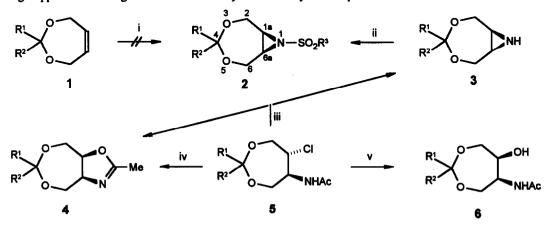
1-Sulfonyl-1a,2,6,6a-tetrahydro-1H,4H-[1,3]-dioxepino[5,6-b]azirines: A Novel Class of Fused Dioxepins, Potent Hypoglycemic Agents^{1,4}

Miljenko Dumić,* Darko Filić, Mladen Vinković and Blanka Jamnicky

PLIVA-Research Institute, Prilaz baruna Filipovića 89, 41000 Zagreb, Croatia.


Boris Kamenar

Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Ulica kralja Zvonimira 8, 41000 Zagreb, Croatia.

Key words: [1,3]-dioxepino[5,6-b]azirine; N-sulfonyl-dioxepinoazirine; hypoglycemic activity; X-ray diffraction.

Abstract: The new hypoglycemics, 1-sulfonyl-dioxepinoazirines 2, derived from a novel heterocyclic system, 1a,2,6,6a-tetrahydro-1H,4H-[1,3]-dioxepino[5,6-b]azirine, have been synthesized starting from trans-6--acetylamino-5-chloro-1,3-dioxepanes 7 via azirines 3. Their structure has been confirmed by the single crystal X-ray diffraction of 1-(4-acetylaminobenzenesulfonyl) derivative 2b.

In the context of an investigation into hypoglycemics,² the N-sulfonyl derivatives 2, of the previously unknown heterocycle 3 were required. Among numerous methods existing for the syntheses of azirines,³ the single approach involving the addition of sulfonylazides to dihydrodioxepins 1 was unsuccessful.⁴

Scheme 1 Reagents and conditions: i, RSO₂N₃/CH₃CN, reflux, 30 hrs.; ii, RSO₂Cl/pyridine/CH₂Cl₂, r.t., 1 hr.; iii, 2.5 M KOH in H₂O, 25 °C to 90 °C, 15 min.; iv, 2.5 M KOH in EtOH, reflux, 1 hr. (ref. 7); v, Na₂CO₃/H₂O, reflux, 5 hrs. (ref. 6).

[§] Dedicated to Professor Vladimir Prelog on the Occasion of his 87th Birthday.

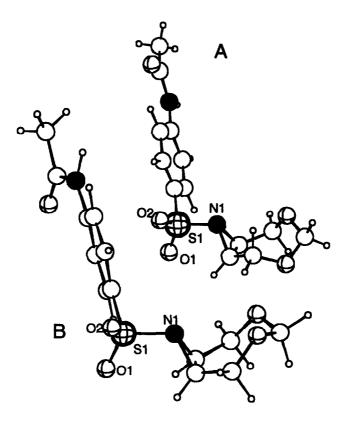
It was well known that vic- acylaminohalogeno compounds serve as good intermediates in the syntheses of azirines.³ Therefore, we directed our attention to the synthesis of 2 starting from acetylaminochlorodioxepanes 5,⁵ via azirines 3. Unfortunately, treatment of 5 with boiling aqueous sodium carbonate solution afforded *cis*-acetylaminodioxepanols 6 in high yields⁶, whereas our attempt of ring-closure dehydrohalogenation of 5 in refluxing ethanolic potassium hydroxide solution resulted in the convenient method for the preparation of *cis*-dioxepinooxazolines 4 in high to excellent (up to 95%) yields.^{7,8}

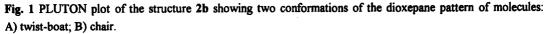
In spite of that, we found that warming of 5 in aqueous potassium hydroxide solution up to 90 °C for a short time resulted in the formation of the novel 1a,2,6,6a-tetrahydro-1H,4H-[1,3]-dioxepino[5,6-b]azirines 3 in moderate yields as the mixture with oxazolines 4 (scheme 1).

