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Abstract

A series of novel azobenzene-based dyes were @esignd synthesized using
azobenzene as thespacer unit to connect diarylamino and cyanoacatids for
construction of the DeA conformation. The introduction of a thienyl irttee anchor
group (A) could lead to a red-shift in the absamptspectra an@qnset Of the dyes.
When the diaryamino substituent was changed frorthyheéo methoxyl, a slight
negative shift in the first oxidation peak could bbserved. The spin density
distribution of the cation radicals of the four dysvas also investigated. The
gualitative order of the stability of these foutioa radicals was found to bEA4 >
TA3 > TA2 > TA1 in air. They were then employed as the sensitimeorganic
dye-sensitized solar cells to achieve the highegtep conversion efficiency (PCE) of
4.78 % under AM 1.5 conditions. By systematicaltiyaeging the donor and acceptor
unit of these dyes, the new record on PCE withgiaobenzene as thespacer unit
was achieved.
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A series of novel azobenzene-based dyes were syntiae
» The stability order of these four dyes cation ratliavas found to b€A4 > TA3
>TA2>TALlin air.

» The new record on PCE with using azobenzene as$pacer unit was
achieved.



1. Introduction

Recently, numerous metal-free organic dyes have leduced for use in solar
cells which have the advantages of a wide variéstractural designs and high molar
absorption coefficients. The resultant solar celfeen display respectable power
conversion efficiencies (PCE) [1-3]. The Donarspacer)-Acceptor (B-A) system
is the basic architecture used for the design gdmic sensitizers due to the effective
photoinduced intramolecular charge transfer progertf4]. In general, TAA
(triarylamine) units are widely used as electronnale due to their strong
electron-donating ability. On the other hand, thanoacrylic acid moiety is usually
employed as the electron acceptor as well as tbleoaimg group that attaches to the

surface of the TiQ[1,5].

The use of a suitable electron-rich group &srztkpacer between the electron
donor and electron acceptor was reported to befioedy inducing a red-shift in
absorption maximum during the charge-transfer ttians[6-8]. Many studies have
focused on the conjugate chains such as vinyl §6lpene [7], anthrancene [8],
phenyl and thienyl. However, the use of azobenzné¢her-spacer in the DA
structure for metal-free organic dyes has not bstedied in detail thus far. The
azobenzene derivatives have revealed a numberpafrtemt characteristics, such as
thermal stability over a wide temperature range @jh chemical stability, stronger
electronic communicatiof10] and lower optical band gap (LUMO-HOMO), when
the azobenzene moiety is used for bridge confoonafil]. To the best of our
knowledge, there have been few reports of the oectgin of sensitizers comprised
of azobenzene units, even though they have shownlee PCE [12,13]. We herein
report a facile synthesis and the application air foovel organic dyesTA1-TA4,
Scheme 1), in which diarylamine is used as thetreleadonating moiety, azobenzene

moiety as ther-spacer, and aromatic-cyanoacrylic acid as the @iy moiety
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(Figure 1). The best PCE is almost four times greidtan the previous studies [12].

2. Experimental
2.1. Materials and physicochemical study

All chemicals used were obtained from the commeénm@aources and used as
received unless specified. HPLC grade,CHwas purchased from ACROS and was
distilled from CaH under an argon (Ar) atmosphere for electrochemicse.
Tetran-butylammonium hexafluorophosphate (TBAJPRvas recrystallized twice
from ethanol and then stored in a desiccaidfrNMR and **C-NMR spectra were
recorded with a Bruker 300 MHz NMR spectrometemgsCDCk as asolvent.
FAB-MS spectra were obtained using JMS-700 speatem UV/Vis absorption and
emission spectra were measured using a Cary 300sBextrophotometer and
FluoroMax-4 spectrofluorometer (HORIBA JOBIN YVON}spectively. Elemental
analyses were carried out with a Heraeus CHN-O-BidR&002 analysis system.
Electrochemistry was conducted using a three-@detcell with BAS glassy carbon
working electrode (GCE, area = 0.073nThe glassy carbon electrode was polished
with 0.05 um alumina on Buehler felt pads and was ultrasoattdor 2 min to
remove the alumina residue. A platinum wire wasduse the auxiliary electrode. A
home-made Ag/AgCI, KCI (saturated) was the refeeealectrode. The supporting
electrolyte was 0.1 M tetrabutylammonium hexaflydrosphate (TBAPS} in CH,Cl,.
The square-wave voltammograms (frequency: 25 Hep giotential: 0.0051 V;
amplitude: 0.01995 V) were recorded using a pobstdt/ galvanostat (PGSTAT 30,
Autolab, Eco-Chemie, the Netherlands) and ferrocems used as a calibration

