Journal of Organometallic Chemistry 753 (2014) 9-19

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis, characterization and catalytic studies of aluminium complexes containing sulfonamido—oxazolinate or —pyrazolinate ligands

Chi-Tien Chen*, Chien-Hung Liao, Kuo-Fu Peng, Ming-Tsz Chen, Tzu-Lun Huang

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan

ARTICLE INFO

Article history: Received 3 September 2013 Received in revised form 6 December 2013 Accepted 10 December 2013

Keywords: Sulfonamido—oxazolinate Sulfonamido—pyrazolinate Aluminium e-Caprolactone Ring opening polymerization

ABSTRACT

A series of sulfonamido–oxazolinate ligand precursors, HNSO₂Ph^HOxa, HNSO₂Ph^{Me}Oxa, HNSO₂Ph^{-TriMe}Oxa, or sulfonamido–pyrazolinate ligand precursors, HNSO₂Ph^HPz^H, HNSO₂Ph^{Me}Pz^H, HNSO₂Ph^{-TriMe}Pz^H, HNSO₂Ph^{-TriMe}Pz^H, HNSO₂Ph^{-TriMe}Pz^H, HNSO₂Ph^{-TriMe}Pz^H, HNSO₂Ph^{-TriMe}Pz^H, HNSO₂Ph^{-TriMe}Pz^{Me}, have been prepared. Treatment of ligand precursors, HNSO₂Ph^AOxa or HNSO₂Ph^APz^B, with 1.1 equiv. of AlMe₃ in THF affords aluminium sulfonamido–oxazolinate dimethyl complexes, (NSO₂Ph^AOxa)AlMe₂ [A = H (1); A = Me (2); A = TriMe, (3)], or aluminium sulfonamido–pyrazolinate dimethyl complexes, (NSO₂Ph^APz^B)AlMe₂ [A = H, B = H (4); A = Me, B = H (5); A = TriMe, B = H (6); A = F, B = H (7); A = H, B = Me (8); A = Me, B = Me (9); A = TriMe, B = Me (10)]. The aluminium bis(sulfonamido–pyrazolinate) methyl complex 5' was isolated from recrystallization of 5 as minor product. The molecular structures of compounds 2, 5' and 8 were determined by single-crystal X-ray diffraction techniques. Their catalytic activities towards the ring opening polymerization of ε -caprolactone in the presence of benzyl alcohol are also under investigation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Aliphatic polyesters, prepared from various lactones and/or lactides, having the thermoplastic, biocompatible and biodegradable properties make them to be the leading candidates in biomedical and pharmaceutical industries [1-5]. The major synthesized method employed in industry to prepare these polyesters has been the ring opening polymerization (ROP) using well-defined metal complexes with auxiliary ligands. There is a number of excellent initiators/catalysts have been examined for the ROP during the past decade [6-14]. The main challenge in elaborating catalytic systems effective for ROP is the development of novel efficient metal catalysts to produce the polymers bearing the properties of precisely molecular weight, narrow polydispersity index (PDI), efficient rate and high enantio- or regio-selectivity under mild conditions. Among these studies, the metal complexes supported by sulfonate [15,16] or sulfonamido [18-23] anionic multidentate ligands have been a focus of interest, mainly due to their good catalytic activities for ROP of cyclic esters. The magnesium complexes bearing sulfonate phenolate ligands have

* Corresponding author.

been prepared and displayed efficient catalytic activities for ROP of ε -caprolactone, ι -lactide or trimethyl carbonate by the Lin's and Ko's groups [15,16]. However, the reactivity of magnesium bisadduct complexes derived from bis-phenolate ligands show only moderate activity in the ROP of L-lactide in the presence of additional alcohols [17]. The Lin's group also reported the aluminium complexes containing sulfonamido/Schiff base ligand are efficient initiators for ROP of L-lactide in well-controlled fashion [19]. The Mountford's group reported that the metal complexes such as titanium [20], zirconium [20], aluminium [21] or indium [22], bearing tetradentate bis(sulfonamide)amino ligands also showed the well-controlled ROP of rac-lactide. Recently, some Group 1 metal complexes bearing cyclohexyl-backboned bis-sulfonamido ligand displayed the modest stereo-selectivity and well-controlled fashion for ROP of rac-lactide under lower temperature condition were reported by Lin's group [23].

In our previous reports, some zinc [24,25], aluminium [25] or magnesium [26] anilido–oxazolinate complexes, or aluminium anilido–pyrazolinate complexes [28] have shown their catalytic activities toward the ROP of ε -caprolactone or L-lactide. In view of the potential application of metal sulfonate or sulfonamido complexes in ROP, we are interested in exploring the catalytic behaviour of the metal complexes bearing related sulfonamido ligands derived from our previous works. On the other respect, the steric or

E-mail addresses: ctchen@mail.nchu.edu.tw, ctchen@dragon.nchu.edu.tw (C.-T. Chen).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jorganchem.2013.12.022

electronic sulfonamides in general are attractive synthetic targets due to their relatively easy and simple preparation from the corresponding sulfonyl chlorides and related amines or anilines under mild conditions. Although aluminium complexes containing anionic multidentate ligands, such as β -diketiminates [29], anilidoiminates [30,31], amidinates [32,33] or phosphino-iminates [34,35], have been reported their catalytic activities for ROP of cyclic esters recently. However only few examples of aluminium complexes containing sulfonamido groups have been applied in ROP as initiators/catalysts [18,19,21]. Herein we report the synthesis and structures of aluminium complexes containing sulfonamido–oxazolinate or –pyrazolinate ligands. Their catalytic activities toward the ring opening polymerization of ε -caprolactone in the presence of benzyl alcohol are also examined.

2. Results and discussion

2.1. Preparations of sulfonamide ligand precursors

A series of sulfonamido-oxazolinate or -pyrazolinate ligand precursors [HNSO₂Ph^ROxa, Ph^R = phenyl (R = H), tolyl (R = Me) or mesityl (R = TriMe), HNSO₂Ph^RPz^H, Ph^R = phenyl (R = H), tolyl (R = Me), mesityl (R = TriMe) or 4-fluorophenyl (R = F) and HNSO₂Ph^RPz^{Me}, Ph^R = phenyl (R = H), tolyl (R = Me) or mesityl (R = TriMe)] were prepared by the reactions of 2-(4,4-dimethyl-4,5-dihydrooxazo-2-yl)-phenylamine, 1-(2-aminophenyl)pyrazole or 1-(3,5-dimethyl-2-aminophenyl)pyrazole with 1.1 molar equivalent of the corresponding substituted benzenesulfonyl chlorides and triethylamine in dichloromethane at room temperature, as shown in (Scheme 1). These ligand precursors were easily purified by column chromatography and afforded the satisfied yields. The N-H signals on ¹H NMR spectra for these ligand precursors were observed at the range of 12.29-12.56 ppm for oxazolinate sulfonamides and 8.68-10.10 ppm for pyrazolinate-sulfonamides. Since the NH of sulfonamides have been still reacted with excess sulfonyl chlorides in the presence of base to form bis-sulfonamides, the bispyrazole-sulfonamide by-product $N(SO_2Ph^R)_2Pz^H$ [Ph^R = phenyl (R = H), tolyl (R = Me) or 4-fluorophenyl (R = F)] could also be

Fig. 1. Molecular structure of one of the crystallographically independent molecules of **2**. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles (°): Al–N(1), 1.961(3); Al–N(2), 1.948(3); Al–C(19), 1.961(4); Al–C(20), 1.955(4); S–O(2), 1.435(3); S–O(3), 1.439(3); S–N(2), 1.635(3); S–C(7), 1.763(4); N(1)–C(14), 1.292(5); N(2)–C(1), 1.416(5); C(1)–C(6), 1.411(5); C(6)–C(14), 1.452(5); N(1)–Al–N(2), 90.69(13); C(19)–Al–C(20), 116.63(19); N(2)–Al–C(19), 117.22(15); N(2)–Al–C(20), 115.55(17); N(1)–Al–C(19), 105.29(16); N(1)–Al–C(20), 106.59(16); O(2)–S–O(3), 117.86(16); N(2)–S–C(7), 107.40(16).

observed and collected with 7–17% isolated yields upon preparing the target compounds of HNSO₂Ph^RPz^H [Ph^R = phenyl (R = H), tolyl (R = Me) or 4-fluorophenyl (R = F)], as shown in (Scheme S1). All of these sulfonamido ligand precursors and some bis-sulfonamides

Scheme 1. Preparation of ligand precursors and complexes 1-10.

Fig. 2. Molecular structure of complex **5**'. Hydrogen atoms on carbon atoms omitted for clarity. Selected bond lengths (Å) and bond angles (°): Al–C(17), 1.963(4); Al–N(1), 2.0859(19); Al–N(3), 1.922(2); Al–N(1A), 2.0859(19); Al–N(3A), 1.922(2); S–O(1), 1.4434(17); S–O(2), 1.4472(17); S–N(3), 1.6090(19); S–C(7), 1.770(2); N(1)–Al–N(1A), 172.28(12); N(1)–Al–N(3), 91.03(8); N(1)–Al–N(3A), 84.15(8); N(3)–Al–N(3A), 102.78(12); C(17)–Al–N(1), 93.86(6); C(17)–Al–N(3), 128.61(6); O(2)–S–O(3), 117.71(10); N(3)–S–C(7), 105.99(10).

were characterized by NMR spectroscopy as well as elemental analysis. The suitable crystals for the structural refinement of pyrazole bis-sulfonamide $N(SO_2Ph^F)_2Pz^H$ were isolated from concentrated dichloromethane solution, and the molecular structure was depicted in Fig. S1.

