JOC The Journal of Organic Chemistry

Subscriber access provided by University of Chicago Library

Site-Specific Functionalization of 1,3-Dioxolane with Imines: A Radical Chain Approach to Masked #-Amino Aldehydes

Haipeng Zeng, Sen Yang, Haotian Li, Dengfu Lu, Yuefa Gong, and Jin-Tao Zhu J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00715 • Publication Date (Web): 12 Apr 2018 Downloaded from http://pubs.acs.org on April 13, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Site-Specific Functionalization of 1,3-Dioxolane with Imines: A Radical Chain Approach to Masked α-Amino Aldehydes

Haipeng Zeng, Sen Yang, Haotian Li, Dengfu Lu*, Yuefa Gong* and Jin-Tao Zhu

School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei, 430074, China

Supporting Information Placeholder

Abstract: A thiol promoted site-specific addition of 1,3-dioxolane to imines through radical chain process is described. This process represents a metal-free and redox-neutral way to convert inexpensive materials to a broad range of protected α -amino aldehydes in good to excellent yields using only catalytic amount of radical precursor. Control experiments revealed that both the thiol and a small amount of oxygen from air are indispensable to the success of this reaction.

Introduction

Converting abundant ethers and alcohols to valuable building blocks through direct sp³ C–H functionalization is a challenging endeavor in synthetic chemistry.¹ Due to the α -effect of the adjacent oxygen atom, radical activation of the α -C–H bonds has emerged as a popular strategy,² for example, the flourishing oxidative coupling reactions.^{1b,1d-g} Within these methods, the C–H bonds are prevailingly activated by strongly electron-deficient oxygen-centered radicals generated from stoichiometric amounts of oxidants such as peroxides³ and persulfates.⁴ Besides oxidative coupling processes, we noticed that numerous redox-neutral reactions, e.g., radical addition to multiple bonds, also require excess amount of radical precursors,⁵ probably due to the irreversible generation of highly active radical species.

Scheme 1. Radical addition of 1,3-dioxolane to imines

Our lab has recently developed an azobisisobutyronitrile (AIBN) initiated radical chain addition of cyclic ethers to imines, demonstrating that etheric radicals can be regenerated from the reaction intermediate.⁶ This discovery led us to explore more general and synthetically useful redox-neutral radical functionalization methods. The functionalization of 1,3-dioxolane with imines⁷ is of special interest since it represents a practical route to masked amino aldehydes, which are important building blocks in organic synthesis. However, the existing methods developed by Alonso^{7a}, Tomioka^{7b-c}, and Shi^{7d} et al. require either stoichiometric amount of radical precursors or UV irradiation (Scheme 1, **a**). Meanwhile, due to the close dissociation energy of the C–H bonds,⁸ the site-selectivity of 1,3-dioxolane remains a challenge with oxygencentered radicals,^{3a,3d,3f-g,4b,5a-b,5h} (usually from 1.5:1 to 6:1). A method that can regioselectively convert 1,3-dioxolane and imines to masked amino aldehydes without using a stoichiometric radical precursor is highly desirable.

Most recently, Doyle⁸ reported a formylation of aryl chlorides which selectively activates the 2-C–H bond of 1,3-dioxolane with a chlorine radical. While in our radical chain reaction, an exclusive 2-C–H selectivity was also observed for 1,3-dioxolane, despite a low conversion.⁶ Based on the mechanistic studies, it is assumed that this selectivity may stem from the inferior reactivity of a stabilized nitrogen radical intermediate **A** (Scheme 1, **b**). However, compared to tetrahydrofuran, the more complicated reactivity of 1,3-dioxolane could increase the rate of chain termination other than the effective propagation, thus the less reactive radical **A** may also be responsible for the poor chain efficiency. Therefore, we envisioned to introduce a suitable radical mediator to balance the reactivity and selectivity in the hydrogen atom transfer (HAT) step. Inspired by the pioneering works of Roberts⁹ and Newcomb¹⁰ et al., we proposed that thiols

could be potential candidates as they are reported to readily reduce nitrogen radicals and the resulting thiyl radical is capable of H-atom abstraction from specific C–H bonds.¹¹ Herein we report a thiol mediated radical chain addition of 1,3-dioxolane to different types of imines with exclusive site-selectivity. (Scheme 1, c) **Results and discussion** Table 1. Reaction condition optimization^a $f = \frac{Ph}{TDM} + \int_{TDM} \int_{TDM}$

Ph ¹ 1a (1.0 equi Ph ^{Ph} Ph ^I	+ $\frac{Ph}{NH_2}$ + \bigcirc 2a v) (1.0 equiv) NC $\overset{CH_3}{H_3C}$ N $\overset{CH_3}{N}$ $\overset{CH_3}{CH_3}$ $\overset{Cg}{H_3}$ AIBN	AIBN (10 mol%) TDM (10 mol%) 80 °C, 4Å MS 12 h, c 0.1 19 CH ₃ SH 3C SH CC TDM T1	Ph 3aa D_2Et F F F F F F F F
Entry	Variations from the	Conv. ^b	Yield
	standard conditions		(3aa)
1	none	66%	62%
2	without AIBN	<5%	<5% ^c
3	20 mol% AIBN	34%	33%
4	without TDM	<5%	<5% ^c
5	20 mol% TDM.	60%	55%
6	T1 instead of TDM	62%	52%
7	T2 instead of TDM	10%	<5% ^c
8	without 4Å MS	36%	31%
9	purified imine	68%	63%
10^{d}	reaction at 65 °C	52%	44%
11	under N ₂ or Ar	<5%	<5% ^c
12	under O ₂	20%	15% ^c

^{*a*}Unless otherwise stated, the reactions were carried out under air in a 20 mL sealed tube with benzaldehyde (0.2 mmol), aniline (0.2 mmol) and 4Å molecular sieves (80 mg) in freshly distilled 1,3-dioxolane (2 mL) in the presence of AIBN (0.02 mmol) and TDM (0.02 mmol); ^{*b*}The conversion was determined with crude ¹H NMR by calculating the remaining aldehyde and imine; ^{*c*}Determined by ¹H NMR; ^{*d*}Reaction time: 24 h.

Starting with a relatively less reactive *N*,1-diphenylmethan-imine, after extensive screening of the conditions, the reaction of in-situ formed imine was able to achieve good conversion in the presence of 10 mol % of AIBN and *tert*-dodecyl mercaptan (TDM) at 80 °C with 4 Å molecular sieves, affording product **3aa** in 62% yield as the only regio-isomer (Table 1, entry 1). A few conditions that may be mechanistically important are described here. As previously observed, the

reaction doesn't occur in the absence of AIBN (entry 2). Interestingly, for this substrate, the reaction hardly proceeds without TDM, while more of it doesn't improve the yield either (entries 4-5). Aliphatic thiols are more effective than aromatic ones and the bulkiness of aliphatic thiols may also play a role, presumably because of their potential nucleophilic addition to imines (entries 6-7). Since the imine is formed in-situ, 4 Å molecular sieves are essential to remove the water, and the same yield was obtained with purified imine (entries 8-9). The reaction slows down at 65 °C and the yield was not improved after extended reaction time (entry 10). Surprisingly, product **3aa** was hardly observed when the reaction was strictly conducted under inert atmosphere (entry 11), implying the participation of O_2 . However, O_2 atmosphere also caused an inefficient transformation (entry 12).

$\begin{array}{c} \begin{array}{c} \mathbf{A}\mathbf{r}^{1} \\ \mathbf{A}\mathbf{r}^{1} \\ 1\mathbf{b}\mathbf{-1}\mathbf{j} \\ (1.0 \text{ equiv}) \end{array} + \begin{array}{c} \begin{array}{c} \mathbf{A}\mathbf{r}^{2} \\ \mathbf{N}\mathbf{H}_{2} \\ \mathbf{N}\mathbf{H}_{2} \\ \mathbf{N}\mathbf{H}_{2} \end{array} + \begin{array}{c} \begin{array}{c} \mathbf{A}\mathbf{IBN} (10 \text{ mol}\%) \\ \underline{TDM} (10 \text{ mol}\%) \\ \underline{80} \ ^{\circ}\mathbf{C}, 4 \ ^{\circ}\mathbf{MS} \\ 8 \text{ to } 16 \text{ h}, c \ 0.1 \\ \mathbf{sealed under air} \end{array} + \begin{array}{c} \begin{array}{c} \mathbf{A}\mathbf{r}^{2} \\ \mathbf{A}\mathbf{r}^{1} \\ \mathbf{J} \end{array} + \begin{array}{c} \begin{array}{c} \mathbf{A}\mathbf{r}^{2} \\ \mathbf{A}\mathbf{r}^{2} \\ \mathbf{A}\mathbf{r}^{1} \\ \mathbf{J} \end{array} + \begin{array}{c} \begin{array}{c} \mathbf{A}\mathbf{r}^{2} \\ \mathbf{A}\mathbf{r}^{2} $								
Structure	Entry	Substituent	Product	Yield				
	1	$\mathbf{Ar}^{1} = 4 - \mathrm{CO}_{2}\mathrm{Me} - \mathrm{C}_{6}\mathrm{H}_{4}$	3ba	86% ^b				
	2	$Ar^1 = 4-Me-C_6H_4$	3ca	67% ^b				
	3	$Ar^1 = 4$ -MeO-C ₆ H ₄	3da	72% ^b				
<mark>ŅH</mark> Ph	4	$Ar^1 = 4$ -F-C ₆ H ₄	3ea	75%				
Ar ¹	5	$Ar^1 = 4$ -Cl-C ₆ H ₄	3fa	79%				
<mark>₀</mark> -∕	6	$Ar^1 = 3-Cl-C_6H_4$	3ga	65%				
	7	$Ar^1 = 2$ -Cl-C ₆ H ₄	3ha	60%				
	8	$Ar^1 = 2, 4-Cl_2-C_6H_3$	3ia	91%				
	9	$Ar^1 = 2$ -pyridyl	3ja	84%				
	10	$\mathbf{Ar}^2 = 4 - \mathrm{Me} - \mathrm{C}_6 \mathrm{H}_4$	3ib	95% ^b				
Ar ²	11	$Ar^2 = 4$ -MeO-C ₆ H ₄	3ic	77%				
	12	$Ar^2 = 4$ -Cl-C ₆ H ₄	3id	95% ^b				
Ar'	13	$\mathbf{Ar}^2 = 3 \cdot \mathrm{Cl} \cdot \mathrm{C}_6 \mathrm{H}_4$	3ie	74%				
Ar ¹ =	14	$\mathbf{Ar}^2 = 4 - Br - C_6 H_4$	3if	97% ^b				
2,4-Cl ₂ -C ₆ H ₃	15	$\mathbf{Ar}^2 = 4 - \mathbf{F} - \mathbf{C}_6 \mathbf{H}_4$	3ig	73%				
	16	$Ar^2 = 3,5-(CF_3)_2-C_6H_3$	3ih	55%				

Ta	ble	2.	Ac	ldit	ion	of	1,3	8-diox	olane	to .	N, 1	1-d	iary	Imet	han-	-imine	s"
----	-----	----	----	------	-----	----	-----	--------	-------	------	-------------	-----	------	------	------	--------	----

^{*a*}Unless otherwise stated, the reaction was performed under air in a 20 mL sealed tube with a corresponding aldehyde (0.2 mmol), an amine (0.2 mmol) and 4Å molecular sieves (80 mg) in freshly distilled 1,3-dioxolane (2 mL) in the presence of AIBN (0.02 mmol) and TDM (0.02 mmol); ^{*b*}Reaction performed with purified imine.