standard (+0.49 V versus Ag/AgCl).

2.2. Synthesis of Al, TA2, TA3 andTA4



Compoundd, 2, 3, 4, and 1-bromo-4-nitrosobenzene were synthesizeatdiog
to the previous reports [14,15]. The synthesis \wathof TA series are shown in

Scheme 1.

Synthesis of compound 5. 1-Bromo-4-nitrosobenzene (3.45 g, 18.5 mmol, leq.)
was dissolved in a mixture of acetic acid / etlgdtate 1/1 (200 mL). To this solution,
3(4.28 g, 14.83 mmol, 0.8 eq.) was added directhe feaction mixture was stirred at
40 °C overnight. After cooling to room temperatugeprecipitate appeared. The
precipitate was filtered and purified by silica-gagblumn chromatography using
CH.Cl,/hexane (1:1) as the eluent to afford compobiag a dark yellow solid (yield:
80.2%), m.p. 176-178. IR (KBr), cnit: 2916~ 1590+ 1505+ 1484~ 1316~ 1294+
1267~ 1135+ 1065 1002+ 836~ 809.H NMR (300 MHz, CDCJ) § 7.77-7.71 (m, 4H),
7.65-7.58 (m, 2H), 7.14-7.00 (m, 10H), 2.3448). *C NMR (75 MHz, CDCJ) &
152.0, 151.5, 146.5, 144.4, 134.4, 132.4, 132.8,.413127.5, 126.1, 124.6, 124.2,
120.2, 21.1. MS (FAB nvz Calcd for GgH2:BrNs, (M + H]") 455.0997, 457.0977;

found, 455.0999, 457.0981.

Synthesis of compound 6. 1-Bromo-4-nitrosobenzene (3.45 g, 18.5 mmol, leq.)
was dissolved in a mixture of acetic acid / etlgdtate 1/1 (200 mL). To this solution,
4(4.75 g, 14.83 mmol, 0.8 eq.) was added directhe fleaction mixture was stirred at
40 °C overnight. After cooling to room temperatugeprecipitate appeared. The
precipitate was filtered and purified by silica-gagblumn chromatography using
CH.Cl,/hexane (1:1) as the eluent to afford compo6@rs a orange-red solid (yield:
85.1%), m.p. 169-171L. IR (KBr), cmi*: 2997~ 1593~ 1508~ 1316+ 1288~ 1234~
1132~ 1023+ 824.'H NMR (300 MHz, CDCY) 6 7.73 (t,J = 7.5 Hz, 6.9 Hz, 4H), 7.58
(d, J = 6.9 Hz, 2H), 7.13 (d) = 6.6 Hz, 4H), 6.94-6.85 (m, 6H), 3.81 (s, 6EC

NMR (75 MHz, CDC}) ¢ 157.0, 152.0, 151.6, 146.0, 139.8, 132.4, 12728.7]



124.1, 118.6, 115.1, 55.7. MS (FABm/z Calcd for GgH2BrNsO,, (M + HJY)

487.0895, 489.0875; found, 487.0901, 489.0877.