Treatment of ten oxazolinate- or pyrazolinate-based sulfonamido ligand precursors with 1.1 molar equivalent of AlMe₃ by alkane elimination in THF at room temperature for 1 h affords the desired aluminium dimethyl complexes 1–10 in moderate yields respectively. The disappearance of the N–H signal of sulfonamide and the appearance of the resonance for protons of methyl groups in the high-field region are consistent with the structures proposed in (Scheme 1). Due to the symmetric environment around the metal centre, one singlet corresponding to two methyl groups on the metal centre was observed in each case for these aluminium complexes. The ²⁷Al chemical shifts for di-alkyl complexes 1–10 appearing around the range of 103.8-142.0 ppm are within the expected region for a four-coordinate aluminium species in solution (ca. 60-180 ppm) [36], especially for our previous work {102.1-146.8 ppm for anilido-oxazolinate aluminium complexes [37] and 145.2–145.5 ppm for anilido-pyrazolinate aluminium complexes [28]}. Complexes 1–10 were all characterized by NMR spectroscopy as well as elemental analyses. However, attempts to synthesize related aluminium complexes containing alkoxide group (i.e. benzoxide or isopropoxide) have been proved unsuccessful.

Suitable crystals for structure determination of 2 were obtained from dichloromethane/hexane solution. The molecular structure is depicted in Fig. 1. The structure of 2 demonstrates a mononuclear form and the aluminium centre adopts a distorted tetrahedral geometry with the metal centre coordinated by two methyl groups and two nitrogen donor atoms of the oxazolinate and sulfonamido groups. The difference between Al-Noxazoline [Al-N(1) = 1.961(3) Å] and Al-N_{sulfonamide} [Al-N(2) = 1.948(3) Å] bond distances might result from the π -donation ability of the anionic amido nitrogen [25,28,30,38,39]. The bond distance of Al-Noxazoline and the angle of Noxazoline-Al-Nsulfonamide and Cmethyl-Al-Cmethyl $[N(1)-Al-N(2) = 90.69(13)^{\circ}$ and $C(19)-Al-C(20) = 116.63(19)^{\circ}]$ are comparable with those found in aluminium anilidooxazolinate [25] [1.917(5)–1.963(1) Å for Al–N_{oxazoline}, 92.65(8)– 93.66(8)° for N_{oxazole}–Al–N_{anilido}] or anilido–imino [30,38] [92.65(8)–95.51(18)° for N_{imine}–Al–N_{anilido} and 111.6(2)– 116.70(1)° for C_{methyl}–Al–C_{methyl}] complexes. The bond distance of Al–N_{sulfonamide} is comparable with those found in aluminium complexes containing sulfonamido ligands [1.858(2)–1.952(2) Å for Al–N_{sulfonamide}] [18,19,21].

Trace crystals were collected upon recrystallizing **5** from the concentrated toluene solution at room temperature in few days. The molecular structure of **5**' is depicted in Fig. 2. The structure demonstrates a mononuclear five-coordinated aluminium complex, where the metal centre is coordinated by one methyl group and two pyrazolyl–sulfonamido groups. Based on the τ -value [$\tau = (\beta - \alpha)/60$] [40], the central aluminium adopts a distorted

Scheme 2. Preparation complex 5'.

trigonal bipyramidal geometry ($\tau = 0.73$) with distorted axes of $N_{pyrazole}$ -Al- $N_{pyrazole}$ [N(1)-Al-N(1A) = 172.28(12) Å]. The nitrogen atoms [N(3)] and N(3A) and carbon atom [C(17)] reside equatorially, forming angles subtended by aluminium [N(3)-Al- $N(3A) = 102.78(12)^{\circ}$, $N(3)-Al-C(17) = 128.61(6)^{\circ}$ and N(3A)-Al- $C(17) = 128.61(6)^{\circ}$]. The bond length of Al-N_{pyrazole} [Al-N(1) = 2.0859(19)Å] is longer than the five-coordinated aluminium anilido-pyrazolinate [28] [2.012(3) Å for Al-N_{pyrazole}] complex. Comparing with complex 2 and the related aluminium anilidooxazolinate complexes [25], the pyrazolinate group donates less electrons to aluminium centre than the oxazolinate group. The bond lengths of Al-N_{sulfonamide} [Al-N(3) = 1.922(2) Å] and Al- C_{methyl} [Al-C(17) = 1.963(4) Å] and the angle of $N_{pvrazole}$ -Al- N_{sul-} for a found in five-coordinated aluminium anilido-pyrazolinate [28] [1.964(3)–1.983(3) Å for Al–C_{methyl} and 88.23(11)° for N_{pyrazole}– Al-Nanilido] or sulfonamido [18,19,21] [1.895(2)-1.952(2) Å for Al-N_{sulfonamide} and 1.949(2)–1.986(2) Å for Al–C_{alkvl} complexes. Alternative routes can be achieved by treatment of **5** with 1 molar equivalent of HNSO₂Ph^{Me}Pz^H in refluxing toluene or reaction of HNSO₂Ph^{Me}Pz^H with 0.5 molar equivalent of AlMe₃ in refluxing toluene to afford the aluminium bis-pyrazolyl-sulfonamide complex 5'. The synthetic routes are shown in (Scheme 2). Compared with complexes **1–10**, there are more remarkable differences by spectroscopic studies for 5', i.e. the more down-field aluminiummethyl signal on ¹H NMR spectrum (0.28 ppm) and the more upfiled signal on ²⁷Al NMR spectrum (56.7 ppm). The ²⁷Al chemical shift of 5' is within the expected region for five-coordinate aluminium species in solution (*ca.* 20–60 ppm) [36]. Compound 5' was characterized by elemental analyses as well.

Suitable crystals for structure determination of **8** were obtained from tetrahydrofuran/hexane solution. The molecular structure is depicted in Fig. 3. Complex **8** is similar to **2** but with the dimethylpyrazolinate group instead of the oxazolinate group. The bond distance of Al–N_{pyrazole} [Al–N(3) = 1.972(2) Å] is slightly longer than those found in aluminium anilido–oxazolinate [25] [1.9590(17) Å for Al–N_{pyrazole}] or anilido–imino [30,38] [1.917(5)–1.963(1) Å for Al–N_{imine}] complexes. The bond length of Al–N_{sulfonamide} [Al–N(3) = 1.915(2) Å] and the angle of N_{pyrazole}

Fig. 3. Molecular structure of complex **8.** Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles (°): Al–N(1), 1.915(2); Al–N(3), 1.972(2); Al–C(18), 1.952(3); Al–C(19), 1.957(3); S–O(1), 1.4416(18); S–O(2), 1.4365(19); S–N(1), 1.607(2); S–C(7), 1.777(3); N(2)–N(3), 1.370(3); N(1)–C(1), 1.429(3); N(2)–C(2), 1.428(3); C(1)–C(2), 1.397(3); N(1)–Al–N(3), 91.03(9); C(18)–Al–C(19), 102.092(13); N(1)–Al–C(19), 105.93(11); N(1)–Al–C(19), 106.92(11); N(3)–Al–C(18), 110.70(11); N(3)–Al–C(19), 107.01(10); O(1)–S–O(2), 118.07(11); N(1)–S–C(7), 106.82(11).

Al-N_{sulfonamide} [N(1)-Al-N(3) = 91.03(9)°] are close to those discussed above for **2**.

The geometry of chelating six-membered ring of aluminium oxazolyl–sulfonamido complex **2** is almost co-planar with evidence of the dihedral angle (2.8°) between planes defined by N(1)–Al–N(2)/N(1)–C(14)–C(6)–C(1)–N(2). However, the distorted (half-chair form) six-membered ring of aluminium pyrazolyl-based sulfonamido complexes **5**′ and **8** exhibit larger dihedral angles of N(1)–Al–N(2)/N(1)–C(14)–C(6)–C(1)–N(2) (39.5°) and N(1)–Al–N(2)/N(1)–C(14)–C(6)–C(1)–N(2) (41.7°), respectively. This phenomenon explains more aromatic character for the chelating ring of aluminium oxazolyl–sulfonamido complex.

Although some aluminium complexes bearing sulfonamido group have been reported with the bonding between aluminium metal centre and oxygen atom of sulfonamido [Al– $O_{sulfonamide} = 1.854(2)-2.193(2)$ Å] [18,19,21]. The Al– $O_{sulfonamide}$ bond distances for complexes demonstrated here [2.536 Å and 3.992 Å for **2**; 3.069 Å and 4.255 Å for **5**'; 3.249 Å and 4.306 Å for **8**] indicating there are no coordinated covalent bonds between aluminium metal centre and oxygen atom of sulfonamido group. However, the existence of Al···O_{sulfonamide} bond interaction could not be excluded due to the van der Walls radius between aluminium and oxygen [Al···O = 3.5 Å].