The Journal of Organic Chemistry

After establishing the optimized condition, we tested a combination of various aromatic aldehydes and aniline derivatives with 1,3-dioxolane. Both electron-rich and electron-deficient aldehydes including heterocycles are well tolerated in combination with aniline to afford the products **3ba-3ja** regioselectively in good to excellent yields (Table 2, entries 1-9). Different substituted anilines are also compatible with 2,4-dichlorobenzaldehyde (entries 10-16). In cases that imines are not formed in-situ with sufficient efficiency and purity, purified imines are employed to ensure reproducibility.

While most reports of radical additions to imine are limited to *N*,1-diaryl substrates, the functionality performance of this method encouraged us to explore more synthetically intriguing aldehydes and amines (Table 3). The three component reaction of ethyl glyoxylate, aniline and 1,3-dioxolane gives the α -amino ester **4a** as a single regio-isomer with excellent yield (entry 1). Several substituted anilines are also suitable for this "one-pot" procedure (60%-96% yields, entries 2-7). The α C–H bonds of amines are normally considered unstable towards radical species. Surprisingly, aliphatic amines bearing very labile C–H bonds, such as benzylamine and 1-phenylethylamine, are compatible with this process, leading to products **4h** and **4i** with removable *N*-protecting groups (entries 8-9). The reaction of cyclohexylamine and amantadine proceed smoothly to afford product **4j** and **4k** in moderate to good yields (entries 10-11). Gratifyingly, amines with multiple functional groups are also well applied, offering densely functionalized products **4l** and **4m** in practical yields (entries 12-13).

To demonstrate the synthetic utility of this method, we tested two representative substrates on gram-scale and obtained comparative yields (Table 3, entries 4 and 8). As shown in Scheme 2, product **4h**, for example, can be readily converted to key intermediate **5** that serves as a versatile precursor to various unnatural amino acid derivatives. Products **6** and **7** are also typical substrates for asymmetric hydrogenation to produce chiral amino acids.¹³

Table 3. Addition of 1,3-dioxolane to ethyl glyoxylate imines^a

^{*a*}Unless otherwise stated, the reaction was performed under air in a 20 mL sealed tube with ethyl glyoxylate (0.2 mmol), a corresponding amine (0.2 mmol) and 4Å molecular sieves (80 mg) in freshly distilled 1,3-dioxolane (2 mL) in the presence of AIBN (0.02 mmol) and TDM (0.02 mmol); ^{*b*}Aniline: 2 equiv; ^{*c*}Reaction performed at 65 °C without thiol; ^{*d*}Reaction on 10 mmol scale.

Scheme 2. Product derivatizations

^{*a*}Condition: AcCl (1.5 equiv.), NEt₃ (1.5 equiv.), ClCH₂CH₂Cl, room temperature, 4 h; ^{*b*}Condition: AcOH/HI, 65 °C, 2 h.

To gather evidences for mechanistic insights of this transformation, a series of control experiments were carried out.¹³ Firstly, the reaction of **1i** and **2a** in 1,3-dioxolane was inhibited by 20 mol% of the radical scavenger TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl, Scheme 3, **a**). Secondly, the kinetic studies showed the reaction was significantly accelerated by thiol and, unexpectly, a lower loading of thiol led to a more durable process (**b**). Thirdly, when a non-activated alkene was mixed with TDM under the reaction conditions to capture the thiyl radical

through the thiol-ene process,¹⁴ the click product **9** was isolated under inert atmosphere, but not detected in the presence of air (**c**). Then, in a 20 mL sealed tube (22-24 mL gas space), 5 mL of O_2 in otherwise N_2 promoted the reaction most efficiently, which is consistent with its good performance under air (**d**). Next, carbonate **10** was identified as a side product in aliphatic amines participated reactions (about 15% yield based on imine), which possibly comes from the O_2 entrapment of a 1,3-dioxolane radical. Interestingly, **10** was not observed in the reaction of aromatic amines (**e**). In addition, the reaction of tetrahydrofuran revealed a similar thiol-accelerating trend, which indicates this is not an individual effect for 1,3-dioxolane (**f**). Furthermore, primary kinetic isotope effect was observed for THF under these conditions in both intermolecular competition ($k_H/k_D = 6.3$) and parallel ($k_H/k_D = 3.6\pm0.1$) experiments.

Scheme 3. Mechanistic related control experiments

The above observations together with the results in **table 1** reveal mechanistic information. First, radical species are involved in this reaction, and AIBN, thiol and O_2 are all essential to the reaction. Then, according to the thiol-ene reaction, thiol and AIBN should be able to generate thiyl radical under inert atmosphere. So, the necessity of O_2 suggests that the thiol-thiyl radical pair alone could not promote the chain reaction efficiently as we proposed in the introduction. An O_2 -related species is highly likely involved in the radical chain propagation cycle. Additionally, the generation of carbonate **10** reveals O_2 could also act as a competing electrophile when imine is not reactive enough. Furthermore, no matter which radical is the real abstracting species, it has excellent regioselectivity, and the HAT process from the substrate is probably rate-determining.

Based on these results, we proposed a plausible reaction mechanism as illustrated in Scheme 4. *In the initiation stage*, AIBN firstly decomposes under heating condition to generate isobutyl nitrile radical **B**, which is known¹⁵ to react with a thiol to yield a thiyl radical **C** and isobutyl nitrile **12** (detected by GC-MS). Then, O₂ could participate in two different ways: either combines with radical **B** to form a peroxyl radical **D** (path I), or reacts with thiyl radical **C** to furnish a thiylperoxyl radical RSOO·,¹⁶ which could be further converted to a series of derivatives according to previous studies (path II), such as sulfonyl radical [RS(O)O·], sulfonyl peroxyl radical [RS(OO·)O₂] and sulfinyl [RSO·] radical. These species are presented as one general formula [RSO_n·] in Scheme 4.

In the case of path I, the peroxyl radical **D** may abstract an H-atom from 1,3-dioxolane to generate **13** (detected by GC-MS) and radical **E**, which would quickly add to an imine to furnish a nitrogen-centered radical **F**. This nitrogen radical would be readily reduced by one molecule of thiol to afford the product and a thiyl radical C.^{10,17} Since RS–H and R'OO–H have very similar bond dissociation energy (both around 87–88 kcal/mol),^{11,18} radical **C** may abstract an H-atom from peroxide **13** to regenerate the peroxyl radical **D**. *On the other hind*, thiyl peroxyl radical and its derivatives [RSO_n·] normally have mild reactivity and form weak O–H bonds. Therefore, they may also be able to abstract a hydrogen atom from 1,3-dioxolane and then reduce the nitrogen radical G. However, in this scenario, there might multiple species (n = 1, 2 or 4) involved and we currently cannot identify the real effective one (*path II*). Based on the evidence we have, neither *path I* nor *II* could be ruled out, and maybe both of them contribute to the reaction. In addition, although O₂ is essential to the desired radical chain propagation, it also acts as a competing electrophile toward radical **E** to cause a non-productive oxidation cycle to yield carbonate **10**, especially in the reactions of *N*-aliphatic imines.

Conclusion

In summary, we have developed an AIBN/thiol promoted site-specific and redox-neutral functionalization procedure of 1,3-dioxolane with imines to synthesize masked amino aldehydes, avoiding the use of stoichiometric amount of radical precursors. This method is scalable and tolerates a range of functional groups, including those were normally incompatible with imine radical additions. Mechanistic studies demonstrate this transformation proceeds through a thiol and O_2 promoted radical chain pathway with the initiation of AIBN. Further synthetic applications and mechanistic studies of this reaction are ongoing in our laboratory.

Experimental Section

i. General procedures. All reactions were performed in oven-dried round-bottom flasks and tubes. Solvents were dried and freshly distilled before use. 4 Å molecular sieves were freshly activated before use. Aldehydes and amines are purified either by distillation or recrystallization before use. Reactions were monitored by thin layer chromatography (TLC) using silica gel 60 F-254 plates. TLC plates were normally visualized under UV irradiation (254 nm or 365 nm), stained with basic KMnO₄ or phosphomolybdic acid. Flash column chromatography was performed using silica gel 60 (200–300 mesh).

ii. Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on Bruker Ascend 400 MHZ or 600 MHZ. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak (CHCl₃: δ 7.26). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent (CDCl₃: δ 77.0). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants in Hertz (Hz), and integration. HRMS was measured on a Bruker SolariX 7.0 T spectrometer equipped with an ESI or APCI source.

iii. Abbreviations used: TLC-thin layer chromatography; AIBN-azobisisobutyronitrile; TDM*tert*-dodecyl mercaptan; PE-Petroleum Ethers; TEMPO-2,2,6,6-tetramethylpiperidine-*N*-oxyl; NOE-Nuclear Overhauser Effect.

iv. General procedures for Initiator evaluation and condition optimization (Table 1)

To an oven-dried 20 mL sealable tube charged with a stir bar were added benzaldehyde (21.2 mg, 0.2 mmol), aniline (18.6 mg, 0.2 mmol), AIBN (0.02 or 0.04 mmol) and freshly activated 4 Å molecular sieves (80 mg, if any). Freshly distilled 1,3-dioxolane (2 mL) was added through a syringe followed by the addition of a corresponding thiol (0.02 or 0.04 mmol). The reaction tube was then sealed with a septum under air, heated up to the indicated temperature and stirred for 12 hours. The reaction was then cooled down, filtered through a Celite[®] pad, washed with ether, and the filtrate was concentrated *in vacuo*. The residue was submitted for ¹H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard. For reactions with decent conversions, yield of **3aa** was obtained after purification through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1).

N-((1,3-Dioxolan-2-yl)(phenyl)methyl)aniline (**3aa**): compound **3aa** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as a yellow solid (32 mg, 62% yield, m.p. 76–78 °C), which is a known compound^{7d} and the characterization data are in accordance with the literature. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 6.9 Hz, 2H), 7.24 (t, *J* = 7.4 Hz, 2H), 7.20 – 7.15 (m, 1H), 7.00 (t, *J* = 7.8 Hz, 2H), 6.57 (t, *J* = 7.3 Hz, 1H), 6.48 (d, *J* = 7.9 Hz, 2H), 5.10 (d, *J* = 2.8 Hz, 1H), 4.49 (d, *J* = 2.8 Hz, 2H), 3.77 (m, 4H); ¹³C{¹H}NMR (100 MHz, 100 MHz, 100 MHz).

CDCl₃) δ 147.0, 138.7, 129.1, 128.4, 127.7, 127.6, 117.7, 113.8, 105.5, 65.5, 65.3, 60.2; IR v_{max} (neat)/cm⁻¹: 3361, 3027, 2876, 1603, 1505, 1294, 1123, 1031, 749, 700.

v. Addition of 1,3-dioxolane to N,1-diarylmethanimines (Table 2)

Procedure A: To an oven-dried 20 mL sealable tube charged with a stir bar were added an aldehyde (0.2 mmol), an amine (0.2 mmol), AIBN (3.3 mg, 0.02 mmol) and freshly activated 4 Å molecular sieves (80 mg). The tube was sealed with a septum and 1,3-dioxolane (2 mL, freshly distilled) was added through a syringe, followed by the addition of TDM (5 μ L, 0.02 mmol). The reaction mixture was stirred at 80 °C for indicated time and then cooled down, filtered through a Celite[®] pad and washed with ether. After the filtrate was concentrated *in vacuo*, the resulting residue was purified through a silica gel column chromatography to afford the corresponding product **3**.