Thus, trans-acetylaminochlorodioxepane 5a ($R^{1}=R^{2}=H$) was warmed in 2.5 M aqueous potassium hydroxide solution from temperature up to 90 °C in 15 minutes to produce *cis*-dioxepinooxazoline 4a ($R^{1}=R^{2}=H$, identical to the authentic sample⁷) and azirine 3a ($R^{1}=R^{2}=H$, bp 90-95 °C/2.1 kPa) in 58.2 % and 30.4 % yields, respectively. In an analogous manner 3b ($R^{1}=H$, $R^{2}=iPr$) and 3c ($R^{1}=R^{2}=Me$) were obtained (Table 1).

All the synthesized azirines 3 were isolated by column chromatography as viscous oils. Only the azirine 3b was additionally purified by recrystallization.

The target compounds, 1-sulfonyl-dioxepinoazirines 2 were prepared by mixing crude azirines 3 with the corresponding sulfonyl chlorides in methylene chloride for one hour at the room temperature and in the presence of pyridine (Table 1).


Compd.	R ¹	R ²	R ³	Yield ^a (%)	mp (t/ºC)	Cryst. Solvent ^b
2 a	Н	н	CH ₃	46.3	98-100	EA/PE
2b	Н	н	4-AcNH-C6H4-	83.3	210-212	EA/M
2c	Н	<i>i</i> Pr	4-NO2-C6H4-	90.4	143-145	EA/PE
2d	Me	Me	4-AcNH-C6H4-	80.5	214-216	EA/M
3a	Н	н	-	30.4	oil	-
3b	Н	<i>i</i> Pr	-	28.2	56-58	PE
3c	Me	Me	-	33.0	oil	-


Table 1 1a,2,6,6a-Tetrahydro-1H,4H-[1,3]-dioxepino[5,6-b]azirines 2 and 3.

a) Isolated yields; b) EA=ethyl acetate, PE=light petroleum, M=methanol;

The structures of the new azirines 3 were assigned from their spectral data,⁹ and were additionally confirmed by the spectral data of their corresponding N-sulfonyl-derivatives 2a-d,¹⁰ and the single crystal X-ray diffraction of 2b, the asymmetric unit of which contains two molecules, one of them having a dioxepane pattern of a twist boat and the other one of a chair conformation (Figure 1).¹¹ The position of O1 opposite to the lone pair at the azirine N1 atom and the inequality of the bond angels O1-S1-N1 >> O2-S1-N1 suggest an n- σ^* interaction of the lone electron pair with the S^{VI}[O,O',N,C] tetrahedral moiety.¹² The shape and conformation around the sulfonamide group in 2 is determined by this interaction.

Finally, the target sulfonylazirines 2 were tested for hypoglycemic activity on the model of alloxaninduced diabetes in mice and rats¹³ in comparison with metformin. They displayed strong hypoglycemic activity irrespective of the route of application, *e.g.* intravenous, subcutaneous or by stomach tube. Thus, sulfonylazirine 2b four hours after the subcutaneous administration at the dose of 20 mg/kg, decreased the blood glucose levels in alloxan-induced diabetic mice and rats to 53 % and 67% of the initial concentration, respectively.

On the other hand the new compounds 2 did not reduce the blood glucose concentration in healthy (nondiabetic, control) animals.

Therefore, 1-sulfonyl-1a,2,6,6a-tetrahydro-1H,4H-[1,3]-dioxepino[5,6-b]azirines 2 may represent a new class of potent hypoglycemic agents, the significance of which is still under investigation.

Acknowledgements: Financial support by the Ministry of Science, Technology and Informatics of the Republic of Croatia is gratefully acknowledged.