2.2. Catalytic studies of ring-opening polymerization

Since some aluminium sulfonamido complexes [18,19,21] and aluminium anilido–oxazolinate [25], anilidopyrazolate [28], βdiketiminates [29], anilido-iminates [30,31], amidinates [32,33] or phosphino-iminates [34,35] complexes have shown their catalytic activities in ROP, structure-related aluminium sulfonamido complexes 1–10 are expected to work as catalysts toward the ROP. The similar conditions used in our previous work [24-28] were introduced to examine the catalytic activities in the ROP of ε -caprolactone. Representative results are collected in Table 1. Under the same condition, the aluminium complexes containing pyrazolinate group (entries 4-7) exhibited better activities than those with dimethyl-pyrazolinate group (entries 8–10) or oxazolinate group (entries 1–3) in the presence of benzyl alcohol with the order of $Pz^{H} > Pz^{Me} > Oxa$ at 25 °C with a period of 30 min in toluene. This trend was observed under elevated temperature condition (entries 11–13) or in the absence of benzyl alcohol (entries 14–16). Upon comparing catalytic activity with complex **4** (entry 4), complex **7** containing electron-withdrawing substituent on phenyl group of sulfonamido species results in the inhibition of catalytic activity. The optimized conditions were reconfirmed using complex 4 as catalyst in dichloromethane or THF with poor conversions (entries 17–18). This might result from the competition between solvent and monomer or initiator. The analysis of end group were demonstrated by the ¹H NMR spectra of the polymers produced with or without the addition of benzyl alcohol (entries 12 and 15), as shown in Figs. 4 and 5. Peaks in Fig. 4 are assignable to the corresponding protons in the proposed structure, indicating the metal benzyl oxide complex might form first, followed by the monomer of the ring cleavage of acyl-oxygen bond to form a metal alkoxide intermediate, which further reacts with excess monomers to yield polyester [24–28]. However, no end group in Fig. 5 was found on the polymer produced without the addition of benzyl alcohol as initial agent. These are further supported by matrixassisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopic analysis in Figs. 6 and 7. The repeating mass is assigned to $\{H[\varepsilon-caprolactone]_nOBn\} + Na^+$ from entry 12 in Fig. 6, and the repeating mass is assigned to $[\epsilon$ -caprolactone]_n + Na⁺ from entry 15 in Fig. 7, which are consistent with the analysis of Figs. 4

Table 1		
Polymerization of ε-caprolactone using	compounds 1–12 as catalysts in	toluene if not otherwise stated. ^a

Entry	Catalyst	[ɛ-CL]:[Al]:[BnOH]	<i>T</i> (°C)	<i>t</i> (min)	$M_n (\mathrm{obsd})^{\mathrm{b},\mathrm{k}}$	M_n (calcd) ^{c,k}	Conv. (%) ^d	Yield (%) ^e	$M_w/M_n^{\rm b,k,l}$
1	1	100:1:2	25	30	_	_	23	_	_
2	2	100:1:2	25	30	_	_	23	_	_
3	3	100:1:2	25	30	_	_	18	_	_
4	4	100:1:2	25	30	7800	5400	93	84	1.20
5	5	100:1:2	25	30	8000	4300	91	81	1.20
6	6	100:1:2	25	30	9200	5400	93	91	1.20
7	7	100:1:2	25	30	6700	4400	76	60	1.17
8	8	100:1:2	25	30	_	_	48	_	_
9	9	100:1:2	25	30	_	_	54	_	_
10	10	100:1:2	25	30	_	_	59	_	_
11	1	100:1:2	50	30	12,200	5500	95	90	1.30
12	4	100:1:2	50	10	6300	5700	98	77	1.13
13	8	100:1:2	50	25	5300	5300	91	70	1.11
14	1	100:1:0	50	150	_	-	17	-	-
15	4	100:1:0	50	150	21,000	11,100 ^f	97	97	1.39
16	8	100:1:0	50	150	31,000	8000^{f}	70	68	1.39
17 ^g	4	100:1:2	25	30	_	-	11	-	-
18 ^h	4	100:1:2	50	30	_	-	11	-	-
19	4	200:1:2	25	105	14,700	10,700	93	92	1.15
20	4	300:1:2	25	210	22,800	16,900	98	96	1.19
21	4	400:1:2	25	450	28,900	20.600	90	88	1.20
22	4	200:1:4	25	135	5200	5100	90	72	1.13
23	4	50:1:1	25	240	7800	5100	90	84	1.58
24	5	100:1:2	50	10	7600	5500	95	86	1.08
25	5′	50:1:1	50	10	6100	4700	81	46	1.34
26 ⁱ	11	100:1:2	50	120	13,000	5500	95	94	1.06
27 ^j	12	100:1:2	25	60	9100	5200	91	89	1.12
28 ^j	12	100:1:2	50	12	8900	5400	92	86	1.11

^a In 15 mL.

^b Obtained from GPC analysis times 0.56.

Calculated from $[M(\epsilon-CL) \times [\epsilon-CL]/[Al] \times conversion/([BnOH]_{eq})] + M(BnOH)$.

Obtained from ¹H NMR analysis.

Isolated yield.

Calculated from $(M(\varepsilon-CL) \times [\varepsilon-CL]/[Al] \times \text{conversion})$.

g In CH₂Cl₂.

^h In THF.

Ref. [25].

i Ref. [28].

k

 M_w (weight average molecular weight). Mw (weight average molecular weight).

and 5 [41,42]. The mechanism for the formation of cyclic PCL might be initiated by ligand and end up with trans-esterification, which is similar to those reported in the literature [43,44]. The linear relationship between M_n and the monomer-to-initiator ([ε -CL]/[Al])

exhibited by complex 4 implies the "living" character of the poly-

merization process at 25 °C (entries 4, 19–21; PDIs = 1.15–1.20),

and representative results are demonstrated in Fig. 8. The "immortal" character was examined using one, two and four equivalents benzyl alcohol as the chain transfer agent (entries 4, 22–23). The five-coordinated aluminium bis-sulfonamido complex 5' also demonstrated catalytic activity, but with poor activity

Fig. 4. ¹H NMR spectrum of poly(ε-caprolactone) initiated by **4** in toluene at 25 °C in the presence of BnOH (Table 1, entry 12).

Fig. 5. ¹H NMR spectrum of poly(ε-caprolactone) initiated by **4** in toluene at 25 °C in the absence of BnOH (Table 1, entry 15).

Fig. 6. MALDI-TOF mass spectrum of poly(ε-caprolactone) initiated by **4** in toluene at 25 °C in the presence of BnOH (Table 1, entry 12).

Fig. 7. MALDI-TOF mass spectrum of poly(e-caprolactone) initiated by **4** in toluene at 25 °C in the absence of BnOH (Table 1, entry 15).

comparing with **5** at 50 °C within 10 min (entries 24–25). This might result from the bulkier environment around fivecoordinated aluminium centre and the modification of Lewis acidity of metal centre caused by the ligands. Optimized conditions were introduced to examine the catalytic activities of structurerelated aluminium anilido–oxazolinate complex (**11**) and anilidopyrazolinate complexes (**12**) (entries 26–28), as shown in (Scheme 3). Based on the experimental results, introduction of sulfonamido group into these two systems can enhance the

Fig. 8. Polymerization of ε -caprolactone initiated by 4 in toluene at 25 °C in the presence of BnOH (Table 1, entries 4, 19–21).

catalytic activities (entries 4, 11-12 and 26-28). Furthermore comparing with other structurally related aluminium complexes, the catalytic activity of complex **4** is more active than aluminium anilido-aldiminate [30] or aluminium anilido-iminate [31] complexes. Trials have been done by the reactions between aluminium dimethyl complexes 1. 4 or 8 with two molar equivalent benzyl alcohols within 5 min at room temperature using benzene- d_6 as solvent to understand the details of active species of polymerization in situ with benzyl alcohol (Fig. S2). Although the syntheses of aluminium alkoxide complexes were failed, the similar phenomena were observed and consistent with our previous work [28]. Based on the ¹H NMR spectrometric studies, the active species could be formulated as a $[(BnO)_2AlMe]_n$ derivative. The activity of polymerization might be assessed by the determination of the mixed compounds from the protonation of the aluminium anilidopyrazolate complex and benzyl alcohol [32,45].

3. Conclusions

A series of oxazolinate- or pyrazolinate-based sulfonamido ligand precursors and related aluminium complexes 1-10 have been prepared and characterized. The molecular structures are reported as four-coordinated aluminium dimethyl complexes (for 2 and **8**) and five-coordinated aluminium monomethyl complex (for 5'). All aluminium complexes were found to be active in catalyzing the polymerization of ε -caprolactone in the presence of benzyl alcohol with well-controlled M_n and narrow PDIs. Compounds with pyrazolinate group seem to be more active than those with dimethyl-pyrazolinate and oxazolinate group. Introduction of sulfonamido group indeed proved the enhancement of catalytic activity for ROP of ε -caprolactone comparing with our previously related works. Complex 4 exhibited efficient activities for controlled polymerization of *e*-caprolactone with "living" and "immortal" characters under the optimized condition. The activity of ROP might be assessed by the determination of the mixed compounds from the protonation of the aluminium anilido-pyrazolate complex and benzyl alcohol resulting in the formation of the ligand precursor and the $[(BnO)_2AIMe]_n$ derivatives.

4. Experimental

4.1. General conditions

All manipulations were carried out under an atmosphere of dinitrogen using standard Schlenk-line or drybox techniques. Solvents were refluxed over the appropriate drying agent and distilled prior to use. Deuterated solvents were dried over molecular sieves.

¹H and ¹³C{¹H} NMR spectra were recorded either on Varian Mercury-400 (400 MHz) or Varian Inova-600 (600 MHz) spectrometers in chloroform-*d* at ambient temperature unless stated otherwise and referenced internally to the residual solvent peak and reported as parts per million relative to tetramethylsilane. ²⁷Al {¹H} NMR spectra were referenced externally using Al(acac)₃ at

Scheme 3. Molecular structures of complexes 11 and 12.