Procedure B: To an oven-dried 20 mL sealable tube charged with a stir bar were added a corresponding purified imine (0.2 mmol), AIBN (3.3 mg, 0.02 mmol) and freshly activated 4 Å molecular sieves (40 mg). The tube was sealed with a septum and 1,3-dioxolane (2 mL, freshly distilled) was added through a syringe, followed by the addition of TDM (5 μ L, 0.02 mmol). The reaction mixture was stirred at 80 °C for indicated time and then cooled down, filtered through a Celite[®] pad and washed with ether. After concentrated *in vacuo*, the resulting residue was purified through a silica gel column chromatography to afford the corresponding product **3**.

Methyl 4-((1,3-dioxolan-2-yl)(phenylamino)methyl)benzoate (**3ba**) was prepared according to procedure B through the reaction of methyl (*E*)-4-((phenylimino)methyl)benzoate in 1,3-dioxolane for 12 hours. Compound **3ba** was isolated through a silica gel column chromatography (PE: EtOAc from 20:1 to 10:1) as a yellow solid (54 mg, 86% yield, m.p. 79–81 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.3 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 2H), 7.09 (t, *J* = 8.0 Hz, 2H), 6.68 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 8.8 Hz, 2H), 5.20 (d, *J* = 2.8 Hz, 1H), 4.64 (d, *J* = 2.8 Hz, 2H), 3.90 (s, 3H), 3.91 – 3.80 (m, 4H); ¹³C{¹H}NMR (151 MHz, CDCl₃) δ 167.0, 146.6, 144.1, 129.7, 129.6, 129.2, 127.9, 118.0, 113.8, 105.0, 65.5, 65.4, 60.2, 52.1; IR v_{max} (neat)/cm⁻¹: 3376, 3027, 2878, 1722, 1605, 1510, 1315, 1125, 1033, 747, 695; HRMS (ESI/FT-ICR, m/z): calcd for C₁₈H₁₉NNaO₄ [M + Na]⁺ 336.1206, found 336.1212

N-((1,3-Dioxolan-2-yl)(p-tolyl)methyl)aniline (3ca) was prepared according to procedure B through the reaction of (*E*)-*N*-phenyl-1-(p-tolyl)methanimine in 1,3-dioxolane for 12 hours.

Compound **3ca** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as a yellow solid (36 mg, 67% yield, m.p. 58–60 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 7.8 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), 7.09 (t, *J* = 7.8 Hz, 2H), 6.66 (t, *J* = 7.4 Hz, 1H), 6.57 (d, *J* = 7.4 Hz, 2H), 5.16 (d, *J* = 3.2 Hz, 1H), 4.55 (d, *J* = 3.2 Hz, 1H), 3.96 – 3.73 (m, 4H), 2.33 (s, 3H); ¹³C{¹H}NMR (151 MHz, CDCl₃) δ 147.1, 137.2, 135.6, 129.2, 129.1, 127.5, 117.7, 113.8, 105.6, 65.4, 65.3, 60.0, 21.2; IR v_{max} (neat)/cm⁻¹: 3376, 3027, 2876, 1606, 1510, 1317, 1125, 1033, 746, 696; HRMS (ESI/FT-ICR, m/z): calcd for C₁₇H₁₉NNaO₂ [M + Na]⁺ 292.1308, found 292,1315.

N-((1,3-Dioxolan-2-yl)(4-methoxyphenyl)methyl)aniline (3da) was prepared according to procedure B through the reaction of (*E*)-1-(4-methoxyphenyl)-*N*-phenylmethanimine in 1,3-dioxolane for 12 hours. Compound 3da was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as a yellow solid (41 mg, 72% yield, m.p. 81–83 °C). 3da is a known compound^{7d} and the characterization data are in accordance with the literature. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.7 Hz, 2H), 7.14 – 7.05 (m, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 6.66 (t, *J* = 7.3 Hz, 1H), 6.57 (d, *J* = 7.9 Hz, 2H), 5.15 (d, *J* = 3.1 Hz, 1H), 4.56 (s, 1H), 4.52 (d, *J* = 3.1 Hz, 1H), 3.87 (m, 4H), 3.78 (s, 3H); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 159.1, 147.1, 130.6, 129.1, 128.7, 117.6, 113.9, 113.8, 105.5, 65.4, 65.3, 59.7, 55.2; IR v_{max} (neat)/cm⁻¹: 3372, 3023, 2881, 1606, 1512, 1306, 1251, 1178, 1125, 1035, 746, 693.

N-((1,3-Dioxolan-2-yl)(4-fluorophenyl)methyl)aniline (**3ea**) was prepared according to procedure A through the reaction of 4-fluoro-benzaldehyde and aniline in 1,3-dioxolane for 12 hours. Compound **3ea** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as a yellow solid (41 mg, 75% yield, m.p. 44–47 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.41 (td, J = 5.6, 2.3 Hz, 2H), 7.11 (t, J = 8.0 Hz, 2H), 7.02 (t, J = 8.7 Hz, 2H), 6.69 (t, J = 7.3Hz, 1H), 6.55 (d, J = 7.6 Hz, 2H), 5.17 (d, J = 3.1 Hz, 1H), 4.56 (d, J = 3.1 Hz, 1H), 3.93 – 3.82 (m, 4H); ¹³C {¹H}NMR (151 MHz, CDCl₃) δ 162.3 (d, J = 245.5 Hz), 146.8, 134.2 (d, J = 3.1Hz), 129.3 (d, J = 8.1 Hz), 129.1, 117.9, 115.3 (d, J = 21.4 Hz), 113.8, 113.8, 105.2, 65.5, 65.4, 59.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.16 (tt, J = 8.8, 5.3 Hz); IR v_{max} (neat)/cm⁻¹: 3374, 3062, 2877, 1605, 1509, 1394, 1297, 1230, 1122, 1028, 748, 698; HRMS (ESI/FT-ICR, m/z): calcd for C₁₆H₁₆FNNaO₂ [M + Na]⁺ 296.1057, found 296,1068.

N-((4-Chlorophenyl)(1,3-dioxolan-2-yl)methyl)aniline (**3fa**) was prepared according to procedure A through the reaction of 4-chloro-benzaldehyde and aniline in 1,3-dioxolane for 12 hours. Compound **3fa** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as a yellow solid (46 mg, 79% yield, m.p. 58–60 °C). ¹H NMR (600 MHz, CDCl₃) 7.38 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.11 (t, J = 7.7 Hz, 2H), 6.69 (t, J = 7.3 Hz, 1H), 6.54 (d, J = 7.9 Hz, 2H), 5.16 (d, J = 3.2 Hz, 1H), 4.55 (d, J = 3.2 Hz, 1H), 3.92 – 3.79 (m, 4H); ¹³C{¹H}NMR (151 MHz, CDCl₃) δ 146.7, 137.2, 133.4, 129.2, 129.2, 128.6, 118.0, 113.8, 105.1, 65.5, 65.4, 59.8; IR v_{max} (neat)/cm⁻¹: 3391, 3053, 2883, 1604, 1513, 1317, 1125, 1031, 749, 694 cm⁻¹; HRMS (ESI/FT-ICR, m/z): calcd for C₁₆H₁₆CINNaO₂ [M + Na]⁺ 312.0762, found 312.0781.

N-((*3*-*Chlorophenyl*)(*1*,*3*-*dioxolan*-*2*-*yl*)*methyl*)*aniline* (**3ga**) was prepared according to procedure A through the reaction of 3-chloro-benzaldehyde and aniline in 1,3-dioxolane for 12 hours. Compound **3ga** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as a yellow solid (37 mg, 65% yield, m.p. 56–58 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.48 (s, 1H), 7.38 – 7.33 (m, 1H), 7.32 – 7.26 (m, 2H), 7.14 (t, *J* = 7.9 Hz, 2H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.58 (d, *J* = 7.9 Hz, 2H), 5.19 (d, *J* = 3.2 Hz, 1H), 4.57 (d, *J* = 3.2 Hz, 1H), 3.95 – 3.85 (m, 4H); ¹³C{¹H}NMR (151 MHz, CDCl₃) δ 146.7, 141.0, 134.4, 129.6, 129.2, 127.9, 127.9, 126.0, 118.0, 113.7, 105.1, 65.5, 65.4, 60.0; IR v_{max} (neat)/cm⁻¹: 3367, 3056, 2873, 1603, 1510, 1315, 1130, 1035, 749, 693; HRMS ESI/FT-ICR, m/z): calcd for C₁₆H₁₆ClNNaO₂ [M + Na]⁺ 312.0762, found 312.0774.

N-((2-Chlorophenyl)(1,3-dioxolan-2-yl)methyl)aniline (**3ha**) was prepared according to procedure A through the reaction of 2-chloro-benzaldehyde and aniline in 1,3-dioxolane for 12 hours. Compound **3ha** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as a yellow solid (34 mg, 60% yield, m.p. 57–59 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.54 – 7.49 (m, 1H), 7.44 – 7.38 (m, 1H), 7.25 – 7.18 (m, 2H), 7.11 (t, *J* = 7.9 Hz, 2H), 6.68 (t, *J* = 7.4 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 2H), 5.22 (s, 2H), 4.04 – 3.86 (m, 4H); ¹³C{¹H}NMR (151 MHz, CDCl₃) δ 146.5, 136.2, 133.8, 129.5, 129.2, 128.9, 128.8, 127.1, 117.9, 113.5, 104.1, 65.6, 65.3, 55.8; IR v_{max} (neat)/cm⁻¹: 3358, 3020, 2900, 1602, 1523, 1498, 1318, 1112, 1028, 746, 693; HRMS (ESI/FT-ICR, m/z): calcd for C₁₆H₁₆ClNNaO₂ [M + Na]⁺ 312.0762, found 312.0766.

N-((2,4-Dichlorophenyl)(1,3-dioxolan-2-yl)methyl)aniline (**3ia**) was prepared according to procedure A through the reaction of 2,4-dichloro benzaldehyde and aniline in 1,3-dioxolane for 8 hours. Compound **3ia** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as colorless oil (59 mg, 91% yield), which we have reported⁶ in a previous publication. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.20 (d, *J* = 8.4 Hz, 1H), 7.11 (t, *J* = 7.7 Hz, 2H), 6.69 (t, *J* = 7.4 Hz, 1H), 6.51 (m, 2H), 5.19 (d, *J* = 2.5 Hz, 1H), 5.16 (d, *J* = 2.5 Hz, 1H), 4.51 (s, 1H), 4.06 – 3.76 (m, 4H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 146.2, 134.9, 134.5, 133.9, 130.0, 129.3, 129.3, 127.5, 118.2, 113.5, 103.8, 65.6, 65.4, 55.6; IR v_{max} (neat)/cm⁻¹: 3402, 3027, 2873, 1602, 1514, 1317, 1125, 1033, 746, 696.

N-((1,3-dioxolan-2-yl)(pyridin-2-yl)methyl)aniline (**3ja**) was prepared according to procedure A through the reaction of 2-pyridinecarboxaldehyde and aniline in 1,3-dioxolane for 12 hours. Compound **3ja** was isolated through a silica gel column chromatography (PE:EtOAc from 10:1 to 5:1 as a yellow solid (48 mg, 84% yield, m.p. 106–108 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 6.1 Hz, 1H), 7.63 (td, J = 7.7, 1.9 Hz, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.19 (dd, J = 7.5, 4.9 Hz, 1H), 7.12 (t, J = 7.8 Hz, 2H), 6.72 – 6.60 (m, 3H), 5.33 (d, J = 2.9 Hz, 1H), 4.96 (d, J = 6.7 Hz, 1H), 4.78 (dd, J = 6.7, 2.9 Hz, 1H), 4.01 – 3.83 (m, 4H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 158.3, 149.3, 147.2, 136.5, 129.2, 122.5, 122.5, 117.8, 113.7, 105.1, 65.5, 65.4, 61.2; IR v_{max} (neat)/cm⁻¹: 3312, 3055, 2875, 1603, 1515, 1311, 1119, 1035, 748, 690; HRMS (ESI/FT-ICR, m/z): calcd for C₁₅H₁₆N₂NaO₂ [M + Na]⁺ 279.1104, found 279.1108.