References and Notes:

- 1. Chemistry of 1,3-Dioxepins. Part 6. For Part 5 and Part 4 see refs. 8 and 7, respectively.
- Mohrbacher, R. J.; Kiorpes, T. C.; Bowden, C. R. Annu. Rep. Med. Chem., 1987, 22, 213; Steiner, K. E.; Lien, E. L. Prog. Med. Chem., 1987, 24, 209; Larson, E. R.; Clark, D. A.; Stevenson, R. W. Annu. Rep. Med. Chem., 1989, 25, 205.
- 3. Dermer, O. C.; Ham, G. E. Ethylenimine and Other Aziridines, Chemistry and Applications, Academic Press, New York, London, 1969.
- The addition of 4-acetylaminobenzenesulfonylazide to the dioxepine 1a (R¹=R²=H) was performed in refluxed acetonitrile producing 2b only in traces.
- 5. Dumić, M.; Proštenik, M. V.; Butula, I. Croat. Chem. Acta, 1979, 51, 259; Chem. Abstr., 1979, 90, 152144w.
- 6. Sovak, M.; Ranganathan, R. US 4.389.526 (Jun. 21, 1983); Chem. Abstr., 1983, 99, 88240f.
- 7. Dumić, M.; Butula, I.; Vinković, M.; Kamenar, B. Org. Prep. Proced. Int., 1992, 24, 536.
- 8. Vinković, M.; Dumić, M.; Kamenar, B. Acta Crystallogr., Sect. C, 1992, 48, 1352.
- The representative spectroscopic data for compound 3a: ¹H-NMR, δ_H (CDCl₃, 300 MHz): 4.96 and 4.01 (ABq, 2H, J 7.2 Hz, O-CH₂-O); 4.23 and 4.02 (ABq, 4H, J 13.4 Hz, O-CH₂-C); 2.18 (s, 2H, CH-N) and 1.25 (br., 1H, NH); ¹³C-NMR, δ_C (CDCl₃, 75 MHz): 99.30 (t, O-C-O); 68.49 (t, O-C-) and 35.31 (d, C-N).
- 10. The representative spectroscopic data for compound 2a: IR ν_{max} (KBr): 1300 and 1150 (both SO₂-N) cm⁻¹; ¹H-NMR δ_{H} (CDCl₃, 300 MHz): 3.11 (s, 2H, -CH-N); 3.27 (s, 3H, CH₃); 4.10 and 4.25 (ABq, 4H, J 13.7, O-CH₂-C) and 4.46 and 4.93 (ABq, 2H, J 7.1, O-CH₂-O); ¹³C-NMR δ_{C} (CDCl₃; 75 MHz): 39.05 (q, S-C); 43.34 (d, -C-N); 66.28 (t, O-C-) and 97.73 (t, O-C-O).
- Crystal data for 2b. Mr=312.34, monoclinic, I 2/a, a=24.898(7), b=8.349(7), c=29.252(7) Å, β=109.60(5)⁰, V=5728(6) Å³, Z=16, Dc=1.45, Do=1.46 g cm⁻³ (floating method), μ(Mo-Kα)=2.38 cm⁻¹, T=293 K, colourless crystal, 0.57*0.38*0.12 mm size, Mo-Kα radiation (λ=0.71069 Å), graphite monochromator, 7738 reflections measured on a Philips PW 1100 (ω scan technique), range 2<Θ<30^o and -34≤h≤33, 0≤k≤11, -41≤l≤41; 4399 unique reflections (R_{int}=0.042) and 3870 observed [I > 3 σ(I)]. Absorption correction not applied. The structure was solved by direct methods (SIR 88) and anisotropically refined (SHELX 76) to final R=0.046 (436 parameters and unit weights). Maximum shift/error=0.088, maximum residual electron density 0.37 e Å⁻³. Atomic co-ordinates, bond lengths, angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.
- 12. Kálmán, A.; Czugler, M.; Argay, G. Acta Crystallogr., Sect. B, 1981, 37, 868.
- Mordes, J. P.; Rossini, A. A. Animal Models of Diabetes Mellitus. In Joslin's Diabetes Mellitus, 12th Ed., Lea & Febinger, Philadelphia, 1985, p. 110.

(Received in UK 6 April 1993)