane⁵ shows τ 6.73, 6.83, 8.76, 8.90, and 9.06.

This result is reminiscent of the reaction of (1) with 1,2-bis-(diphenylphosphino)ethane followed by bromine.⁶

These results are consistent with reaction via RO₂H $(R = Bu^{t} \text{ or } m\text{-}ClC_{6}H_{4}CO)$, co-ordination to the transition metal centre,7 lysis of the RO-OH bond, and transfer of oxygen from HO to carbonyl or phosphine, or of RO to a σ bonded carbon ligand. It is of interest that alternative electron-transfer processes appear to be less important except in the reaction of [Ir(CO)Cl(PPh₃)₂] with Bu^tO₂H, but may become predominant with excess of hydroperoxide after oxidisable ligands have been removed.

(Received, 1st March 1976; Com. 204.)

- ¹ B. L. Booth, R. N. Haszeldine, and G. R. H. Neuss, J.C.S. Perkin I, 1975, 209.

- ² D. L. Booth, R. N. Haszeldine, and G. R. H. Neuss, *J.C.S. Fermin* 1, 1970, 209.
 ² C. A. Tolman, P. Z. Meakin, D. L. Lindner, and T. P. Jesson, *J. Amer. Chem. Soc.*, 1974, 96, 2762.
 ³ R. Colton, F. H. Farthing, and J. E. Knapp, *Austral. J. Chem.*, 1970, 23, 1351.
 ⁴ B. L. Booth, R. N. Haszeldine, and G. R. H. Neuss, *J.C.S. Chem. Comm.*, 1972, 1074.
 ⁵ Prepared by the method of S. J. Cristol, W. I. L. Seifert, D. W. Johnson, and T. B. Jurale, *J. Amer. Chem. Soc.*, 1962, 84, 3918.
 ⁶ D. R. Coulson, *J. Amer. Chem. Soc.*, 1969, 91, 200.
 ⁷ Cf. D. N. Jones and S. D. Knox, *J.C.S. Chem. Comm.*, 1975, 166.