N-((2,4-Dichlorophenyl)(1,3-dioxolan-2-yl)methyl)-4-methylaniline (**3ib**) was prepared according to procedure B through the reaction of (*E*)-1-(2,4-dichlorophenyl)-*N*-(p-tolyl)methanimine in 1,3-dioxolane for 10 hours. Compound **3ib** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as colorless oil (64 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 2H), 7.18 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.42 (d, *J* = 8.0 Hz, 1H), 5.18 (d, *J* = 2.8 Hz, 1H), 5.12 (d, *J* = 2.8 Hz, 1H), 4.04 – 3.79 (m, 4H), 2.19 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 143.9, 135.1, 134.5, 133.8, 130.0, 129.7, 129.2, 127.5, 127.3, 113.6, 103.9, 65.6, 65.4, 55.8, 20.4; IR v_{max} (neat)/cm⁻¹: 3407, 3022, 2889, 1617, 1520, 1313, 1110, 1028, 811, 733; HRMS (ESI/FT-ICR, m/z): calcd for C₁₇H₁₇Cl₂NNaO₂ [M + Na]⁺ 360.0529, found 360.0538.

N-((2,4-Dichlorophenyl)(1,3-dioxolan-2-yl)methyl)-4-methoxyaniline (**3ic**) was prepared according to procedure A through the reaction of 2,4-dichlorobenzaldehyde and 4-anisidine in 1,3-dioxolane for 10 hours. Compound **3ic** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as colorless oil (54 mg, 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H), 7.20 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.71 (d, *J* = 9.0 Hz, 2H), 6.47 (d, *J* = 9.0 Hz, 2H), 5.18 (d, *J* = 2.9 Hz, 1H), 5.09 (d, *J* = 2.9 Hz, 1H), 4.36 (s, 1H), 4.01 – 3.86 (m, 4H), 3.69 (s, 3H); ¹³C{¹H}NMR (151 MHz, CDCl₃) δ 152.5, 140.3, 135.1, 134.6, 133.9, 130.0, 129.3, 127.5, 114.8, 114.7, 104.0, 65.6, 65.4, 56.3, 55.7; IR v_{max} (neat)/cm⁻¹: 3389, 3064, 2892, 1618, 1514, 1384, 1240, 1037, 820, 733; HRMS (ESI/FT-ICR, m/z): calcd for C₁₇H₁₇Cl₂NNaO₃ [M + Na]⁺ 376.0478, found 376.0490.

4-Chloro-N-((2,4-dichlorophenyl)(1,3-dioxolan-2-yl)methyl)aniline (**3id**) was prepared according to procedure B through the reaction of (*E*)-*N*-(4-chlorophenyl)-1-(2,4-dichlorophenyl) methanimine in 1,3-dioxolane for 10 hours. Compound **3ia** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as colorless oil (67 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.37 (m, 2H), 7.19 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.05 (d, *J* = 8.8 Hz, 2H), 6.42 (d, *J* = 8.8 Hz, 2H), 5.16 (d, *J* = 2.7 Hz, 1H), 5.13 – 5.08 (m, 1H), 4.63 (d, *J* = 5.4 Hz, 1H), 4.02 – 3.82 (m, 4H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 144.8, 134.5, 134.4, 134.1, 129.8, 129.4, 129.1, 127.6, 122.8, 114.6, 103.6, 65.6, 65.4, 55.6; IR v_{max} (neat)/cm⁻¹: 3421, 3068, 2890, 1599, 1500, 1315, 1121, 1027, 816, 734 cm⁻¹; HRMS (ESI/FT-ICR, m/z): calcd for C₁₆H₁₄Cl₃NNaO₂ [M + Na]⁺ 379.9982, found 379.9993.

3-Chloro-N-((2,4-dichlorophenyl)(1,3-dioxolan-2-yl)methyl)aniline (**3ie**) was prepared according to procedure A through the reaction of 2,4-dichlorobenzaldehyde and 3-chloro aniline in 1,3-dioxolane for 10 hours. Compound **3ie** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as colorless oil (53 mg, 74% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.38 (m, 2H), 7.21 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.01 (t, *J* = 8.1 Hz, 1H), 6.68 – 6.63 (m, 1H), 6.53 (t, *J* = 2.2 Hz, 1H), 6.37 – 6.32 (m, 1H), 5.16 (d, *J* = 2.6 Hz, 1H), 5.12 (d, *J* = 2.6 Hz, 1H), 4.69 (s, 1H), 4.01 – 3.86 (m, 4H); ¹³C{¹H}NMR (151 MHz, CDCl₃) δ 147.4, 134.9, 134.4, 134.3, 134.2, 130.3, 129.8, 129.4, 127.6, 118.1, 113.5, 111.4, 103.6, 65.6, 65.4, 55.4; IR v_{max} (neat)/cm⁻¹: 3421, 3068, 2890, 1598, 1500, 1324, 1120, 1028, 842, 766; HRMS (ESI/FT-ICR, m/z): calcd for C₁₆H₁₄Cl₃NNaO₂ [M + Na]⁺ 379.9982, found 379.9985.

4-Bromo-N-((2,4-dichlorophenyl)(1,3-dioxolan-2-yl)methyl)aniline (**3if**) was prepared according to procedure **B** through the reaction of (*E*)-*N*-(4-bromophenyl)-1-(2,4-dichlorophenyl) methanimine in 1,3-dioxolane for 10 hours. Compound **3if** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as colorless oil (77 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.34 (m, 2H), 7.23 – 7.14 (m, 3H), 6.37 (d, *J* = 8.7 Hz, 2H), 5.15 (d, *J* = 2.6 Hz, 1H), 5.09 (s, 1H), 4.63 (s, 1H), 4.04 – 3.83 (m, 4H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 145.2, 134.5, 134.3, 134.2, 132.0, 129.8, 129.4, 127.6, 115.1, 109.9, 103.6, 65.6, 65.3, 55.5; IR v_{max} (neat)/cm⁻¹: 3417, 3067, 2889, 1594, 1498, 1315, 1120, 1028, 815, 735; HRMS (ESI/FT-ICR, m/z): calcd for C₁₆H₁₄BrCl₂NNaO₂ [M + Na]⁺ 423.9477, found 423.9483.

N-((2,4-Dichlorophenyl)(1,3-dioxolan-2-yl)methyl)-4-fluoroaniline (**3ig**) was prepared according to procedure A through the reaction of 2,4-dichlorobenzaldehyde and 4-fluoroaniline in 1,3-dioxolane for 12 hours. Compound **3ig** was isolated through a silica gel column chromatography (PE: EtOAc from 20:1 to 10:1) as colorless oil (50 mg, 73% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.20 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.81 (t, *J* = 8.7 Hz, 2H), 6.47 – 6.42 (m, 2H), 5.16 (d, *J* = 2.5 Hz, 1H), 5.08 (d, *J* = 2.5 Hz, 1H), 4.51 (s, 1H), 4.03 – 3.86 (m, 4H); ¹³C{¹H}NMR (151 MHz, CDCl₃) δ 156.1 (d, *J* = 235.7 Hz), 142.5, 134.6 (d, *J* = 18.1 Hz), 134.1, 129.9, 129.3, 127.5, 115.7 (d, *J* = 22.5 Hz), 114.34 (d, *J* = 7.5 Hz), 103.8, 65.6, 65.4, 56.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -127.2 (tt, *J* = 8.6, 4.3 Hz); IR v_{max} (neat)/cm⁻¹: 3421, 3063, 2891, 1612, 1513, 1312, 1220, 1120, 1028, 820, 733; HRMS (ESI/FT-ICR, m/z): calcd for C₁₆H₁₄Cl₂FNNaO₂ [M + Na]⁺ 364.0278, found 364.0286.

N-((2,4-Dichlorophenyl)(1,3-dioxolan-2-yl)methyl)-3,5-bis(trifluorome-thyl)aniline (**3ih**) was prepared according to procedure A through the reaction of 2,4-dichlorobenzaldehyde and 3,5-bis(trifluoromethyl)aniline in 1,3-dioxolane for 16 hours. Compound **3ih** was isolated through a silica gel column chromatography (PE:EtOAc from 20:1 to 10:1) as a yellow solid (50 mg, 55% yield, m.p. 93–95 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, J = 2.1 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.22 (dd, J = 8.4, 2.1 Hz, 1H), 7.14 (s, 1H), 6.88 (s, 2H), 5.20 (d, J = 2.4 Hz, 1H), 5.16 (d, J = 2.4 Hz, 1H), 5.07 (s, 1H), 4.04 – 3.85 (m, 4H); ¹³C {¹H}NMR (151 MHz, CDCl₃) δ 147.0, 134.7, 134.5, 133.3, 132.5 (q, J = 32.8 Hz), 129.7, 129.5, 127.7, 123.4 (q, J = 272.7 Hz), 112.6 (m), 111.1(m), 103.3, 65.7, 65.4, 55.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 (s); IR v_{max} (neat)/cm⁻¹: 3440, 3085, 2902, 1626, 1520, 1388, 1280, 1174, 1122, 1028, 852, 681; HRMS (ESI/FT-ICR, m/z): calcd for C₁₈H₁₃Cl₂F₆NNaO₂ [M + Na]⁺ 482.0120, found 482.0131.

vi. Addition of 1,3-dioxolane to ethyl glyoxylate imines (Table 3)

Procedure C: To an oven-dried 20 mL sealable tube charged with a stir bar were added ethyl glyoxylate (40 μ L, 0.2 mmol, ~50% in toluene), a corresponding amine (0.2 mmol) and freshly activated 4 Å molecular sieves (80 mg). The tube was sealed with a septum and freshly distilled 1,3-dioxolane (1.5 mL) was added through a syringe. The mixture was stirred for 1 hour at room temperature before the addition of AIBN (3.3 mg, 0.02 mmol, dissolved in 0.5 mL 1,3-dioxolane) and TDM (5 μ L, 0.02 mmol) through syringes. The reaction mixture was then heated up to 80 °C and monitored by TLC. Upon completion, the solvent was removed *in vacuo*, and the resulting residue was purified through a silica gel column chromatography to afford a corresponding product **4**.

Procedure D: To an oven-dried 20 mL sealable tube charged with a stir bar were added ethyl glyoxylate (40 μ L, 0.2 mmol, ~50% in toluene), a corresponding amine (0.2 mmol) and freshly activated 4 Å molecular sieves (80 mg). The tube was sealed with a septum and freshly distilled 1,3-dioxolane (1.5 mL) was added through a syringe. The mixture was stirred for 1 hour at room temperature before the addition of AIBN (3.3 mg, 0.02 mmol, dissolved in 0.5 mL 1,3-dioxolane) through a syringe. The reaction mixture was then heated up to 65 °C and monitored by TLC. Upon completion, the solvent was removed *in vacuo*, and the resulting residue was purified through a silica gel column chromatography to afford a corresponding product **4**.