 $\delta = 0$ ppm. Elemental analyses were performed by an Elementar Vario ELIV instrument. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric studies of poly(ε -caprolactone) were performed by using Bruker Autoflex III TOF/TOF spectrometer. The Gel Permeation Chromatography (GPC) measurements were performed in THF at 35 °C with a Waters 1515 isocratic High Performance Liquid Chromatography (HPLC) pump, a Waters 2414 refractive index detector, and Waters styragel column (HR4E). Molecular weights and molecular weight distributions were calculated using polystyrene as standard.

p-Toluenesulfonyl chloride (Acros), benzenesulfonyl chloride (Alfa Aesar), 2-mesitylenesulfonyl chloride (Alfa Aesar), 4-fluorobenzenesulfonyl chloride (Acros), 9-anthracenmethanol (Acros) and trimethylaluminium (1.0 M in heptane, Aldrich) were used as supplied. Trimethylamine (TMEDIA), benzyl alcohol (TEDIA) and ε -caprolactone (Acros) were dried over CaH₂ and distilled before use. 2-(4,4-dimethyl-4,5-dihydrooxazo-2-yl)-phenylamine [46], 1-(2-aminophenyl)pyrazole [47] and 1-(3,5-dimethyl-2-aminophenyl)pyrazole [48] were prepared by the modified literature's methods.

4.2. HNSO₂Ph^HOxa

To a flask containing 2-(4,4-dimethy-4,5-dihydro-oxazo-2-yl)phenylamine (0.950 g, 5.0 mmol) in 15 mL dichloromethane, a solution of benzenesulfonyl chloride (0.970 g, 5.5 mmol) in 15 mL dichloromethane was added at room temperature. To this reaction mixture, NEt₃ (0.765 mL, 5.5 mmol) was added via syringe at 0 °C. After one hour of stirring, all the volatiles were pumped off. The residue was dissolved in ethyl acetate and washed with deionized water. Collect organic layer to afford crude product. Crude product was washed with methanol (5 mL \times 3) to yield white solid (1.29 g, 78%). Anal. Calc. for C₁₇H₁₈N₂O₃S: C, 61.80; H, 5.49; N, 8.48. Found: C, 61.88; H, 5.56; N, 8.35. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 12.33 (br, 1H, –NH), 7.83 (m, 2H, C₆H₅), 7.70–7.75 (overlap, 2H, C₆H₅), 7.47 (m, 1H, C₆H₅), 7.34–7.40 (overlap, 3H, C₆H₅), 7.02 (m, 1H, C₆H₅), 4.01 (s, 2H, Oxa-CH₂), 1.39 (s, 6H, Oxa-CH₃). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 161.5, 139.8, 138.9, 114.3, 67.8 (C_{inso}-C₆H₅), 132.6, 132.2, 129.1, 128.7, 127.0, 122.7, 118.8 (CH-C₆H₅), 77.9 (s, Oxa-CH₂), 28.3 (s, Oxa-CH₃).

4.3. HNSO₂Ph^{Me}Oxa

To a flask containing 2-(4,4-dimethy-4,5-dihydro-oxazo-2-yl)phenylamine (0.95 g, 5.0 mmol) and toluenesulfonyl chloride (1.05 g, 5.5 mmol), 30 mL dichloromethane were added at room temperature. To this reaction mixture, NEt₃ (0.765 mL, 5.5 mmol) was added via syringe at 0 °C. After two hour of stirring, all the volatiles were pumped off. The residue was dissolved in ethyl acetate and washed with deionized water. Collect organic laver to afford crude product. Crude product was washed with methanol $(5 \text{ mL} \times 3)$ to afford white solid (1.24 g, 72.0%). Anal. Calc. for C₁₈H₂₀N₂O₃S: C, 62.77; H, 5.85; N, 8.13. Found: C, 62.53; H, 5.81; N, 8.13. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 12.29 (br, 1H, -NH), 7.70– 7.74 (overlap, 4H, C₆H₅), 7.35 (m, 1H, C₆H₅), 7.17 (m, 2H, C₆H₅), 7.01 (m, 1H, C₆H₅), 4.02 (s, 2H, Oxa-CH₂), 2.34 (s, 3H, -CH₃), 1.40 (s, 6H, Oxa-CH₃). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 161.5, 143.2, 138.8, 136.6, 113.9, 67.6 (Cipso-C₆H₅), 131.9, 129.1, 129.0, 126.7, 122.4, 118.2 (CH-C₆H₅), 77.6 (s, Oxa-CH₂), 28.1 (s, Oxa-CH₃), 21.1 (s, -CH₃).

4.4. HNSO₂Ph^{TriMe}Oxa

The procedure for the preparation of **HNSO₂Ph^{TriMe}Oxa** was similar to that used for **HNSO₂Ph^{Me}Oxa** but with 2-mesitylenesulfonyl chloride (1.20 g, 5.5 mmol). A white solid was

obtained (1.04 g, 56.0%). Anal. Calc. for $C_{20}H_{24}N_2O_3S$: C, 64.49; H, 6.49; N, 7.52. Found: C, 64.48; H, 6.71; N, 7.25. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 12.56 (br, 1H, -NH), 7.75 (m, 1H, $C_{6}H_5$), 7.25–7.33 (overlap, 2H, $C_{6}H_5$), 6.90–6.96 (overlap, 3H, $C_{6}H_5$), 4.07 (s, 2H, Oxa-CH₂), 2.71 (s, 6H, o-CH₃–Ph), 2.24 (s, 3H, p-CH₃–Ph), 1.41 (s, 6H, Oxa-CH₃). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 161.7, 142.3, 139.3, 139.2, 133.8, 112.3, 67.9 (C_{ipso} – $C_{6}H_5$), 132.2, 131.9, 129.3, 121.2, 115.6 (CH– $C_{6}H_5$), 77.9 (Oxa-CH₂), 28.3 (Oxa-CH₃), 22.8 (o-CH₃–Ph), 20.8 (p-CH₃–Ph).

4.5. HNSO₂Ph^HPz^H

To a flask containing 1-(2-aminophenyl)pyrazole (0.796 g, 5.0 mmol) in 15 mL dichloromethane, a solution of benzenesulfonyl chloride (0.970 g, 5.5 mmol) in 15 mL dichloromethane was added at room temperature. To this mixture solution, NEt₃ (0.765 mL, 5.5 mmol) was added via syringe at 0 °C. After one hour of stirring, all the volatiles were pumped off and the residue was extracted with toluene 5 mL \times 3. Crude product was purified by column chromatography (hexane/ethyl acetate 3:1). The second band was collected to afford white solid (0.958 g, 64.0%). The third band was collected to afford di-substituted side product, $Pz^HN(SO_2Ph^H)_2$, as white solid (0.375 g, 17.0%). Data for HNSO₂Ph^HPz^H: Anal. Calc. for C₁₅H₁₃N₃O₂S: C, 60.18; H, 4.38; N, 14.04. Found: C, 59.74; H, 4.26; N, 13.64. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.09 (br, 1H, –NH), 7.77 $(dd, J = 8.0 \& 1.4 Hz, 1H, C_6H_5), 7.72 (d, J = 2.0 Hz, 1H, C_6H_5), 7.38 (m, J = 2.0 Hz, 2H_5), 7.38 (m,$ 3H, C₆H₅), 7.27–7.33 (overlap, 2H, C₆H₅), 7.12–7.23 (overlap, 4H, C_6H_5), 6.33 (m, 1H, C_6H_5). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 138.7, 131.4, 129.8 (Cipso-C₆H₅), 141.0, 132.3, 129.3, 128.6, 127.8, 126.4, 126.1, 125.8, 121.7, 107.3 (CH-C₆H₅). Data for **Pz^HN(SO₂Ph^H)**₂: Anal. Calc. for C₂₁H₁₇N₃O₄S₂: C, 57.39; H, 3.90; N, 9.56. Found: C, 57.20; H, 3.69; N, 9.15. NMR (400 MHz, CDCl₃): δ (ppm) 8.17 (m, 1H, C₆H₅), 7.84–7.87 (overlap, 4H, C₆H₅), 7.62–7.69 (overlap, 3H, C₆H₅), 7.58 $(td, J = 7.8 \& 1.2 Hz, 1H, C_6H_5), 7.47-7.51$ (overlap, 5H, $C_6H_5), 7.32$ $(m, 1H, C_6H_5), 6.95 (dd, J = 8.0 \& 1.4 Hz, 1H, C_6H_5), 6.10 (t, J = 2.0 Hz, J = 2.0 Hz)$ 1H, C₆H₅). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 140.7, 138.7, 127.7 (Cipso-C₆H₅), 141.2, 134.0, 132.6, 131.5, 131.4, 129.1, 128.7, 128.0, 127.8, 107.4 (CH-C₆H₅) [49,50].