Synthesis of compound 5a. Compound 5 (27.3 mg, 6x18 mmol) and
4-formylphenylboronic acid (13 mg, 9xI0mmol) were dissolved in anhydrous
toluene (10 mL), then Pd(P®h (17 mg, 1.5x18 mmol) and NaCO; (63.6
mg ,6x10" mmol) in water (5 mL) was added as a catalyst. heure was refluxed
under argon for 24 hours. After cooling to the rommperature, the crude compound
was extracted by ethyl acetate/water, then washidbnine and finally dried with an
anhydrous sodium sulfate. The solution was conatgdrunder reduced pressure and
the residue was purified by column chromatogragiy.Cl,/hexane = 2:1, v/v) on a
silica gel to yield a red powddia (80% vyield), m.p. 182-183!. IR (KBr), cmi™:
3018~ 1686 ~ 1593 ~ 1499 ~ 1406 ~ 1312 ~ 1288 ~ 1207 ~ 1138 ~ 824. *H NMR (300
MHz, CDCk) & 10.07 (s, 1H), 7.99-7.95 (m, 4H), 7.84-7.75 (m),6H15-7.04 (m,
10H), 2.35 (s, 6H)**C NMR (75 MHz, CDCY) & 192.1, 146.8, 1.46.6, 144.4, 134.4,
130.6, 130.4, 128.3, 127.9.3, 126.1, 124.6, 12126,3, 21.15. MS (FAB m/z Calcd

for CasHa7N3O, (M + HJ*) 481.2154; found, 481.2155.

Synthesis of compound 6a. The synthesis method resembles that of comp&and
and the compound was purified by silica-gel colurohromatography using
CH.Cl,/hexane (1:1) as the eluent to afford compo6Gadas a yellow solid (yield:
40.2%), m.p. 177-178. IR (KBr), cni*: 3020~ 1698 ~ 1587 ~ 1499 ~ 1328 ~ 1240 ~
1135 ~ 1020 ~ 824. *H NMR (300 MHz, CDC}) §10.05 (s, 1H), 7.97-7.93 (m, 4H),
7.81-7.73 (m, 6H), 7.14-7.11 (d= 8.4 Hz, 4H), 6.95 (d] = 9 Hz, 2H), 6.86 (dJ =
8.7 Hz, 4H), 3.81 (s, 6H}3C NMR (75 MHz, CDCJ) § 192.1, 157.0, 153.1, 151.9,
146.6, 146.2, 140.9, 139.8, 135.6, 130.5, 128.7,812124.7, 123.3, 118.6, 115.1,

55.9. MS (FAB) mz Calcd for GsHp7N3Os ([M + H]*) 513.2052; found, 513.2050.



Snthesis of compound 5b. Compound 5 (27.3 mg, 6x18 mmol) and
5-Formyl-2-thienylboronic acid (14 mg, 9%1@nmol) were dissolved in anhydrous
toluene (10 mL), then Pd(P®h (17 mg, 1.5x18 mmol) and NgCO; (63.6
mg ,6x10"' mmol) in water (5 mL) was added as a catalyst. heure was refluxed
under argon for 24 hours. After cooling to the rommperature, the crude compound
was extracted by ethyl acetate/water, then washigdbrine and finally dried with an
anhydrous sodium sulfate. The solution was conatdrunder reduced pressure and
the residue was purified by column chromatograil,Cl./hexane = 2:1, v/v) on a
silica gel to yield a dark red powdsh (yield: 88%), m.p. 186-187. IR (KBr), cm™:
2910~ 1665 ~ 1590 ~ 1508 ~ 1319 ~ 1270 ~ 1229 ~ 1147 ~ 1056 ~ 839 ~ 809. 'H NMR
(300 MHz, CDC4) 5 9.90 (s, 1H), 7.91-7.77 (m, 6H), 7.46-7.40 (m, 2H)11-7.02 (m,
10H), 2.34 (s, 6H)**C NMR (75 MHz, CDCJ) & 183.0, 153.6, 153.5, 151.6, 146.7,
144.3, 143.0, 137.6, 134.5, 134.4, 130.4, 129.4.212126.6, 126.1, 124.7, 124.3,
123.5, 120.2, 21.1. MS (FAB m/z Calcd for GiHosNzOS, ([M + HJ) 487.1718;

found, 487.1720.