Ethyl 2-(1,3-dioxolan-2-yl)-2-(phenylamino)acetate (**4a**): was prepared according to procedure C through the reaction of ethyl glyoxylate and aniline in 1,3-dioxolane for 12 hours. Compound **4a** was isolated through a silica gel column chromatography (PE: EtOAc from 10:1 to 5:1) as a yellowish solid (48 mg, 96% yield, m.p. 70–72 °C), which is a known compound^{3h} and the characterization data are in accordance with the literature. ¹H NMR (600 MHz, CDCl₃) δ 7.17 (t, J = 7.9 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 6.71 (d, J = 7.8 Hz, 2H), 5.37 (d, J = 2.2 Hz, 1H), 4.31 (d, J = 2.2 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.12 – 4.06 (m, 1H), 4.03 – 3.97 (m, 1H), 3.95 – 3.89 (m, 2H), 3.28 (s, 1H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C{¹H}NMR NMR (151 MHz, CDCl₃) δ 170.4, 146.9, 129.4, 129.2, 118.7, 114.0, 103.4, 66.0, 65.6, 61.7, 60.3, 14.2; IR v_{max} (neat)/cm⁻¹: 3385, 3054, 2895, 1739, 1604, 1510, 1308, 1160, 1026, 755, 694.

Ethyl 4-((1-(1,3-dioxolan-2-yl)-2-ethoxy-2-oxoethyl)amino)benzoate (4b): was prepared according to procedure C through the reaction of ethyl glyoxylate and ethyl 4-aminobenzoate in

1,3-dioxolane for 12 hours. Compound **4b** was isolated through a silica gel column chromatography (PE: EtOAc from 10:1 to 5:1) as colorless oil (39 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 8.7 Hz, 2H), 5.38 (d, *J* = 2.2 Hz, 1H), 4.85 (d, *J* = 8.4 Hz, 1H), 4.40 (dd, *J* = 8.4, 2.2 Hz, 1H), 4.36 – 4.20 (m, 4H), 4.12 – 3.99 (m, 1H), 3.97 – 3.86 (m, 2H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.6, 166.7, 150.7, 131.4, 120.1, 112.5, 103.2, 66.0, 65.6, 62.0, 60.3, 59.1, 14.4, 14.2; IR v_{max} (neat)/cm⁻¹: 3374, 3052, 2899, 1740, 1703, 1607, 1530, 1278, 1175, 1106, 1022, 772; HRMS (ESI/FT-ICR, m/z): calcd for C₁₆H₂₁NNaO₆ [M + Na]⁺ 346.1261, found 346.1267.

Ethyl 2-(1,3-dioxolan-2-yl)-2-(p-tolylamino)acetate (**4c**): was prepared according to general C through the reaction of ethyl glyoxylate and 4-toluidine in 1,3-dioxolane for 12 hours. Compound **4c** was isolated through a silica gel column chromatography (PE: EtOAc from 10:1 to 5:1) as colorless oil (48 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, *J* = 8.1 Hz, 2H), 6.63 (d, *J* = 8.1 Hz, 2H), 5.36 (d, *J* = 2.3 Hz, 1H), 4.34 (d, *J* = 7.6 Hz, 1H), 4.31 – 4.18 (m, 3H), 4.13 – 4.05 (m, 1H), 4.05 – 3.97 (m, 1H), 3.97 – 3.88 (m, 2H), 2.23 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 170.5, 144.6, 129.7, 127.9, 114.1, 103.5, 66.0, 65.6, 61.6, 60.7, 20.4, 14.2; IR v_{max} (neat)/cm⁻¹: 3388, 3033, 2887, 1735, 1616, 1522, 1302, 1167, 1030, 989, 808; HRMS (ESI/FT-ICR, m/z): calcd for C₁₄H₁₉NNaO₄ [M + Na]⁺ 288.1206, found 288.1211.

Ethyl 2-(1,3-dioxolan-2-yl)-2-((4-methoxyphenyl)amino)acetate (**4d**): was prepared according to procedure C through the reaction of ethyl glyoxylate and 4-anisidine in 1,3-dioxolane for 12 hours. Compound **4d** was isolated through a silica gel column chromatography (PE: EtOAc from 10:1 to 5:1) as colorless oil (54 mg, 96% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.76 (d, *J* = 9.0 Hz, 2H), 6.67 (d, *J* = 9.0 Hz, 2H), 5.34 (s, 1H), 4.27 – 4.16 (m, 4H), 4.12 – 4.04 (m, 1H), 4.05 – 3.97 (m, 1H), 3.96 – 3.89 (m, 2H), 3.73 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 170.7, 152.9, 141.0, 115.5, 114.8, 103.4, 65.9, 65.6, 61.6, 61.5, 55.7, 14.2; IR v_{max} (neat)/cm⁻¹: 3373, 3023, 2898, 1739, 1621, 1516, 1240, 1159, 1035, 879; HRMS (ESI/FT-ICR, m/z): calcd for C₁₄H₁₉NNaO₅ [M + Na]⁺ 304.1155, found 304.1159.

Ethyl 2-(1,3-dioxolan-2-yl)-2-((4-fluorophenyl)amino)acetate (4e) was prepared according to procedure C through the reaction of ethyl glyoxylate and 4-fluoroaniline in 1,3-dioxolane for 12 hours. Compound 4e was isolated through a silica gel column chromatography (PE:EtOAc from

10:1 to 5:1) as yellow oil (32 mg, 60% yield) which is a known compound^{3h} and the characterization data are in accordance with the literature. ¹H NMR (400 MHz, CDCl₃) δ 6.87 (t, J = 8.7 Hz, 2H), 6.65 (dd, J = 9.0, 4.3 Hz, 2H), 5.35 (d, J = 2.3 Hz, 1H), 4.35 (s, 1H), 4.28 – 4.18 (m, 3H), 4.13 – 4.05 (m, 1H), 4.04 – 3.97 (m, 1H), 3.97 – 3.89 (m, 2H), 1.27 (t, J = 7.0 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 170.3, 156.5 (d, J = 236.1 Hz), 143.3 (d, J = 2.0 Hz), 115.6 (d, J = 22.4 Hz), 115.0 (d, J = 7.5 Hz), 103.3, 66.0, 65.6, 61.7, 61.0, 14.2; IR v_{max} (neat)/cm⁻¹: 3378, 3056, 2898, 1739, 1621, 1516, 1369, 1240, 1158, 1035, 825.

Ethyl 2-((4-chlorophenyl)amino)-2-(1,3-dioxolan-2-yl)acetate (**4f**) was prepared according to procedure C through the reaction of ethyl glyoxylate and 4-chloroaniline in 1,3-dioxolane for 12 hours. Compound **4f** was isolated through a silica gel column chromatography (PE: EtOAc from 10:1 to 5:1) as a yellowish solid (48 mg, 85% yield, m.p. 48–49 °C) which is a known compound^{3h} and the characterization data are in accordance with the literature. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.8 Hz, 2H), 6.63 (d, *J* = 8.8 Hz, 2H), 5.36 (d, *J* = 2.3 Hz, 1H), 4.47 (d, *J* = 8.5 Hz, 1H), 4.29 – 4.18 (m, 3H), 4.13 – 4.03 (m, 1H), 4.01 – 3.86 (m, 3H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 170.1, 145.6, 129.0, 123.2, 115.0, 103.3, 66.0, 65.6, 61.8, 60.2, 14.2; IR v_{max} (neat)/cm⁻¹: 3383, 3036, 2898, 1736, 1620, 1522, 1357, 1242, 1152, 1042, 833.

Ethyl 2-((3-chlorophenyl)amino)-2-(1,3-dioxolan-2-yl)acetate (**4g**) was prepared according to procedure C through the reaction of ethyl glyoxylate and 3-chloroaniline in 1,3-dioxolane for 12 hours. Compound **4g** was isolated through a silica gel column chromatography (PE: EtOAc from 10:1 to 5:1) as colorless oil (35 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.07 (t, *J* = 7.9 Hz, 1H), 6.75 – 6.65 (m, 2H), 6.57 (dd, *J* = 8.1, 2.3 Hz, 1H), 5.37 (d, *J* = 2.3 Hz, 1H), 4.53 (d, *J* = 8.5 Hz, 1H), 4.31 – 4.20 (m, 3H), 4.15 – 4.02 (m, 1H), 4.02 – 3.85 (m, 3H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.9, 148.1, 134.9, 130.2, 118.5, 113.7, 112.1, 103.3, 66.0, 65.6, 61.9, 59.9, 14.2; IR v_{max} (neat)/cm⁻¹: 3388, 3060, 2895, 1738, 1611, 1527, 1355, 1247, 1148, 1047, 837; HRMS (ESI/FT-ICR, m/z): calcd for C₁₃H₁₆CINNaO₄ [M + Na]⁺ 308.0660, found 308.0667.

Ethyl 2-(benzylamino)-2-(1,3-dioxolan-2-yl)acetate (**4h**) was prepared according to procedure D through the reaction of ethyl glyoxylate and benzylamine in 1,3-dioxolane for 4 hours. Compound **4h** was isolated through a silica gel column chromatography (PE: EtOAc from 5:1 to

3:1) as colorless oil (33 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.11 (m, 5H), 5.10 (d, *J* = 3.5 Hz, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 4.01 – 3.90 (m, 2H), 3.87 – 3.77 (m, 3H), 3.66 (d, *J* = 13.2 Hz, 1H), 3.42 (d, *J* = 3.5 Hz, 1H), 2.01 (s, 1H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 171.5, 139.5, 128.4, 128.2, 127.1, 103.8, 65.6, 65.5, 63.6, 61.1, 52.3, 14.3; IR v_{max} (neat)/cm⁻¹: 3339, 3062, 2893, 1736, 1457, 1190, 1158, 1028, 701; HRMS (ESI/FT-ICR, m/z): calcd for C₁₄H₁₉NNaO₄ [M + Na]⁺ 288.1206, found 288.1217.

Ethyl 2-(1,3-dioxolan-2-yl)-2-((1-phenylethyl)amino)acetate (**4i**) was prepared according to procedure D through the reaction of ethyl glyoxylate and (*R*)-α-methylbenzylamine in 1,3-dioxolane for 4 hours. Compound **4i** was isolated through a silica gel column chromatography (PE: EtOAc from 5:1 to 3:1) as colorless oil (36 mg, 65% yield, dr = 1.2:1). ¹H NMR (400 MHz, CDCl₃) (mixture of 2 diastereomers) δ 6.54 – 6.27 (m, 5H, major+minor), 4.27 (d, J = 3.6 Hz, 1H, minor), 4.20 (d, J = 3.4 Hz, 1H, major), 3.34 (q, J = 7.1 Hz, 2H, major), 3.25 – 2.94 (m, 6H, major+minor), 2.89 (q, J = 6.5 Hz, 1H, major), 2.57 (d, J = 3.6 Hz, 1H, minor), 2.39 (d, J = 3.4 Hz, 1H, major), 0.40 (t, J = 7.1 Hz, 3H, major), 0.31 (t, J = 7.1 Hz, 3H, minor); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 172.0 (major), 171.6 (minor), 145.1 (minor), 126.8 (minor), 128.4 (major), 65.6 (minor), 65.5 (major+minor), 65.5 (major), 62.3 (minor), 61.9 (major), 103.8 (major), 65.6 (minor), 57.2 (minor), 56.4 (major), 25.4 (major), 23.4 (minor), 14.3 (major), 14.1 (minor); IR v_{max} (neat)/cm⁻¹: 3338, 3062, 2891, 1736, 1450, 1190, 1159, 1026, 703; HRMS (ESI/FT-ICR, m/z): calcd for C₁₅H₂₁NNaO₄ [M + Na]⁺ 302.1363, found 302.1369.