4.6. HNSO₂Ph^{Me}Pz^H

To a flask containing 1-(2-aminophenyl)pyrazole (0.796 g, 5.0 mmol) and toluenesulfonyl chloride (1.05 g, 5.5 mmol), 30 mL dichloromethane were added at room temperature. To this reaction mixture, NEt₃ (0.765 mL, 5.5 mmol) was added via syringe at 0 °C. After one hour of stirring, all the volatiles were pumped off. The residue was extracted with toluene (5 mL \times 3). Crude product was purified by column chromatography (hexane/ethyl acetate 3:1). The second band was collected to afford pale-white solid (1.05 g, 67.0%). The third band was collected to afford di-substituted side product, PzHN(SO2PhMe)2, as white solid (0.165 g, 7.0%). Data for HNSO₂Ph^{Me}Pz^H: Anal. Calc. for C₁₆H₁₅N₃O₂S: C, 61.32; H, 4.82; N, 13.41. Found: C, 61.60; H, 5.08; N, 13.50. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.04 (br, 1H, -NH), 7.73–7.77 (overlap, 2H, C₆H₅), 7.26– 7.34 (overlap, 4H, C₆H₅), 7.14–7.20 (overlap, 2H, C₆H₅), 7.01 (d, J = 8.4 Hz, 2H, C₆H₅), 6.36 (m, 1H, C₆H₅), 2.30 (s, 3H, -CH₃). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 143.1, 135.7, 131.0, 129.8 ($C_{inso}-C_6H_5$), 140.8, 129.2, 129.1, 127.6, 126.3, 125.8, 125.2, 121.6, 107.1 (CH-C₆H₅), 21.2 (-CH₃). Data for Pz^HN(SO₂Ph^{Me})₂: Anal. Calc. for C23H21N3O4S2: C, 59.08; H, 4.53; N, 8.99. Found: C, 59.05; H, 4.73; N, 8.40. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20 (m, 1H, C₆H₅), 7.71 (d, *J* = 8.4 Hz, 4H, C₆H₅), 7.67 (dd, *J* = 8.0 & 1.6 Hz, 1H, C₆H₅), 7.52–7.58 (overlap, 2H, C₆H₅), 7.31 (m, 2H, C₆H₅), 7.26 (dd, J = 8.0 & 0.4 Hz, 4H, C_6H_5), 6.96 (d, J = 8.4 Hz, 1H, C_6H_5), 6.13 (m, 1H, C_6H_5), 2.46 (s, 6H, -CH₃). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 145.1, 140.7, 135.9, 131.3

 $(C_{ipso}-C_{6}H_{5})$, 141.0, 132.6, 131.5, 129.3, 129.2, 127.9, 127.7, 107.3 (CH-C₆H₅), 21.6 (-CH₃) [51].

4.7. HNSO₂Ph^{TriMe}Pz^H

The procedure for the preparation of **HNSO**₂**Ph**^{TriMe}**Pz**^H was similar to that used for **HNSO**₂**Ph**^{Me}**Pz**^H but with 2-mesitylenesulfonyl chloride (1.20 g, 5.5 mmol) and 20 mL dichloromethane. The second band was collected to afford white solid (0.96 g, 56.0%). Anal. Calc. for C₁₈H₁₉N₃O₂S: C, 63.32; H, 5.61; N, 12.31. Found: C, 63.18; H, 5.49; N, 12.53. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.97 (br, 1H, -NH), 7.75 (d, J = 1.2 Hz, 1H, C₆H₅), 7.55 (dd, J = 8.0 & 1.2 Hz, 1H, C₆H₅), 7.51 (dd, J = 2.4 & 0.4 Hz, 1H, C₆H₅), 6.40 (m, 1H, C₆H₅), 2.41 (s, 6H, *o*-CH₃-Ph), 2.22 (s, 3H, *p*-CH₃-Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 142.1, 138.8, 133.4, 130.2, 130.1 (C_{ipso} -C₆H₅), 141.0, 132.6, 131.5, 129.3, 129.2, 127.9, 127.7, 107.3 (CH-C₆H₅), 21.6 (-CH₃).

4.8. HNSO₂Ph^FPz^H

The procedure for the preparation of **HNSO₂Ph^FPz^H** was similar to that used for HNSO₂Ph^{Me}Pz^H but with 4-fluorobenzene-sulfonyl chloride (2.92 g, 15 mmol). Crude product was purified by column chromatography (hexane/ethyl acetate 5:1). The second band was collected to afford orange-red oil. The oil was triturated with ethanol to afford orange solid (1.33 g, 28.0%). The third band was collected to afford di-substituted side product, Pz^HN(SO₂Ph^F)₂, as white solid (0.71 g, 10.0%). Data for HNSO₂Ph^FPz^H: Anal. Calc. for C₁₅H₁₂FN₃O₂S: C, 56.77; H, 3.81; N, 13.24. Found: C, 56.80; H, 3.88; N, 12.96. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.10 (br, 1H, -NH), 7.74–7.79 (overlap, 2H, C₆H₅), 7.32-7.40 (overlap, 4H, C₆H₅), 7.17-7.27 (overlap, 2H, C₆H₅), 6.89 $(t, J = 8.4 \text{ Hz}, 2H, C_6H_5), 6.37 (br, 1H, C_6H_5).$ ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.0, 163.4, 134.6, 131.4 (*C*_{*ipso*}-C₆H₅), 141.0, 129.2, 129.1, 129.0, 127.9, 126.4, 126.1, 121.6, 115.9, 115.7, 107.3 (CH-C₆H₅). Data for **Pz^HN(SO₂Ph^F)₂**: Anal. Calc. for C₂₁H₁₅F₂N₃O₄S₂: C, 53.05; H, 3.18; N, 8.84. Found: C, 53.51; H, 3.34; N, 9.07. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.12 (m, 1H, C₆H₅), 7.87–7.90 (overlap, 4H, C₆H₅), 7.57–7.66 (overlap, 2H, C₆H₅), 7.51 (d, J = 1.6 Hz, 1H, C₆H₅), 7.35 (m, 1H, C₆H₅), 7.14–7.18 (overlap, 4H, C₆H₅), 6.97 (dd, J = 8.0 & 1.6 Hz, 1H, C₆H₅), 6.16 (m, 1H, C₆H₅). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.2, 164.6, 140.6, 134.6, 127.7 (*C*_{*ipso*}-C₆H₅), 141.3, 132.5, 132.3, 132.2, 131.7, 131.4, 128.2, 128.0, 116.2, 116.0, 107.5 (CH- C_6H_5).

4.9. $Pz^{H}N(SO_{2}Ph^{F})_{2}$

To a flask containing 1-(2-aminophenyl)pyrazole (0.159 g, 1.0 mmol) and 4-fluorobenzene-sulfonyl chloride (0.428 g, 1.0 mmol), 30 mL THF were added at room temperature. To this reaction mixture, NEt₃ (0.31 mL, 2.2 mmol) was added via syringe at 0 °C. The reaction mixture was warmed up to 50 °C. After one hour of stirring, all the volatiles were pumped off. The residue was extracted with toluene (5 mL \times 3). Crude product was purified by column chromatography (hexane/ethyl acetate 3:1). The second band was collected to afford white solid (0.357 g, 75.0%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.12 (m, 1H, C₆H₅), 7.87–7.90 (overlap, 4H, C₆H₅), 7.57–7.66 (overlap, 2H, C₆H₅), 7.51 (d, J = 1.6 Hz, 1H, C₆H₅), 7.35 (m, 1H, C₆H₅), 7.14-7.18 (overlap, 4H, C₆H₅), 6.97 (dd, $J = 8.0 \& 1.6 Hz, 1H, C_6H_5), 6.16 (m, 1H, C_6H_5).$ ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.2, 164.6, 140.6, 134.6, 127.7 (*C*_{*ipso*}-C₆H₅), 141.3, 132.5, 132.3, 132.2, 131.7, 131.4, 128.2, 128.0, 116.2, 116.0, 107.5 (CH- $C_{6}H_{5}$).

4.10. HNSO₂Ph^HPz^{Me}

The procedure for the preparation of **HNSO₂Ph^HPz^{Me}** was similar to that used for **HNSO₂Ph^HPz^H** but with 2-(3,5-dimethylpyrazol-1-yl)phenylamine (0.94 g, 5.0 mmol) and benzenesulfonyl chloride (0.970 g, 5.5 mmol). Crude product was purified by column chromatography (hexane/ethyl acetate 2:1). The second band was collected to afford pink solid (0.98 g, 60.0%). Anal. Calc. for C₁₇H₁₇N₃O₂S: C, 62.36; H, 5.23; N, 12.83. Found: C, 62.34; H, 5.25; N, 12.92. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.99 (br, 1H, -NH), 7.79 (dd, J = 8.0 & 1.6 Hz, 1H, C₆H₅), 7.33–7.46 (overlap, 4H, C₆H₅), 7.25–7.30 (overlap, 2H, C₆H₅), 7.19 (td, J = 8.4 & 1.3 Hz, 1H, C₆H₅), 7.01 (dd, J = 8.0 & 1.2 Hz, 1H, C₆H₅), 5.86 (s, 1H, C₆H₅), 2.31 (s, 3H, $-CH_3$), 1.68 (s, 3H, $-CH_3$). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 150.2, 140.9, 139.1, 131.6, 131.1 (*C_{ipso}*-C₆H₅), 132.4, 128.6, 128.3, 126.4, 126.0, 125.6, 124.9, 106.9 (CH-C₆H₅), 13.4 ($-CH_3$), 11.8 ($-CH_3$).