Synthesis of compound 6b. The synthesis method resembles that of comp&bnd
and the compound was purified by silica-gel colurohromatography using
CH.Cl,/hexane (1:1) as the eluent to afford compo6hdas a yellow solid (yield:
40.2%), m.p. 153-155. IR (KBr), cmi*: 2922~ 1737 ~ 1656 ~ 1508 ~ 1243 ~ 1035 ~

855 ~ 822. H NMR (300 MHz, CDCJ) & 9.89 (s, 1H), 7.89 (dJ = 8.1 Hz, 2H),
7.78-7.76 (m, 6H), 7.13 (d,= 8.7 Hz, 4H), 6.93 (d] = 9 Hz,2H), 6.87 (d,J = 9 Hz,

4H), 3.81 (s, 6H)!*C NMR (75 MHz, CDCJ) $183.0, 157.1, 153.7, 153.6, 152.0,
146.2, 143.0, 139.8, 137.6, 137.1, 134.2, 127.9,212124.8, 124.7, 123.4, 118.5,

115.1, 55.7. MS (FAB mvz Calcd for GiH2sN30sS, 519.1617; found, 519.1621.



Synthesis of TAL. An oven-dried 100 mL one-necked flask was chargat w
compound5 (3.5 x 10" mmol), cyanoacrylic acid (7 mmol), dry THF (10 mahd
piperidine (0.4 mL). The solution was heated alusefor 15 h and the color turned
deep red. After cooling to room temperature, diahrieethane was added and the
organic phase was washed with water (3x20 mL) aime {3x20 mL). The combined
organic phase was dried on MgSO4, filtered and enadpd under reduced pressure
and the residue was purified by silica-gel colurmnomatography to give a purple
solid (86.5%), m.p. 197-198. IR (KBr), cmi*: 3033~ 1590 ~ 1505 ~ 1319 ~ 1138 -
818. *H NMR (300 MHz, CDC}) & 8.14 (br, 1H), 7.72-7.55 (m, 2H), 7.58-7.56 {d,
= 8.1 Hz, 6H), 6.96 (dJ = 8.4 Hz 4H), 6.86 (dJ = 8.1 Hz, 6H), 2.24 (s, 6H}°C
NMR (75 MHz, CDC}) ¢ 210.2, 171.0, 144.6, 137.3, 134.6, 133.8, 13023,.7],
125.8, 124.6, 123.2, 120.6, 21.1. MS (FABVz Calcd for GeH2aN4O2, (M + H]")

548.2212; found, 548.2219.

Synthesis of TA2. The synthesis method resembles thal A1 and the compound
was purified by silica-gel column chromatographings<CH,CIl,/MeOH (10:1) as the
eluent to afford conTA2 as a yellow solid (yield: 90%), m.p. 165-167 IR (KBr),
cmt: 3031~ 1593 ~ 1508 ~ 1243 ~ 1141 ~ 825. *H NMR (300 MHz, CDCJ) § 8.17 (br,
1H), 7.94-7.60 (m, 6H), 7.28-7.26 (m, 4H), 6.97J¢, 8.7 Hz, 4H), 6.77-6.74 (nd,=
8.7 Hz, 6H), 3.74 (s, 6H}3C NMR (75 MHz, CDC)) § 195.8, 156.7, 152.6, 151.3,
146.4, 140.4, 140.1 131.6, 127.7, 127.5, 124.7,21239.0, 115.0, 55.6. MS (FAB

m/z Calcd for GeH2gN4O4, (M + H]™) 580.2111; found, 580.2115.

Synthesis of TA3. The synthesis method resembles thal A1l and the compound
was purified by silica-gel column chromatographings<CH,Cl,/MeOH (10:1) as the
eluent to affordTA3 as a yellow solid (yield: 88.6%), m.p. 173-174IR (KBr), cmi™:

3019-2361~1593~1511+1322~1270~1129~842~824. "H NMR (300 MHz, CDCJ)
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§ 8.23 (br, 1H), 7.53 (m, 6H), 7.30 (m, 4H), 7.08%.(m, 8H), 2.26 (s, 6H)"°C
NMR (150 MHz, CDCl,) § 206.9, 153.1, 151.4, 146.7, 144.5, 136.4, 13438,20,
130.4, 127.0, 126.2, 124.7, 123.4, 120.0, 116.8,4121.0. MS (FAB) mVz Calcd for

CasH26N4O,S, ([M + HJ') 554.1776; found, 554.1775.