Ethyl 2-(*cyclohexylamino*)-2-(1,3-dioxolan-2-yl)acetate (**4j**) was prepared according to procedure D through the reaction of ethyl glyoxylate and cyclohexylamine in 1,3-dioxolane for 8 hours. Compound **4j** was isolated through a silica gel column chromatography (PE:EtOAc from 5:1 to 3:1) as colorless oil (32 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.07 (d, *J* = 3.8 Hz, 1H), 4.22 (q, *J* = 7.3 Hz, 2H), 4.07 – 3.94 (m, 2H), 3.94 – 3.83 (m, 2H), 3.55 (d, *J* = 3.8 Hz, 1H), 2.44 – 2.33 (m, 1H), 1.91 – 1.51 (m, 4H), 1.28 (t, *J* = 7.3 Hz, 3H), 1.27 – 0.97 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 104.0, 65.4, 61.7, 61.0, 55.4, 34.0, 32.8, 26.0, 25.0, 24.7, 14.3; IR v_{max} (neat)/cm⁻¹: 3329, 2935, 2893, 1736, 1471, 1371, 1190, 1159, 1032, 947; HRMS (ESI/FT-ICR, m/z): calcd for C₁₃H₂₃NNaO₄ [M + Na]⁺ 280.1519, found 280.1526.

Ethyl-2-adamantan-1-yl)amino)-*2-(1,3-dioxolan-2-yl)acetate* (**4k**) was prepared according to procedure C through the reaction of ethyl glyoxylate and amantadine in 1,3-dioxolane for 12 hours. Compound **4k** was isolated through a silica gel column chromatography (PE:EtOAc from 8:1 to 5:1) as colorless oil (46 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.00 (d, *J* = 4.0 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 4.07 – 3.92 (m, 2H), 3.91 – 3.81 (m, 2H), 3.57 (d, *J* = 4.0 Hz, 1H), 2.02 (s, 3H), 1.80 (s, 1H), 1.66 – 1.45 (m, 12H), 1.28 (t, *J* = 7.1 Hz, 3H).; ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 173.6, 104.9, 65.5, 65.4, 61.1, 56.9, 50.7, 42.9, 36.5, 29.5, 14.2; IR v_{max} (neat)/cm⁻¹: 3330, 2905, 2850, 1738, 1451, 1247, 1164, 1144, 1027, 946; HRMS (ESI/FT-ICR, m/z): calcd for C₁₇H₂₇NNaO₄ [M + Na]⁺ 332.1832, found 332.1836.

Ethyl 2-(1,3-dioxolan-2-yl)-2-((3-hydroxypropyl)amino)acetate (**4**I) was prepared according to procedure C through the reaction of ethyl glyoxylate and 3-aminopropanol in 1,3-dioxolane for 12 hours. Compound **4k** was isolated through a silica gel column chromatography (PE:EtOAc from 1:1 to 1:5) as colorless oil (21 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.12 (d, *J* = 3.0 Hz, 1H), 4.23 (q, *J* = 7.1, 2H), 4.04 – 3.94 (m, 2H), 3.94 – 3.83 (m, 2H), 3.79 (t, *J* = 5.4 Hz, 2H), 3.50 (d, *J* = 3.0 Hz, 1H), 3.07 – 2.95 (m, 1H), 2.74 – 2.62 (m, 1H), 1.75 – 1.60 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 171.2, 103.2, 65.7, 65.6, 63.8, 63.7, 61.3, 48.1, 30.9, 14.2; IR v_{max} (neat)/cm⁻¹: 3418, 2957, 2889, 1730, 1593, 1497, 1314, 1147, 1073, 1027, 813; HRMS (ESI/FT-ICR, m/z): calcd for C₁₀H₁₉NNaO₅ [M + Na]⁺ 256.1155, found 256.1163.

Ethyl 2-(((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)amino)-2-(1,3-dioxolan-2-yl)acetate (**4m**): was prepared according to procedure C through the reaction of ethyl glyoxylate and 2,2-dimethyl-1,3-dioxolane-4-methanamine in 1,3-dioxolane for 12 hours. Compound **4m** was isolated through a silica gel column chromatography (PE:EtOAc from 5:1 to 3:1) as colorless oil (38 mg, 66% yield, mixture of 2 diastereomers, dr = 1.5:1); ¹H NMR (400 MHz, CDCl₃) δ 5.14 (d, J = 3.4 Hz, 1H, major), 5.12 (d, J = 3.6 Hz, 1H, minor), 4.30 – 4.15 (m, 3H, major+minor), 4.08 – 3.93 (m, 3H, major+minor), 3.95 – 3.81 (m, 2H, major+minor), 3.75 – 3.61 (m, 1H, major+minor), 3.50 (d, J = 3.5 Hz, 1H, major), 3.45 (d, J = 3.6 Hz, 1H, minor), 2.87 – 2.76 (m, 1H, major+minor), 2.70 (dd, J = 12.1, 6.0 Hz, 1H, major), 2.62 (dd, J = 11.8, 4.5 Hz, 1H, minor), 1.28 (t, J = 7.2 Hz, 3H, major+minor); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 170.3 (minor), 170.2 (major), 108.2 (minor), 108.1 (major), 102.7 (major), 102.6 (minor), 74.7 (minor), 74.5 (major), 66.5

(minor), 66.4 (major), 64.6 (major), 64.6 (minor), 64.5 (major+minor), 63.8 (minor), 63.5 (major), 60.13 (major), 60.09 (minor), 50.5 (minor), 49.7 (major), 26.0 (minor), 25.8 (major), 24.5 (minor), 24.4 (major), 13.2 (major+minor); IR v_{max} (neat)/cm⁻¹: 3341, 2985, 2893, 1737, 1467, 1375, 1212, 1191, 1159, 1033, 798; HRMS (ESI/FT-ICR, m/z): calcd for C₁₃H₂₃NNaO₆ [M + Na]⁺ 312.1418, found 312.1422.

Gram-scale preparation of 4d: To an oven-dried sealable flask charged with a stir bar were added ethyl glyoxylate (2.0 mL, 10.0 mmol, ~50% in toluene), anisidine (1.23 g, 10.0 mmol) and freshly activated 4 Å molecular sieves (4 g). The flask was sealed with a septum and freshly distilled 1,3-dioxolane (70 mL) was added through a syringe. The mixture was stirred for 1 hour at room temperature before the addition of AIBN (41 mg, 0.25 mmol for each) and TDM (59 μ L, 0.25 mmol for each). The reaction mixture was then heated up to 80 °C. Another three portions of AIBN (41 mg, 0.25 mmol) and TDM (59 μ L, 0.25 mmol) were added every 12 hours. After totally 48 hours, the reaction mixture was cooled down to room temperature, filtered through Celite and washed with CH₂Cl₂. The filtrate was concentrated *in vacuo*, and the residue was purified through a silica gel column chromatography (PE:EtOAc from 10:1 to 5:1) to afford product **4d** as colorless oil (2.52 g, 90% yield).

Gram-scale preparation of 4h: To an oven-dried sealable flask charged with a stir bar were added ethyl glyoxylate (2.0 mL, 10.0 mmol, ~50% in toluene), benzylamine (1.09 mL, 10.0 mmol) and freshly activated 4 Å molecular sieves (4 g). The flask was sealed with a septum and freshly distilled 1,3-dioxolane (70 mL) was added through a syringe. The mixture was stirred for 1 hour at room temperature before the addition of AIBN (41 mg, 0.25 mmol). The reaction mixture was then heated up to 65 °C. Another three portions of AIBN (41 mg, 0.25 mmol) for each) were added every 12 hours. After totally 48 hours, the reaction mixture was cooled down to room temperature, filtered through Celite and washed with CH_2Cl_2 . The filtrate was concentrated *in vacuo*, and the residue was purified through a silica gel column chromatography (PE:EtOAc from 5:1 to 3:1) to afford product **4h** as colorless oil (1.37g, 55% yield).

vii. Product derivatization (Scheme 2)

Ethyl (E)-2-(N-benzylacetamido)-3-hydroxyacrylate (5): To a stirred solution of **4h** (1.06 g, 4 mmol) and Et₃N (835 μ L, 6 mmol) in dry 1,2-dichloroethane (50 mL) was added freshly distilled acetyl chloride (427 uL, 6 mmol) drop-wise at 0 °C. The reaction mixture was warmed up to

room temperature and stirred for 4h. Upon completion of the reaction, the insolubles were removed by filtration and washed with ether. The filtrate is concentrated under reduced pressure to afford the crude acetylated product which is subjected in next step without further purification. The obtained crude product is dissolved in acetic acid (10 mL) in a 25 mL flask, followed by the addition of hydriodic acid (45 mg, 57%, 0.2 mmol). After being stirred at 65 °C for 2 hours, the reaction mixture was cooled to room temperature and diluted with CH₂Cl₂ (30 mL). The resulting solution was washed with water (3×30 mL), dried with Na₂SO₄, and concentrated under reduced pressure to afford a residue, which was purified through a silica gel column chromatography (PE:acetone from 4:1 to 1:1) to give product 5 as a major isomer (725 mg, 83%) yield). ¹H NMR (400 MHz, CDCl₃) δ 11.32 (d, J = 13.0 Hz, 1H), 7.36 – 7.21 (m, 5H), 6.82 (d, J = 13.0 Hz, 1H), 5.28 (d, J = 14.2 Hz, 1H), 4.34 – 4.18 (m, 2H), 3.98 (d, J = 14.2 Hz, 1H), 2.01 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 172.4, 169.6, 164.2, 136.9, 129.3, 128.5, 127.6, 110.7, 61.5, 51.7, 21.9, 14.2; IR v_{max} (neat)/cm⁻¹: 3349, 3064, 2983, 1744, 1710, 1637, 1413, 1219, 1148, 1039, 700; HRMS (ESI/FT-ICR, m/z): calcd for C₁₄H₁₇NNaO₄ $[M + Na]^+$ 286.1050, found 286.1054. The double bond geometry of 5 was tentatively assigned to be (E) by NOE analysis based on the correlation between the olefinic proton and the acetyl group. This preferred geometry is presumably ascribed to the intramolecular hydrogen bonding. The NOE spectrum was presented in the supporting information.

Ethyl (E)-2-(N-benzylacetamido)-3-(butylamino)acrylate (**6**): A mixture of **5** (53 mg, 0.2 mmol) and butylamine (22 mg, 0.3 mmol) in EtOH (2 mL) was heated under reflux for 12 hours. The mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified through a silica gel column chromatography (PE:EtOAc 5:1) to give the product **6** (55 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.31 – 7.23 (m, 4H), 5.38 (d, J = 13.7 Hz, 1H), 4.21 – 4.03 (m, 3H), 3.78 (d, J = 13.7 Hz, 1H), 2.96 – 2.81 (m, 1H), 2.81 – 2.64 (m, 1H), 1.94 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.12 – 1.00 (m, 4H), 0.84 – 0.80 (m, 3H); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 172.9, 166.1, 146.9, 139.0, 129.4, 128.5, 127.6, 102.9, 76.7, 59.8, 50.5, 47.8, 32.8, 21.3, 19.4, 14.6, 13.6; IR v_{max} (neat)/cm⁻¹: 3305, 3031, 2930, 2869, 1683, 1639, 1408, 1279, 1171, 1052, 731; HRMS (ESI/FT-ICR, m/z): calcd for C₁₈H₂₆N₂NaO₃ [M + Na]⁺ 341.1836, found 341.1840.