4.11. HNSO₂Ph^{Me}Pz^{Me}

The procedure for the preparation of **HNSO₂Ph^{Me}Pz^{Me}** was similar to that used for **HNSO₂Ph^{Me}Pz^H** but with 2-(3,5-dimethylpyrazol-1-yl)phenylamine (0.94 g, 5.0 mmol) and tolue-nesulfonyl chloride (1.05 g, 5.5 mmol). Crude product was purified by column chromatography (hexane/ethyl acetate 5:1). The second band was collected to afford pink solid (1.02 g, 60.0%). Anal. Calc. for C₁₈H₁₉N₃O₂S: C, 63.32; H, 5.61; N, 12.31. Found: C, 63.45; H, 6.01; N, 12.30. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.92 (br, 1H, -NH), 7.34 (dd, J = 8.0 & 1.0 Hz, 1H, C₆H₅), 7.34 (m, 1H, C₆H₅), 7.27 (m, 2H, C₆H₅), 7.17 (m, 1H, C₆H₅), 7.07 (d, J = 8.0 Hz, 2H, C₆H₅), 6.99 (dd, J = 8.0 & 1.4 Hz, 1H, C₆H₅), 5.88 (s, 1H, C₆H₅), 2.33 (s, 3H, $-CH_3$), 2.31 (s, 3H, $-CH_3$), 1.70 (s, 3H, $-CH_3$). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 150.2, 143.2, 140.8, 136.2, 131.8, 131.0 (*C_{ipso}*-C₆H₅), 129.2, 128.4, 126.5, 125.7, 125.4, 125.0, 106.9 (CH-C₆H₅), 21.3 ($-CH_3$), 13.4 ($-CH_3$), 11.6 ($-CH_3$).

4.12. HNSO₂Ph^{TriMe}Pz^{Me}

The procedure for the preparation of **HNSO₂Ph**^{TriMe}**Pz**^{Me} was similar to that used for **HNSO₂Ph**^{TriMe}**Pz**^H but with 2-(3,5-dimethylpyrazol-1-yl)phenylamine (0.94 g, 5.0 mmol). Crude product was purified by column chromatography (hexane/ethyl acetate 5:1). The second band was collected to afford pale-yellow solid (0.83 g, 45.0%). Anal. Calc. for $C_{20}H_{23}N_3O_2S$: C, 65.01; H, 6.27; N, 11.37. Found: C, 65.16; H, 6.58; N, 11.57. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.68 (br, 1H, -NH), 7.73 (dd, J = 8.0 & 1.2 Hz, 1H, C_6H_5), 7.32 (m, 1H, C_6H_5), 7.16 (td, J = 7.8 & 1.3 Hz, 1H, C_6H_5), 7.03 (dd, J = 8.0 & 1.2 Hz, 1H, C_6H_5), 6.75 (br, 2H, C_6H_5), 5.89 (br, 1H, C_6H_5), 2.28 (s, 6H, $o-CH_3-Ph$), 2.27 (s, 3H, $-CH_3$), 2.22 (s, 3H, $-CH_3$), 1.73 (s, 3H, $-CH_3$). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 150.5, 142.0, 141.0, 139.0, 133.9, 132.0, 131.3 ($C_{ipso}-C_6H_5$), 131.6, 128.3, 125.7, 125.5, 125.3, 109.6 ($CH-C_6H_5$), 22.8 ($-CH_3$), 20.7 ($-CH_3$), 13.4 ($-CH_3$), 11.4 ($-CH_3$).

4.13. $(NSO_2Ph^HOxa)AlMe_2$ (1)

To a flask containing **HNSO₂Ph^HOxa** (0.33 g, 1.0 mmol) and 15 mL THF, 1.1 mL AlMe₃ (1.0 M in heptane, 1.1 mmol) was added at 0 °C. The reaction mixture was allowed to warm to room temperature and reacted for one hour. All the volatiles were removed under reduced pressure to afford pale-yellow solid. The crude product was washed with 5 mL hexane to afford white solid (0.228 g, 57%). Anal. Calc. for C₁₉H₂₃N₂O₃SAl: C, 59.05; H, 6.00; N, 7.25. Found: C, 59.38; H, 5.92; N, 6.70. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.00 (d, *J* = 7.8 Hz, 2H, C₆H₅), 7.88 (dd, *J* = 7.8 & 1.5 Hz, 1H, C₆H₅), 7.53 (t, *J* = 7.2 Hz, 1H, C₆H₅), 7.47 (t, *J* = 7.5 Hz, 2H, C₆H₅), 7.40

(d, J = 8.4 Hz, 1H, C₆H₅), 7.29 (m, 1H, C₆H₅), 6.88 (t, J = 7.5 Hz, 1H, C₆H₅), 4.25 (s, 2H, Oxa-CH₂), 1.59 (s, 6H, Oxa-CH₃), -0.47 (s, 6H, Al-CH₃). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 167.1, 145.1, 140.5, 110.9, 68.2 (C_{ipso} -C₆H₅), 135.2, 132.5, 131.0, 129.0, 127.8, 120.3, 118.8 (CH-C₆H₅), 79.2 (Oxa-CH₂), 27.0 (Oxa-CH₃), -5.1 (Al-CH₃). ²⁷Al NMR (156 MHz): δ 103.8 ($\Delta \nu_{1/2}$ = 6203.7).

4.14. $(NOxaSO_2Ph^{Me})AlMe_2$ (2)

The procedure for the preparation of **2** was similar to that used for **1** but with HNOxaSO₂Ph^{Me} (0.344 g, 1.0 mmol). A white solid was obtained (0.272 g, 68.0%). Anal. Calc. for C₂₀H₂₅N₂O₃SAl: C, 59.98; H, 6.29; N, 7.00. Found: C, 60.14; H, 6.33; N, 6.92. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.87–7.89 (overlap, 3H, C₆H₅), 7.39 (d, J = 9.0 Hz, 1H, C₆H₅), 7.26–7.30 (overlap, 3H, C₆H₅), 6.87 (t, J = 7.5 Hz, 1H, C₆H₅), 4.25 (s, 2H, Oxa-CH₂), 2.38 (s, 3H, CH₃), 1.57 (s, 6H, Oxa-CH₃), -0.47 (s, 6H, Al–CH₃). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 167.1, 145.0, 143.3, 137.3, 110.8, 68.1 (C_{ipso} –C₆H₅), 135.1, 130.9, 129.6, 127.8, 120.2, 118.5 (CH–C₆H₅), 79.1 (Oxa-CH₂), 26.9 (Oxa-CH₃), 21.5 (–CH₃), –5.1 (Al–CH₃). ²⁷Al NMR (156 MHz): δ 133.5 ($\Delta \nu_{1/2} = 7273.5$).

4.15. $(NOxaSO_2Ph^{TriMe})AlMe_2$ (3)

The procedure for the preparation of **3** was similar to that used for **1** but with HNOxaSO₂Ph^{TriMe} (0.372 g, 1.0 mmol). A white solid was obtained (0.257 g, 60.0%). Anal. Calc. for C₂₂H₂₉N₂O₃SAl: C, 61.66; H, 6.82; N, 6.54. Found: C, 61.50; H, 7.05; N, 6.29. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89 (m, 1H, C₆H₅), 7.27 (m, 1H, C₆H₅), 7.15 (dd, *J* = 8.4 & 0.6 Hz, 1H, C₆H₅), 6.88–6.92 (overlap, 3H, C₆H₅), 4.28 (s, 2H, Oxa-CH₂), 2.64 (s, 6H, *o*-CH₃–Ph), 2.27 (s, 3H, *p*-CH₃–Ph), 1.59 (s, 6H, Oxa-CH₃), -0.52 (s, 6H, Al–CH₃). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.2, 145.8, 135.1, 132.0, 130.9, 110.7, 68.0 (C_{ipso}–C₆H₅), 141.8, 138.4, 135.9, 120.2, 118.7 (CH–C₆H₅), 79.4 (Oxa-CH₂), 26.9 (Oxa-CH₃), 22.9 (*o*-CH₃–Ph), 20.8 (*p*-CH₃–Ph), -5.3 (Al–CH₃). ²⁷Al NMR (156 MHz): δ 122.8 ($\Delta \nu_{1/2}$ = 10349.8).

4.16. $(NPz^{H}SO_{2}Ph^{H})AlMe_{2}$ (**4**)

The procedure for the preparation of **4** was similar to that used for **1** but with HNPz^HSO₂Ph^H (0.299 g, 1.0 mmol). A white solid was obtained (0.313 g, 88.0%). Anal. Calc. for $C_{17}H_{18}N_3O_2SAI$: C, 57.45; H, 5.11; N, 11.82. Found: C, 57.74; H, 5.33; N, 11.39. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.88 (d, J = 3.0 Hz, 1H, C_6H_5), 7.85 (d, J = 1.8 Hz, 1H, C_6H_5), 7.76 (d, J = 8.4 Hz, 1H, C_6H_5), 7.62 (d, J = 7.8 Hz, 2H, C_6H_5), 7.38 (t, J = 7.2 Hz, 1H, C_6H_5), 7.26–7.31 (overlap, 4H, C_6H_5), 7.11 (t, J = 7.5 Hz, 1H, C_6H_5), 6.58 (t, J = 1.6 Hz, 1H, C_6H_5), -0.61 (s, 6H, Al–CH₃). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 133.1, 129.0, 128.7 ($C_{ipso} - C_6H_5$), 140.7, 131.9, 130.9, 128.6, 126.4, 125.8, 124.1, 120.6, 108.3 (CH–C₆H₅), -8.8 (Al–CH₃). ²⁷Al NMR (156 MHz): δ 111.6 ($\Delta \nu_{1/2} = 8593.2$).

