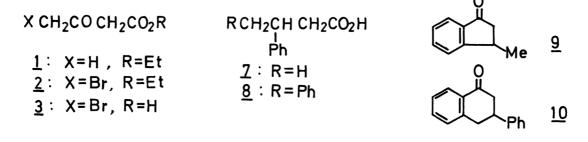
CHEMISTRY LETTERS, pp. 337-338, 1979. Published by the Chemical Society of Japan

REACTION OF ETHYL 3-OXOBUTANOATE AND ETHYL 4-BROMO-3-OXOBUTANOATE WITH BENZENE IN THE PRESENCE OF ALUMINUM CHLORIDE


Tetsuzo KATO^{*} and Hitoshi KIMURA

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980

Refluxing of ethyl 3-oxobutanoate $(\underline{1})$ in benzene in the presence of aluminum chloride gave ethylbenzene $(\underline{4})$, 9,10-dimethylanthracene $(\underline{5})$, 3-phenylbutanoic acid $(\underline{7})$, and 3-methyl-1-indanone $(\underline{9})$. Similar reaction of ethyl 4-bromo-3-oxobutanoate $(\underline{2})$ yielded $\underline{4}$, $\underline{5}$, 4-bromo-3-oxobutanoic acid $(\underline{3})$, 3,4-diphenylbutanoic acid $(\underline{8})$, and 3-phenyl-1-tetralone $(\underline{10})$.

While investigating some potential uses of diketene, we have studied reactions of 4-halo-3-oxobutanoate which is most easily prepared from diketene.¹⁾ In the present paper, we wish to report its Friedel-Crafts reaction. Concerning this reaction Labunskii reported the reaction between ethyl 3-oxobutanoate (<u>1</u>) and benzene in the presence of aluminum chloride to give ethylbenzene (<u>4</u>), 9,10-di-methylanthracene (5), and phenylacetic acid (6).²

First, we reinvestigated this reaction and obtained some variant results. According to the procedure reported by Labunskii², two equivalents of aluminum chloride were added gradually in portions to a solution of the ester (<u>1</u>) in benzene with stirring. After heating at 70-80° for 3 hr, the reaction mixture was poured into cold HCl, and the benzene layer was fractionally distilled to give ethylbenzene (<u>4</u>) (35%), bp 130-133°, and the starting ester (<u>1</u>) (1%), bp 75-80° (20 mmHg). The residue was dissolved in ether, and the ether solution was washed with 5% NaHCO₃. The NaHCO₃ washing was acidified with 10% HCl to give 3-phenylbutanoic acid (<u>7</u>) (1%) bp 107-109° (1 mmHg) (11t³) bp 113-115° (2 mmHg)). The ether layer was purified by silica gel column chromatography to give 9,10-dimethylbanthracene (trace) (<u>5</u>), mp 177-178° (11t⁴) mp 180°). When the reaction was carried out in the presence of five equivalents of aluminum chloride, products obtained were <u>4</u> (9.4%), <u>5</u> (29%), <u>7</u> (41.5%), and 3-methyl-1-indanone (<u>9</u>) (50%), bp 80° (1 mmHg) (11t⁵) bp 118-119° (11 mmHg)). Phenylacetic acid (<u>6</u>) was not detected.

Next, Friedel-Crafts reaction of ethyl 4-bromo-3-oxobutanoate (2) was carried out. To a boiling suspension of aluminum chloride in dry benzene, was added dropwise a solution of the bromoester (2) in benzene. After additional refluxing, the reaction mixture was poured into a mixture of conc. HCl and ice with stirring. The benzene layer separated was washed with 10% Na_2CO_3 . The aqueous layer was acidified to give 3,4-diphenylbutanoic acid (8), mp 93-94° (lit⁶⁾ mp 96-97°), and 4-bromo-3oxobutanoic acid (3), mp 66-67° (lit⁷⁾ mp 69-69.5°). The benzene layer was distilled to give ethylbenzene (4), and the residue was purified by silica gel column chromatography to give 9,10-dimethylanthracene (5), and 3-phenyl-1-tetralone (10), mp 64-65° (lit⁸⁾ mp 65°). The results are summarized in Table I.

			Reaction	Reaction	Yield(%)					
Benzene	2	A1C13	Time(hr)	Temperature(°C)	2	<u>3</u>		<u>5</u>	<u>8</u>	<u>10</u>
20 m1		1.34 g (0.01mol)	3	20	71	₊ a)	+ ^b)	_	_	_
20 mi	2.1 g (0.01mo1)	1.34 g (0.01mol)	3	80	52	+ ^{a)}	9	+ ^a)	_	
20 m1	2.1 g (0.01mo1)	2.68 g (0.02mol)	1	80	46	15	12	₊ a)	_	_
20 m1	2.1 g (0.01mo1)	2.68 g (0.02mol)	3	80	-	-	+ ^b)	2	11	₊ a)
20 m1	2.1 g (0.01mo1)		3	80	-	_	+ ^{b)}	28	47	5
20 m1	2.1 g (0.01mo1)	6.7 g (0.05mol)	3	80		_	+ ^p)	29	38	41

Table	I	Reaction	of	ethv]	4-bromo-3-oxobutanoate	(2)	with	benzene
-------	---	----------	----	-------	------------------------	-----	------	---------

a) These compounds were identified by silica gel thin layer chromatography.

b) This compound was identified by gas chromatography on a 2 m×2.5 mm silicon OV-17 (5% on Chromosorb AW-HMDS) column at 100°.

References

- 1) F. Chick and N. T. M. Wilsmore, J. Chem. Soc., <u>97</u>, 1978 (1910).
- 2) I. P. Labunskii, J. Gen. Chem. USSR, 31, 1467 (1961).
- 3) K. Bott, Chem. Ber., 100, 2791 (1967).
- 4) C. S. Gibson and J. D. A. Johnson, J. Chem. Soc., 1931, 753.
- 5) J. v. Braun and G. Kirschbaum, Ber., <u>46</u>, 3041 (1913).
- 6) L. L. McCoy and A. Zagalo, J. Org. Chem., 25, 824 (1960).
- 7) K. J. Boosen, Brit. Pat., 209 725 (1969).
- 8) S. Ruhemann, J. Chem. Soc., 97, 460 (1910).

(Received February 16, 1979)

338