Diethyl (E)-2-(N-benzylacetamido)pent-2-enedioate (7): A solution of **5** (53.0 mg, 0.2 mmol) and ethyl 2-(triphenylphosphanylidene) acetate (69 mg, 0.2 mmol) in dry 1,2-dichloroethane (2 mL)

was stirred at 80 °C for 6 hours. The resulting mixture was cooled to room temperature and concentrated *in vacuo*. The residue was purified through a silica gel column chromatography (PE:EtOAc from 10:1 to 5:1) to give product 7 as colorless oil (60 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 5H), 7.08 (t, *J* = 7.5 Hz, 1H), 5.26 (d, *J* = 14.1 Hz, 1H), 4.32 – 4.15 (m, 2H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.98 (d, *J* = 14.1 Hz, 1H), 2.81 (dd, *J* = 18.0, 8.1 Hz, 1H), 2.46 (dd, *J* = 18.0, 6.9 Hz, 1H), 1.92 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 170.4, 168.9, 163.6, 136.9, 136.5, 133.8, 129.8, 128.5, 127.8, 61.8, 61.2, 50.2, 33.1, 21.6, 14.2, 14.1; IR v_{max} (neat)/cm⁻¹: 3064, 2983, 2906, 1724, 1672, 1655, 1444, 1393, 1254, 1184, 1030, 704; HRMS (ESI/FT-ICR, m/z): calcd for C₁₈H₂₃NNaO₅ [M + Na]⁺ 356.1468, found 356.1473. Compound 7 is also isolated as a single isomer. However, the geometry of the double bond seemed difficult to determine through NOE analysis.

Diethyl acetylglutamate (8): To a 20 mL sealable tube equipped with a stir bar were added compound 7 (33.3 mg, 0.1 mmol) and 10% palladium on charcoal (10 mg). The vial was evacuated *in vacuo* and refilled with N₂ three times and then was added ethanol (2 mL). The tube was evacuated again and refilled with an H₂ balloon, three times. The reaction mixture was warmed up to 60 °C and stirred under H₂ atmosphere for 24 h. The resulting mixture was cooled to room temperature, filtered through a Celite[®] pad and concentrated *in vacuo*. The residue was purified through a silica gel column chromatography (PE:EtOAc from 5:1 to 2:1) to give compound **8** (18.4 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 6.26 (d, *J* = 7.3 Hz, 1H), 4.59 (td, *J* = 7.3, 5.1 Hz, 1H), 4.25 – 4.13 (m, 2H), 4.12 (q, *J* = 7.2 Hz, 2H), 2.48 – 2.27 (m, 2H), 2.25 – 2.12 (m, 1H), 2.01 (s, 3H), 1.99 – 1.89 (m, 1H), 1.32 – 1.20 (m, 6H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 172.9, 172.0, 170.0, 61.7, 60.7, 51.7, 30.3, 27.4, 23.1, 14.2, 14.1; IR v_{max} (neat)/cm⁻¹: 3288, 2983, 2935, 1737, 1658, 1543, 1376, 1259, 1200, 1026, 859; HRMS (ESI/FT-ICR, m/z): calcd for C₁₁H₁₉NNaO₅ [M + Na]⁺ 268.1155, found 268.1158.

viii. Mechanistic related experiments (Scheme 3)

The inhibiting effect of TEMPO: To an oven-dried 20 mL sealable tube charged with a stir bar were added 2,4-dichlorobenzaldehyde 1i (35 mg, 0.2 mmol), aniline 2a (18.6 mg, 0.2 mmol), AIBN (3.3 mg, 0.02 mmol) and freshly activated 4 Å molecular sieves (80 mg). The tube was sealed with a septum and 1,3-dioxolane (2 mL, freshly distilled) was added through a syringe, followed by the addition of TDM (5 μ L, 0.02 mmol). The reaction mixture was stirred at 80 °C

for 10 hours and then cooled down. After concentrated *in vacuo*, the resulting residue was submitted for ¹H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard. By comparing the spectrum to authentic sample **3ia**, no desired product was detected in this case (<5%, Scheme 3a).

Kinetic study with different thiol loadings: To an oven-dried 20 mL sealable tube charged with a stir bar were added (*E*)-1-(2,4-dichlorophenyl)-*N*-phenylmethanimine (50 mg, 0.2 mmol), AIBN (3.3 mg, 0.02 mmol), methyl benzoate (25 μ L, 0.2 mmol, as an internal standard) and freshly activated 4 Å molecular sieves (80 mg). The tube was sealed with a septum and 1,3-dioxolane (2 mL, freshly distilled) was added through a syringe, followed by the addition of TDM (0, 0.02, 0.06, and 0.1 mmol). The reaction mixture was stirred at 80 °C and 50 μ L of reaction mixture was taken by a syringe at 0.5 h, 1.0 h, 1.5 h, 2.0 h, 3.0 h, 4.0 h, 6.0 h, 8.0 h and 10 h, respectively. The sample was diluted with 2 mL hexanes/^{*i*}PrOH (9:1 mixture) and filtered through a 0.45 μ m nylon membrane before submitted for HPLC analysis (Note: the response factors of imine/internal standard and product/internal standard were determined first by mixing specific amount of samples). The results are depicted in Scheme 3b.

Thiyl radical capturing through thiol-ene reaction: To an oven-dried sealable tube charged with a stir bar were added allyl benzoate (32.4 mg, 0.2 mmol) and AIBN (3.3 mg, 0.02 mmol). The tube was evacuated *in vacuo* and refilled with N₂ three times. Then, 1,3-dioxolane (2 mL, freshly distilled) was added through a syringe, followed by the addition of TDM (50 µL, 0.2 mmol). The sealed tubes were then heated up to 80 °C and kept stirring for 12 hours. After concentrated *in vacuo*, the resulting residue was purified through a silica gel column chromatography (PE: Et₂O from 100:1 to 50:1) to afford the corresponding product **9** as colorless oil (23 mg, 31% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 7.7 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 4.41 (t, *J* = 6.4 Hz, 2H), 2.63 (q, *J* = 7.4 Hz, 1H), 2.57 (q, *J* = 6.9 Hz, 1H), 2.03 (m, 1H), 1.50 – 1.07 (m, 13H), 1.00 – 0.71 (m, 12H); ¹³C {¹H}NMR (151 MHz, CDCl₃) δ 166.5, 132.9, 130.3, 129.6, 128.4, 63.9, 45.6, 29.7, 29.1, 28.8, 24.3, 23.7, 23.7, 22.7, 17.5, 16.1, 14.5, 14.1, 12.2, 8.7.; HRMS (ESI/FT-ICR, m/z): calcd for C₂₂H₃₆NaO₂S [M + Na]⁺ 387.2328, found 387.2329.

The oxygen effects: To an oven-dried 20 mL sealable tube (22-24 mL gas space) charged with a stir bar were added (*E*)-1-(2,4-dichlorophenyl)-*N*-phenylmethanimine (50 mg, 0.2 mmol), AIBN

(3.3 mg, 0.02 mmol) and freshly activated 4 Å molecular sieves (80 mg). The tube was evacuated *in vacuo* and refilled with N₂ three times. Then, certain volume of N₂ (1 mL, 2 mL, 5 mL, 10 mL, respectively) was withdrawn from the reaction tubes (with a syringe) and they were refilled with an O₂ balloon immediately. 1,3-Dioxolane (2 mL, freshly distilled) was added through a syringe, followed by the addition of TDM (5 μ L, 0.02 mmol). The sealed tubes were then heated up to 80 °C and kept stirring for 3 hours. After concentrated *in vacuo*, the resulting residue was submitted for ¹H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard. The reaction results are presented in Scheme 3d.

The intermolecular competition kinetic isotope effect was studied with a 1:1 mixture of THF and THF-*d*8. To an oven-dried 20 mL sealable tube charged with a stir bar were added 2,4-dichlorobenzaldehyde (17.5 mg, 0.1 mmol), aniline (9.1 μ L, 0.1 mmol), AIBN (1.6 mg, 0.01 mmol) and freshly activated 4 Å molecular sieves (80 mg). The tube was sealed with a septum and THF/THF-*d*8 (1 mL, 1:1 v/v) was added through a syringe, followed by the addition of TDM (2.4 μ L, 0.01 mmol). The reaction mixture was stirred at 80 °C for 12 hours and then cooled down. After concentrated *in vacuo*, the resulting residue was submitted for ¹H NMR analysis. The kH/kD (**11** + **11**-*d*1)/(**11**-*d*7 + **11**-*d*8) was determined to be 6.3. (Detailed spectrum analysis is presented in the Supporting Information)

The **parallel kinetic isotope effect** was studied through parallel reactions with THF and THF-*d*8 as solvent, respectively. To an oven-dried 20 mL sealable tube charged with a stir bar were added 2,4-dichlorobenzaldehyde (17.5 mg, 0.1 mmol), aniline (9.1 μ L, 0.1 mmol), AIBN (1.6 mg, 0.01 mmol) and freshly activated 4 Å molecular sieves (80 mg). The tube was sealed with a septum and THF or THF-*d*8 (1 mL) was added through syringes, followed by the addition of TDM (2.4 μ L, 0.01 mmol). The reaction mixture was stirred at 80 °C for 4 or 8 hours and then cooled down. After concentrated *in vacuo*, the resulting residue was submitted for ¹H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard. The product ratio **11/11**-*d*8 are in good agreement at different time point and the kH/kD was determined to be 3.6±0.1.

Acknowledgments

Financial support from the National Natural Science Foundation of China (21472053) and the Natural Science Foundation of Hubei Committee (2016CFA001) is gratefully acknowledged. We

also thank Huazhong University of Science & Technology Analytical & Testing Center for characterizing new compounds.

Supporting Information

NMR spectra and for all compounds. (PDF) This file is available free of charge on the ACS Publications website.

References

(1) For selected reviews on C–H functionalization of ethers and alcohols: (a) Godula, K.; Sames, D. C– H bond functionalization in complex organic synthesis. *Science* **2006**, *312*, 67; (b) Li, C.-J. Crossdehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. *Acc. Chem. Res.* **2009**, *42*, 335; (c) Conejero, S.; Paneque, M.; Poveda, M. L.; Santos, L. L.; Carmona, E. C–H bond activation reactions of ethers that generate iridium carbenes. *Acc. Chem. Res.* **2010**, *43*, 572; (d) Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q. Direct sp³ α -C-H activation and functionalization of alcohol and ether. *Chem. Soc. Rev.* **2011**, *40*, 1937. (e) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Recent advances in radical C–H activation/radical cross-coupling. *Chem. Rev.* **2017**, *117*, 9016; (f) Guo, S.-R.; Kumar, P. S.; Yang, M. Recent advances of oxidative radical crosscoupling reactions: direct α -C(sp³)–H bond functionalization of ethers and alcohols. *Adv. Synth. Catal.* **2017**, *359*, 2; (g) Lakshman, M. K.; Vuram, P. K. Cross-dehydrogenative coupling and oxidativeamination reactions of ethers and alcohols with aromatics and heteroaromatics. *Chem. Sci.* **2017**, *8*, 5845.

(2) Selected examples of redox-neutral catalytic radical functionalization of ethers and alcohols: (a) Deng, H.-P.; Fan, X.-Z.; Chen, Z.-H.; Xu, Q.-H.; Wu, J. Photoinduced nickel-catalyzed chemo- and regioselective hydroalkylation of internal alkynes with ether and amide α -hetero C(sp³)–H bonds. *J. Am. Chem. Soc.* **2017**, *139*, 13579; (b) Hager, D.; MacMillan, D. W. C. Activation of C–H bonds via the merger of photoredox and organocatalysis: a coupling of benzylic ethers with Schiff bases. *J. Am. Chem. Soc.* **2014**, *136*, 16986; (c) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. O–H hydrogen bonding promotes H-atom transfer from α C–H bonds for C-alkylation of alcohols. *Science* **2015**, *349*, 1532; (d) Jin, J.; MacMillan, D. W. C. Alcohols as alkylating agents in heteroarene C–H functionalization. *Nature* **2015**, *525*, 87; (e) Qvortrup, K.; Rankic, D. A.; MacMillan, D. W. C. A General strategy for organocatalytic activation of C–H bonds via photoredox catalysis: direct arylation of benzylic ethers. *J. Am. Chem. Soc.* **2014**, *136*, 626; (f) Lahm, G.; Opatz, T. Selective C–H activation of methoxy groups in a three-component photoreaction. *J. Org. Chem.* **2015**, *80*, 12711; (g) Zhang, M.; Zhao, Y.; Chen, W. Peroxide-free Co(OAc)₂-catalyzed radical addition of sp³ C–H bonds to alkynes. *Synthesis* **2017**, *49*, 1342.