4.17. $(NPz^{H}SO_{2}Ph^{Me})AlMe_{2}$ (5)

The procedure for the preparation of **5** was similar to that used for **1** but with HNPz^HSO₂Ph^{Me} (0.313 g, 1.0 mmol). A white solid was obtained (0.258 g, 70.0%). Anal. Calc. for $C_{18}H_{20}N_3O_2SAl$: C, 58.52; H, 5.46; N, 11.37. Found: C, 58.71; H, 5.46; N, 10.97. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.96 (d, J = 1.8 Hz, 1H, C₆H₅), 7.87 (d, J = 1.8 Hz, 1H, C₆H₅), 7.71 (d, J = 7.8 Hz, 1H, C₆H₅), 7.58 (d, J = 7.8 Hz, 2H, C₆H₅), 7.32 (d, J = 7.8 Hz, 1H, C₆H₅), 7.71 (d, J = 7.8 Hz, 1H, C₆H₅), 7.58 (d, J = 7.8 Hz, 2H, C₆H₅), 7.07 (t, J = 7.5 Hz, 1H, C₆H₅), 6.61 (br, 1H, C₆H₅), 2.31 (s, 3H, -CH₃), -0.61 (s, 6H, Al-CH₃). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 142.9, 137.5, 133.2, 128.0 (C_{ipso} -C₆H₅), 140.9, 130.7, 129.4, 128.9, 126.8, 124.5, 123.5, 120.5, 108.2 (CH-C₆H₅), 21.3 (-CH₃), -8.4 (Al-CH₃). ²⁷Al NMR (156 MHz): δ 106.6 ($\Delta \nu_{1/2} = 102.31$).

4.18. $(NSO_2Ph^{Me}Pz^H)_2AlMe(5')$

There are two methods to prepare as following: (I) To a flask containing HSO₂Ph^{Me}Pz^H (0.627 g, 2.0 mmol) and 15 mL dry toluene, AlMe₃ (1.10 mL, 1.10 mmol) were added at 0 °C under nitrogen. The reaction mixture was allowed to warm to room temperature and reacted in oil bath at 80 °C. After 12 h of stirring, the white suspension was filtered and the filtrate was pumped to dryness to afford white solid (0.533 g, 80%). (II) To a flask containing 5 (0.369 g, 1.0 mmol) in toluene, a toluene solution of HNSO₂Ph-MePz^H (0.313 g, 1.0 mmol) was added. The reaction mixture was heated in oil bath at 80 °C. After 12 h of stirring, the white suspension was filtered and the filtrate was pumped to dryness to afford white solid (0.505 g, 76%). Anal. Calc. for C₃₃H₃₁AlN₆O₄S₂: C, 59.45; H, 4.69; N, 12.60. Found: C, 58.88; H, 4.54; N, 12.86. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.22 (d, I = 1.8 Hz, 2H, C₆H₅), 7.36 (d, J = 1.8 Hz, 2H, C₆H₅), 7.08 (dd, J = 8.4 & 1.5 Hz, 2H, C₆H₅), 6.97–7.00 (overlap, 6H, C_6H_5), 6.80 (d, J = 8.4 Hz, 4H, C_6H_5), 6.72 (m, 2H, C_6H_5), 6.66 (dd, J = 8.4 & 1.2 Hz, 2H, C₆H₅), 6.43 (t, J = 2.4 Hz, 2H, C₆H₅), 2.20 (s, 6H, -CH₃), 0.28 (s, 3H, Al-CH₃). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 141.1, 138.9, 133.2, 132.2 (C_{ipso}-C₆H₅), 141.3, 129.8, 129.1, 128.5, 127.9, 125.7, 124.9, 120.0, 106.8 (CH-C₆H₅), 21.2 (-CH₃), -5.2 (Al–CH₃). ²⁷Al NMR (156 MHz): δ 56.7 ($\Delta \nu_{1/2} = 5462.2$).

4.19. $(NPz^{H}SO_{2}Ph^{TriMe})AlMe_{2}$ (**6**)

The procedure for the preparation of **6** was similar to that used for **1** but with HNPz^HSO₂Ph^{TriMe} (0.41 g, 1.0 mmol). A white solid was obtained (0.258 g, 65.0%). Anal. Calc. for $C_{20}H_{24}N_{3}O_{2}SAl$: C, 60.44; H, 6.09; N, 10.57. Found: C, 60.09; H, 6.30; N, 11.02. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.05 (d, J = 3.0 Hz, 1H, C₆H₅), 7.95 (d, J = 2.4 Hz, 1H, C₆H₅), 7.38 (dd, J = 8.4 & 1.2 Hz, 1H, C₆H₅), 7.33 (dd, J = 8.4 & 1.5 Hz, 1H, C₆H₅), 7.20 (td, J = 7.8 & 1.6 Hz, 1H, C₆H₅), 7.10 (m, 1H, C₆H₅), 6.85 (s, 2H, C₆H₅), 6.70 (t, J = 2.4 Hz, 1H, C₆H₅), 2.51 (s, 6H, *o*-CH₃-Ph), 2.25 (s, 3H, *p*-CH₃-Ph), -0.65 (s, 6H, Al-CH₃). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 141.5, 138.9, 135.7, 134.5, 129.1 (C_{ipso} -C₆H₅), 140.6, 131.7, 131.4, 129.0, 124.5, 123.8, 121.4, 108.4 (CH-C₆H₅), 22.7 (*o*-CH₃-Ph), 20.7 (*p*-CH₃-Ph), -8.8 (Al-CH₃). ²⁷Al NMR (156 MHz): δ 134.9 ($\Delta\nu_{1/2} = 7256.9$).

4.20. $(NPz^{H}SO_{2}Ph^{F})AIMe_{2}$ (**7**)

The procedure for the preparation of **7** was similar to that used for **1** but with HNPz^HSO₂Ph^F (0.317 g, 1.0 mmol). A white solid was obtained (0.224 g, 60.0%). Anal. Calc. for C₁₇H₁₇FN₃O₂SAl: C, 54.68; H, 4.59; N, 11.25. Found: C, 54.28; H, 4.90; N, 11.08. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89 (m, 1H, C₆H₅), 7.79 (dd, $J = 8.4 \& 1.2 Hz, 2H, C_6H_5$), 7.63–7.67 (overlap, 2H, C₆H₅), 7.29–7.35 (overlap, 2H, C₆H₅), 7.16 (m, 1H, C₆H₅), 6.97 (m, 2H, C₆H₅), 6.63 (t, J = 2.4 Hz, 1H, C₆H₅), -0.62 (s, 6H, Al–CH₃). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.7, 163.2 (C_{ipso} –C₆H₅), 137.1, 133.2 ($J_{C-F} = 12.4 Hz$), 140.8, 130.8, 129.28, 129.26, 129.2, 126.2, 124.3, 120.7, 115.9, 115.7, 108.3 (CH–C₆H₅), -8.9 (Al–CH₃). ²⁷Al NMR (156 MHz): δ 127.0 ($\Delta\nu_{1/2} = 10418.0$).

4.21. $(NPz^{Me}SO_2Ph^H)AlMe_2$ (8)

The procedure for the preparation of **8** was similar to that used for **1** but with HNPz^{Me}SO₂Ph^H (0.327 g, 1.0 mmol). A white solid was obtained (0.268 g, 70.0%). Anal. Calc. for C₁₉H₂₂N₃O₂SAI: C, 59.51; H, 5.78; N, 10.96. Found: C, 59.81; H, 6.16; N, 10.55. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.87 (dd, J = 7.8 & 1.2 Hz, 1H, C₆H₅), 7.43 (td, J = 8.1& 1.4 Hz, 1H, C₆H₅), 7.39 (m, 2H, C₆H₅), 7.29 (t, J = 7.5 Hz, 1H, C₆H₅), 7.16–7.22 (overlap, 3H, C₆H₅), 6.96 (dd, J = 7.8 & 1.2 Hz, 1H, C₆H₅), 5.96 (s, 1H, C₆H₅), 2.38 (s, 3H, –CH₃), 1.96 (s, 3H, –CH₃), –0.72 (s, 6H, Al–CH₃). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 151.0, 143.8, 142.5, 135.2, 130.9 (C_{ipso} –C₆H₅), 131.4, 130.7, 129.3, 128.0, 125.3, 125.2, 123.8, 108.8 (CH–C₆H₅), 13.0 (–CH₃), 12.7 (–CH₃), –9.8 (Al–CH₃). ²⁷Al NMR (156 MHz): δ 142.0 ($\Delta \nu_{1/2}$ = 9324.6).

4.22. $(NPz^{Me}SO_2Ph^{Me})AlMe_2$ (9)

The procedure for the preparation of **9** was similar to that used for **1** but with HNPz^{Me}SO₂Ph^{Me} (0.341 g, 1.0 mmol). A white solid was obtained (0.278 g, 70.0%). Anal. Calc. for C₂₀H₂₄N₃O₂SAl: C, 60.44; H, 6.09; N, 10.57. Found: C, 60.19; H, 5.83; N, 10.38. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.85 (dd, *J* = 7.8 & 1.5 Hz, 1H, C₆H₅), 7.41 (m, 1H, C₆H₅), 7.26–7.29 (overlap, 2H, C₆H₅), 7.19 (td, *J* = 7.8 & 1.0 Hz, 1H, C₆H₅), 6.94–6.98 (overlap, 3H, C₆H₅), 5.99 (br, 1H, C₆H₅), 2.39 (s, 3H, –CH₃), 2.29 (s, 3H, –CH₃), 1.98 (s, 3H, –CH₃), -0.72 (s, 6H, Al–CH₃). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 151.4, 143.7, 141.1, 140.2, 136.0, 131.0 (C_{ipso} –C₆H₅), 131.4, 129.7, 128.7, 125.8, 125.0, 123.8, 108.8 (CH–C₆H₅), 21.3 (–CH₃), 13.4 (–CH₃), 12.8 (–CH₃), –9.6 (Al–CH₃). ²⁷Al NMR (156 MHz): δ 117.4 ($\Delta \nu_{1/2}$ = 8559.8).