Synthesis of TA4. The synthesis method resembles thal Al and the compound
was purified by silica-gel column chromatographings<CH,Cl,/MeOH (10:1) as the
eluent to affordTA4 as a yellow solid (yield: 85.9%), m.p. 181-183IR (KBr), cni™:
3016~ 2361 ~ 1593 ~ 1508 ~ 1237 ~ 1129 ~ 1032 ~ 775. *H NMR (300 MHz, CDC))
§ 8.28 (br, 1H), 7.45 (m, 4H), 7.15 (m, 2H), 6.9TFm, 12H), 3.70 (s, 6H)*C
NMR (150 MHz, CDCl,) 8 192.1, 160.9, 157.2, 146.3, 140.0, 138.9, 12824.8]
123.4, 118.5, 115.2, 55.8. MS (FABm/z Calcd for GaHxN4OsS, (M + HJ)

586.1675; found, 586.1669.

2.3. Device fabrication and photovoltaic performaest

Anatase TiQ nanoparticles (NP) (ca. 20 nm diameter) were hparonally
prepared in a Ti based autoclave as reported prelyigl6]. The screen-printable 20
nm TiO, paste was prepared by thoroughly mixing of 4.ZB@, NP, 55 mL ethyl
cellulose, and 45 mL terpineol. The TiPaste was screen-printed to form an active
area of 0.16 cMmTiO, photoanode (1m thick mesoporous anatase-Zifdm and 4
um thick TiO, scattering layer with particle size ad. 400 nm) on the fluorine-doped
tin oxide glass (FTO glass,(Z/square, 2.2 mm thick) with pretreatment with 40 mM
TiCla(aqyat 70°C for 30 min and control the thickness. Then th@,Blectrodes were
heated under an air flow at 500 °C for 60 minugdter cooling to room temperature,
the TiG, electrode was immersed in the TEDBn or TEDTh oigaansitizer solution
(0.2 mM) with 20 mM chenodeoxycholic acid (CDCA gBia-Aldrich) in THF at

40°C for 3 hours, and then rinsed with acetonitrillhe cell was covered with
11



platinized FTO glass incorporating a drilled hdie,form the counter electrode and
complete the sandwich configuration. The cell iotewas separated by a 30n
surlyn and the electrolyte was injected into thd e the hole in the counter
electrode. The electrolyte was composed of BMII6(QM), Lil (0.1 M),
tert-butylpyridine (TBP, Sigma-Aldrich) (0.5 M), 0.1 IBuNCS andJ (0.05 M) in
acetonitrile. Finally, drill holes were sealed siBurlyn hot-melt polymer and cover

glass.

Light illumination for the photovoltaic measuremem®mployed a 100 mW/ém
simulated Sun light source (Yamashita Denso, YS&)58nd the light-source power
output was calibrated using a reference Si photdi®@S-520, Bunko Keiki). The
DSC photovoltaic characteristics were obtained fgylyang an external potential bias
to the cell, and measuring the generated photattuurging a Keithley model 2400
digital source meter (Keithley, USA). Photocurramtion spectra for the incident
monochromatic photon to current conversion efficie(IPCE) were taken with an
IPCE measurement system (EQE-R-3011, ENLI TechnolGg. Ltd., Taiwan)

calibrated with a single-crystal silicon referemed for each measurement.