(3) Selected examples of oxidative radical functionalization with peroxides: (a) Giordano, C.; Minisci, F.; Vismara, E.; Levi, S. A general, selective, and convenient procedure of homolytic formylation of heteroaromatic bases. J. Org. Chem. 1986, 51, 536; (b) He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Direct C₂-alkylation of azoles with alcohols and ethers through dehydrogenative cross-coupling under metal-free conditions. Org. Lett. 2011, 13, 5016; (c) Wei, W.-T.; Song, R.-J.; Li, J.-H. Copper-catalyzed oxidative α -alkylation of α -amino carbonyl compounds with ethers via dual C(sp³)–H oxidative crosscoupling. Adv. Synth. Catal. 2014, 356, 1703; (d) Sun, W.; Xie, Z.; Liu, J.; Wang, L. Oxidative crosscoupling of pyridine N-oxides and ethers between $C(sp^2)$ -H/C(sp³)-H bonds under transition-metal-free conditions. Org. Biomol. Chem. 2015, 13, 4596; (e) Xu, Z.; Hang, Z.; Chai, L.; Liu, Z.-Q. A free-radicalpromoted site-specific cross-dehydrogenative-coupling of N-heterocycles with fluorinated alcohols. Org. Lett. 2016, 18, 4662; (f) Li, Y.; Wang, M.; Fan, W.; Qian, F.; Li, G.; Lu, H. Cobalt-catalyzed crossdehydrogenative coupling reactions of (benz)oxazoles with ethers. J. Org. Chem. 2016, 81, 11743; (g) Feng, S.; Li, T.; Du, C.; Chen, P.; Song, D.; Li, J.; Xie, X.; She, X. Visible-light-mediated radical insertion /cyclization cascade reaction: synthesis of phenanthridines and isoquinolines from isocyanides. Chem. Commun. 2017, 53, 4585; (h) San Segundo, M.; Guerrero, I.; Correa, A. Co-catalyzed C(sp³)–H oxidative coupling of glycine and peptide derivatives. Org. Lett. 2017, 19, 5288; and references cited therein.

(4) Selected examples of oxidative radical functionalization with persulfates: (a) Xie, Z.; Cai, Y.; Hu, H.; Lin, C.; Jiang, J.; Chen, Z.; Wang, L.; Pan, Y. Cu-catalyzed cross-dehydrogenative coupling reactions of (benzo)thiazoles with cyclic ethers. *Org. Lett.* **2013**, *15*, 4600; (b) Jin, J.; MacMillan, D. W. C. Direct α arylation of ethers through the combination of photoredox-mediated C–H functionalization and the minisci reaction. *Angew. Chem. Int. Ed.* **2015**, *54*, 1565; (c) Devari, S.; Shah, B. A. Visible light-promoted C–H functionalization of ethers and electron-deficient arenes. *Chem. Commun.* **2016**, *52*, 1490; (d) Ji, P.-Y.; Liu, Y.-F.; Xu, J.-W.; Luo, W.-P.; Liu, Q.; Guo, C.-C. Transition-metal-free oxidative decarboxylative cross coupling of α , β -unsaturated carboxylic acids with cyclic ethers under air conditions: mild synthesis of α -oxyalkyl ketones. *J. Org. Chem.* **2017**, *82*, 2965; (e) Liu, S.; Liu, A.; Zhang, Y.; Wang, W. Direct C α heteroarylation of structurally diverse ethers *via* a mild *N*-hydroxysuccinimide mediated cross-dehydrogenative coupling reaction. *Chem. Sci.* **2017**, *8*, 4044; (f) Quattrini, M. C.; Fujii, S.; Yamada, K.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Versatile cross-dehydrogenative coupling of heteroaromatics and hydrogen donors *via*decatungstate photocatalysis. *Chem. Commun.* **2017**, *53*, 2335.

(5) Selected examples of redox neutral reactions that use stoichiometric amount of radical precursors: (a) Yamada, K.-I.; Fujihara, H.; Yamamoto, Y.; Miwa, Y.; Taga, T.; Tomioka, K. Radical addition of ethers to imines initiated by dimethylzinc. *Org. Lett.* **2002**, *4*, 3509; (b) Yoshimitsu, T.; Arano, Y.; Nagaoka, H. Radical α -C-H hydroxyalkylation of ethers and acetal. *J. Org. Chem.* **2005**, *70*, 2342; (c) Clerici, A.; Cannella, R.; Panzeri, W.; Pastori, N.; Regolini, E.; Porta, O., TiCl₃/PhN₂⁺-mediated radical addition of

The Journal of Organic Chemistry

ethers to aldimines generated in situ under aqueous conditions. *Tetrahedron Lett.* **2005**, *46*, 8351; (d) A. Clerici, R. Cannella, N. Pastori, W. Panzeri, O. Porta, A free radical Mannich type reaction: selective α-C-H aminomethylation of ethers by Ti(III)/t-BuOOH system under aqueous acidic conditions. *Tetrahedron* **2006**, *62*, 5986; (e) Liu, Z.-Q.; Sun, L.; Wang, J.-G.; Han, J.; Zhao, Y.-K.; Zhou, B. Freeradical-initiated coupling reaction of alcohols and alkynes: not C–O but C–C bond formation. *Org. Lett.* **2009**, *11*, 1437; (f) Jung, J. C.; Kim, Y. H.; Lee, K. Practical β-masked formylation and acetylation of electron-deficient olefins utilizing tetra(n-butyl)ammonium peroxydisulfate. *Tetrahedron Lett.* **2011**, *52*, 4662; (g) Li, J.; Zhang, J.; Tan, H.; Wang, D. Z. Visible-light-promoted vinylation of tetrahydrofuran with alkynes through direct C–H bond functionalization. *Org. Lett.* **2015**, *17*, 2522; (h) Solvhoj, A.; Ahlburg, A.; Madsen, R. Dimethylzinc-initiated radical coupling of β-bromostyrenes with ethers and amines. *Chem.-Eur. J.* **2015**, *21*, 16272; (i) Lan, Y.; Fan, P.; Liu, X.-W.; Meng, F.-F.; Ahmad, T.; Xu, Y.-H.; Loh, T.-P. An iron-catalyzed hydroalkylation reaction of α,β-unsaturated ketones with ethers. *Chem. Commun.* **2017**, *53*, 12353.

(6) Zeng, H.; Lu, D.; Gong, Y. Direct metal-free C–H functionalization of cyclic ethers with Schiff bases through an azobisisobutyronitrile-initiated radical chain process. *Eur. J. Org. Chem.* **2017**, *2017*, 7231.

(7) (a) Fernandez, M.; Alonso, R. Diastereoselective intermolecular addition of the 1,3-dioxolanyl radical to *N*-acyl aldohydrazones. Asymmetric synthesis of α -amino acid derivatives. *Org. Lett.* **2003**, *5*, 2461; (b) Yamada, K.; Yamamoto, Y.; Maekawa, M.; Tomioka, K. Introduction of functionalized C1, C2, and C3 units to imines through the dimethylzinc-air-initiated radical addition. *J. Org. Chem.* **2004**, *69*, 1531; (c) Yamada, K.; Umeki, H.; Maekawa, M.; Yamamoto, Y.; Akindele, T.; Nakano, M.; Tomioka, K. Conjugate addition reaction of THF-2-yl radical with α,β -unsaturated *N*-tosyl imines using a dimethylzinc-air initiator. *Tetrahedron* **2008**, *64*, 7258; (d) Zhang, L.; Deng, Y.; Shi, F. Light promoted aqueous phase amine synthesis via three-component coupling reactions. *Tetrahedron Lett.* **2013**, *54*, 5217. (8) Nielsen, M. K.; Shields, B. J.; Liu, J.; Williams, M. J.; Zacuto, M. J.; Doyle, A. G Mild, Redoxneutral formylation of aryl chlorides through the photocatalytic generation of chlorine radicals. *Angew. Chem. Int. Ed.* **2017**, *56*, 7191.

(9) P. Roberts, B. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. *Chem. Soc. Rev.* **1999**, *28*, 25.

(10) Musa, O. M.; Horner, J. H.; Shahin, H.; Newcomb, M. A kinetic scale for dialkylaminyl radical reactions. *J. Am. Chem. Soc.* **1996**, *118*, 3862.

(11) Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Thiyl radicals in organic synthesis. *Chem. Rev.* **2014**, *114*, 2587.

(12) (a) Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. Preparation and use of C2-symmetric bis(phospholanes): production of α -amino acid derivatives via highly enantioselective hydrogenation

reactions. J. Am. Chem. Soc. **1993**, 115, 10125; (b) Tang, W.; Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. **2003**, 103, 3029.

(13) For experimental details, see the Supporting Information.

(14) Hoyle, C. E.; Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 2010, 49, 1540.

(15) (a) Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.; Tomioka, K. Thiol-catalyzed acyl radical cyclization of alkenals. *J. Org. Chem.* 2005, *70*, 681; (b) Benati, L.; Calestani, G.; Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Strazzari, S. Generation and intramolecular reactivity of acyl radicals from alkynylthiol esters under reducing Tin-free conditions. *Org. Lett.* 2003, *5*, 1313; (c) Broka, C. A.; Reichert, D. E. C. Thiophenol promoted cyclization of enynes. *Tetrahedron Lett.* 1987, *28*, 1503.

(16) (a) Razskazovskii, Y.; Colson, A.-O.; Sevilla, M. D. Nature of thiyl peroxyl radical: ESR and ab initio MO evidence for intermolecular stabilization of the charge transfer state, RS⁺OO⁻. J. Phys. Chem.
1995, 99, 7993; (b) Zhang, X.; Zhang, N.; Schuchmann, H.-P.; von Sonntag, C. Pulse radiolysis of 2-mercaptoethanol in oxygenated aqueous solution. Generation and reactions of the thiylperoxyl radical. J. Phys. Chem. 1994, 98, 6541; (c) McGrath, A. J.; Garrett, G. E.; Valgimigli, L.; Pratt, D. A. The redox chemistry of sulfenic acids. J. Am. Chem. Soc. 2010, 132, 16759.

(17) The thermodynamics for the HAT to the N-centered radical F is substituent-dependent. If the N-radical is stabilized by an aromatic group, its reduction will be less favorable than the non-conjugated N-radical. According to a literature (Bordwell, F. G.; Zhang, X. M.; Cheng J. P. Bond dissociation energies of the nitrogen-hydrogen bonds in anilines and in the corresponding radical anions. Equilibrium acidities of aniline radical cations. *J. Org. Chem.* **1993**, *58*, 6410), the BDE of an N–H bond in N-methyl aniline is slightly stronger (89.3 kcal/mol) than that of a thiol. Therefore, the HAT from an thiol to an N-radical should be thermodynamically feasible or favorable.

(18) Jonsson, M. Thermochemical properties of peroxides and peroxyl radicals *J. Phys. Chem.*, **1996**, *100*, 6814.