3. Results and discussion

The absorption spectra ®A1-TA4 in CH;CN are shown in Figure 2. It can be
seen that the main absorption wavelength in@NHis between 400 and 650 nm, as
contributed by the azobenzemespacer. This allows the efficient absorption of
photons with lower energy [17]. The onset valuehs visible absorption maxima
(honse) Of the dyes corresponds to the energy dap)(between the HOMO to LUMO
transitions (Table 2) [18]. With the change in tthierylamino group from methyl
(TA1) to methoxyl TA2), there is a red shift in the value Qfset This phenomena
can also be observed T3 andTA4. A comparison off A1 with TA3 shows that the

12



introduction of a 2,5-thienyl moiety into the anclgooup can lead to a red-shift in the
absorption spectra andse:(from 610 nm to 660 nm) of the dye, which is daisie
for a lower energy gap and for harvesting morersatargy [17].

The first oxidation potentialE,y) of these dyes was measured by square wave
voltammetry (SWV) in CHCN (Table 1), and was shown to correspond to the
HOMO level (Table 2). Thé& of the dyesTAL, TA2, TA3 andTA4 were +1.05,
+1.04, +1.08 and +1.06 V vs NHE, respectively. Wtiendiaryamino substituent was
changed from methyl to methoxyl (comparAl with TA2), only a slight negative
shift in the first oxidation peak was observed. Th&es ofE. for all the dyes were
more positive than the potential of th#> " redox mediator (~0.4 V vs NHE) when
employed as an electrolyte in DSCs [19-21].

The LUMO levels of these dyes were calculatedEpy+Eq.o, WhereEq g is the
optical transition energy of the dyes estimatedth® onset value of the absorption
spectrum (Table 2). They.o values ofTA1, TA2, TA3 andTA4 were 2.03, 1.91, 1.88
and 1.82 eV, yielding LUMO levels for these dyes&b2, -3.63, -3.70 and -3.74 eV,
respectively. The frontier orbital energy levels thie dyes (Figure 3) not only
confirmed the facile electron injection from phaxeited sensitizers to the TiO
conduction band (f, ca. -0.3 V vs NHE, — 4.2 eV vs vacuum) [21], bl#o revealed
that azobenzene, used as ihgpacer, caused lower energy level than the coiwtuct
band edge of Ti@ For all of the dyes, the process of electronciiga into Ecp, of

TiO, could be completed for oxidization of the dyes.

Density functional theory (DFT) using the hybrid IB® function along with the
6-31G(d,p) basis set was employed to investigatestbctronic structures of the four
dyes, TA1, TA2, TA3, andTA4. At the HOMO level, electrons are delocalized from

the donor unit to the-bridge while at the LUMO level, the electron delbzation is

13



shown to range from the-bridge to the acceptor moiety (Figure 3). The drenthe
calculated HOMO-LUMO gap matches the experimengh dbtained from the CV
results. The HOMO-LUMO gap decreased with the aaditof one more
electron-donating group at the donor unit and/ectebn-withdrawing group at the
acceptor unit. For example, in the experiments HMO-LUMO gaps ofTAl and
TA2, (replacing methyl by methoxyl at the donor mojetyere 2.03 and 1.91 eV,
respectively. Those gaps obtained with DFT calautat were 2.41 and 2.32 eV.
Similarly, after replacing the 1,4-phenylene by &-thienyl unit at the acceptor
moiety, the HOMO-LUMO gaps ofA1 andTA3 were 2.03 and 1.88 eV, respectively,
while, they were 2.41 and 2.32 eV based on the Edidulations. The trend of shown
by the calculated ionization potentials was alsosesient with that of the oxidation

potential obtained from the CV results (Table 2 &@able 3).

The spin density distribution of the cation radscalf the four dyes was also
investigated. As shown in Figure 4, delocalizatimainly occurred at the donor
moiety and the calculated spin density values vagridie N, and G positions. The
trend of the total spin density values at these pasitions followed that of the
HOMO-LUMO gap, namely that it decreases with thedithwh of one more
electron-donating group at the donor unit or/arettebn-withdrawing group at the
acceptor unit. The spin density values can be Gk to show the qualitative order
of the stability of these four cation radicals viasnd to beTA4 > TA3 >TA2 >TA1l
in air [22].

The J-V curves and IPCE spectra of these DSSCs are showigure 5. The
detailed photovoltaic parameters are summarizediahle 4. By systematically
changing the donor and acceptor unit of these dyescan increase the PCEA2

had a higher Voc than the other dyes because #egesd a strong electron-donating

14



group (-OMe) in the donor unit with phenyl as theclaoring moiety. The IPCE
spectra of the DSCs sensitized using dyes withptienyl anchoring group were
comparatively shorter and narrower than those ®d8Cs sensitized using dyes with
other anchoring groups. Th&V curves show a trend that is consistent with the
stability of the cation radicals of the dyes asdmed by the DFT calculation. The
IPCE for the TA4-sensitized cell reached its maximum of 53% at 4w,
significantly higher than that of th€Al based device (36% at 545 nm). In the
wavelength range from 300 to 600 nm, T#e4-sensitized cell also showed a stronger

IPCE than others, resulting in the highest PCE. 68%.

4. Conclusion

In conclusion, a new series of unsymmetrical dy@staining electron-abundant
azobenzene unitsti{spacers) between the diarylamine and the ternuyahoacetic
acid have been studied. With this design we coeltdagower LUMO, bathochromic
shifts of absorption spectra (small energy gap) iancease the value of the Jsc and
FF because of the change in the electron-donatiogpgon the diarylamine and the
difference in the aromatic group on the anchoringety. The improvement of Jsc
can be attributed to the much broader and red-abgbrption spectra of the dyes with
the thiophene moiety on the anchoring group. Tiyhdst Voc value was observed
when using bis(4-methoxyphenyl)amine as the dondramnd phenyl as the anchoring
group. The high PCEs of these dyes constructed th#ghazobenzene spacer were
investigated. The results present a new optiondfareloping colorful azobenzene

sensitizers for DSC applications.
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Table 1. Peak potentials (V vs. Ag/AgCl) 0fA1-TA4 (determined by square wave
voltammetry) in CHCI,/TBAPFs.

Oxidation Reduction
2nd 1st 1st
TA1 +1.02 +0.85 -1.66
TA2 +1.40 +0.84 -1.28
TA3 +1.04 +0.88 -1.14

TA4 +1.09 +0.86 could not observed
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Table 2. Optical and electrochemical properties of thesdye

Dye Ist By I1st By HOMO aonset Eoo LUMO
(Vvs.Ag/AgCl) (Vvs.NHE) (eV)° (nm) (eV)© (eVv)
TA1 +0.85 +1.05 -5.55 610 2.03 -3.52
TA2 +0.84 +1.04 -5.54 650 1.91 -3.63
TA3 +0.88 +1.08 -5.58 660 1.88 -3.70
TA4 +0.86 +1.06 -5.56 680 1.82 -3.74

a. FeCp "°=+0.49V in CHCl/TBAPFs.

b. The HOMO energy level was calculated from the kadf+e potential during
oxidation according to the empirical formulaidmo = -(E + 4.5) V by assuming
the energy level of ferrocene to be - 4.5 eV belasuum level. E (V) vs. NHE)

c. The gap energy level was calculated from the onagtlength of the UV-Vis
spectrum according to the empirical formulgagE 1240konset

d. LUMO =HOMO + gap

26



Table 3. Calculated ionization potentials (IP, eV) and HOMUMO gaps (eV).
Index IP HOM LUMO HOMO-LUMO gap

(ev) O (eV) (eV) (eV)
TAL 6.13 -5.09 -2.68 2.41
TA2 5.93 -4.94  -2.63 2.32
TA3 6.13 -5.15  -2.83 2.32
TA4 5.95 -5.00 -2.77 2.23

Calculated in the gas phase. B3LYP/6-31G(d,p)
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ACCEPTED MANUSCRIPT

Table 4. Photovoltaic Performance DataToh Dyes.

TA2 6.83 0.704 0.718 3.45

TA4 9.92 0.662 0.728 4.78
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Highlights

A\

A series of novel azobenzene-based dyes were synthesized.

»  Thestability order of these four dyes cation radicals was found to be TA4 > TA3
>TA2>TAlinair.

»  The new record on PCE with using azobenzene as the z-spacer unit was

achieved.