4.23. $(NPz^{Me}SO_2Ph^{TriMe})AlMe_2$ (10)

The procedure for the preparation of **10** was similar to that used for **1** but with HNPz^{Me}SO₂Ph^{TriMe} (0.369 g, 1.0 mmol). A white solid was obtained (0.258 g, 65.0%). Anal. Calc. for C₂₀H₂₄N₃O₂SAl: C, 62.10; H, 6.63; N, 9.87. Found: C, 62.42; H, 7.10; N, 9.86. ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.63 (d, J = 8.4 Hz, 1H, C₆H₅), 7.28 (t, J = 7.2 Hz, 1H, C₆H₅), 7.15 (t, J = 7.2 Hz, 1H, C₆H₅), 7.01 (d, J = 7.8 Hz, 1H, C₆H₅), 6.70 (br, 2H, C₆H₅), 6.17 (br, 1H, C₆H₅), 2.40 (s, 3H, -CH₃), 2.31 (s, 6H, o-CH₃-Ph), 2.18 (s, 3H, p-CH₃-Ph), 2.07 (s, 3H, -CH₃), -0.75 (s, 6H, Al-CH₃). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 151.6, 144.2, 140.4, 138.7, 136.2, 131.6 (C_{ipso} -C₆H₅), 131.1, 129.6, 129.3, 125.0, 124.4, 108.9 (CH-C₆H₅), 22.6 (o-CH₃-Ph), 20.6 (p-CH₃-Ph), 13.3 (-CH₃), 12.4 (-CH₃), -9.4 (Al-CH₃). ²⁷Al NMR (156 MHz): δ 109.6 ($\Delta\nu_{1/2} = 8913.9$).

4.24. Polymerization procedure of ε -caprolactone

Typically, to a flask containing prescribed amount of monomers (ε -caprolactone) and catalyst precursors (0.125 mmol) were added 15 mL (containing 0.25 mmol benzyl alcohol) toluene. The reaction

Table 2

Summary of	crystal	data for	compounds	2, 5'	and 8 .
------------	---------	----------	-----------	-------	----------------

	2	5′	8
Formula	C20H25AlN2O3S	C33H31AIN6O4S2	C ₁₉ H ₂₂ AlN ₃ O ₂ S
Fw	400.46	666.74	383.44
Т, К	100(2)	100(2)	100(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P2(1)/n	C2/c	Сс
a, Å	9.6494(7)	18.547(2)	14.8142(4)
b, Å	19.8856(14)	14.6025(12)	9.1392(4)
<i>c</i> , Å	10.5417(9)	12.6021(13)	16.1837(6)
α°	90	90	90
β°	97.995(7)	115.724(14)	116.253(6)
γ°	90	90	90
<i>V</i> , Å ³	2003.1(3)	3074.7(5)	1965.10(12)
z	4	4	4
ρ_{calc} , Mg/m ³	1.328	1.440	1.296
μ (Mo K α), mm ⁻¹	0.228	0.252	0.227
Reflections collected	9864	12,588	10,556
No. of parameters	244	217	235
R1 ^a	0.0731	0.0503	0.0409
wR2 ^a	0.1329	0.1135	0.1075
GoF ^b	1.000	1.002	0.991

^a $R1 = [\Sigma|F_0| - |F_c|]/\Sigma|F_0|]; wR2 = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_0^2)^2]^{1/2}, w = 0.10.$ ^b GoF = $[\Sigma w(F_0^2 - F_c^2)^2/(N_{rflns} - N_{params})]^{1/2}.$ mixture was stirred at prescribed temperature for the prescribed time. After the reaction was quenched by the addition of 5 mL acetic acid solution (0.35 N), the resulting mixture was poured into 25 mL *n*-heptane to precipitate polymers. Crude products were recrystallized from THF—hexane and dried *in vacuo* up to a constant weight. Conversion was determined from ¹H NMR in CDCl₃ by comparison with remaining monomer.

4.25. Crystal structure data

Crystals were grown from CH₂Cl₂/hexane solution for 2. concentrated toluene solution 5'. THF/hexane solution 8 and concentrated CH_2Cl_2 solution $N(SO_2Ph^F)_2Pz^H$ and isolated by filtration. Suitable crystals were mounted on Mounted CryoLoop (HAMPTON RESEARCH, size: 0.5-0.7 mm) using perfluoropolyether vacuum oil (Aldrich, FOMBLIN®Y) and cooled rapidly in a stream of cold nitrogen gas using an Oxford Diffraction Limited GEMINT S. For crystals 6 and 7, empirical absorption correction was based on spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm from CrysAlis RED, Oxford Diffraction Ltd. The space group determination was based on a check of the Laue symmetry and systematic absences and was confirmed using the structure solution. The structure was solved by direct methods using a SHELXTL package [52]. All non-H atoms were located from successive Fourier maps, and hydrogen atoms were refined using a riding model. Anisotropic thermal parameters were used for all non-H atoms, and fixed isotropic parameters were used for H atoms. Some details of the data collection and refinement are given in Table 2 (for 2, 5' and 8) and Table S1 [for $HN(SO_2Ph^F)_2Pz^H$].

Acknowledgements

We would like to thank the National Science Council of the Republic of China for financial support (grant number NSC 98-2113-M-005-002-MY3 and NSC 101-2113-M-005-012-MY3).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jorganchem.2013.12.022.

References

- [1] K.E. Uhrich, Chem. Rev. 99 (1999) 3181–3198.
- [2] A.-C. Albertsson, I.K. Varma, Biomacromolecules 4 (2003) 1466–1486.
- [3] O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 104 (2004) 6147-6176.
- [4] C.K. Williams, Chem. Soc. Rev. 36 (2007) 1573–1580.
- [5] R. Tong, J. Cheng, Angew. Chem. Int. Ed. 47 (2008) 4830-4834.
- [6] B.J. O'Keefe, M.A. Hillmyer, W.B. Tolman, J. Chem. Soc., Dalton Trans. (2001) 2215–2224.
- [7] J. Wu, T.-L. Yu, C.-T. Chen, C.-C. Lin, Coord. Chem. Rev. 250 (2006) 602–626.
- [8] R.H. Platel, L.M. Hodgson, C.K. Williams, Polym. Rev. 48 (2008) 11–63.
- [9] M. Labet, W. Thielemans, Chem. Soc. Rev. 38 (2009) 3484–3504.
- [10] C.A. Wheaton, P.G. Hayes, B.J. Ireland, Dalton Trans. (2009) 4832-4846.
- [11] M.J. Stanford, A.P. Dove, Chem. Soc. Rev. 39 (2010) 486–494.
- [12] A.K. Sutar, T. Maharana, S. Dutta, C.-T. Chen, C.-C. Lin, Chem. Soc. Rev. 39 (2010) 1724–1746.
- [13] A. Arbaoui, C. Redshaw, Polym. Chem. 1 (2010) 801–826.
- [14] N. Ajellal, J.-F. Carpentier, C. Guillaume, S.M. Guillaume, M. Helou, V. Poirier, Y. Sarazin, A. Trifonov, Dalton Trans. 39 (2010) 8363–8376.
- [15] J. Wu, Y.-Z. Chen, W.-C. Hung, C.-C. Lin, Organometallics 27 (2008) 4970– 4978.
- [16] P.-S. Chen, Y.-C. Liu, C.-H. Lin, B.-T. Ko, J. Polym. Sci. Part A Polym. Chem. 48 (2010) 3564–3572.
- [17] M.-L. Shueh, Y.-S. Wang, B.-H. Huang, C.-Y. Kuo, C.-C. Lin, Macromolecules 37 (2004) 5155–5162.
- [18] J. Zhao, H. Song, C. Cui, Organometallics 26 (2007) 1947-1954.
- [19] J. Wu, X. Pan, N. Tang, C.-C. Lin, Eur. Polym. J. 43 (2007) 5040-5046.

- [20] A.D. Schwarz, A.L. Thompson, P. Mountford, Inorg. Chem. 48 (2009) 10442-10454.
- [21] A.D. Schwarz, Z. Chu, P. Mountford, Organometallics 29 (2010) 1246–1260.
- [22] M.P. Blake, A.D. Schwarz, P. Mountford, Organometallics 30 (2011) 1202–1214.
- [23] Y.-L. Peng, Y. Huang, H.-J. Chuang, C.-Y. Kuo, C.-C. Lin, Polymer 51 (2010) 4329-4335.
- [24] C.-T. Chen, C.-Y. Chan, C.-A. Huang, M.-T. Chen, K.-F. Peng, Dalton Trans. (2007) 4073-4078.
- [25] C.-T. Chen, H.-J. Weng, M.-T. Chen, C.-A. Huang, K.-F. Peng, Eur. J. Inorg. Chem. (2009) 2129–2135.
- [26] M.-T. Chen, P.-J. Chang, C.-A. Huang, K.-F. Peng, C.-T. Chen, Dalton Trans. (2009) 9068-9074.
- M.-T. Chen, C.-T. Chen, Dalton Trans. 40 (2011) 12886–12894. [27]
- [28] K.-F. Peng, C.-T. Chen, Dalton Trans. (2009) 9800–9806.
- [29] S. Gong, H. Ma, Dalton Trans. (2008) 3345-3357.
- [30] W. Yao, Y. Mu, A. Gao, W. Gao, L. Ye. Dalton Trans. (2008) 3199–3206.
- [31] W. Yao, Y. Mu, A. Gao, Q. Su, Y. Liu, Y. Zhang, Polymer 49 (2008) 2486-2491.
- [32] F. Qian, K. Liu, H. Ma, Dalton Trans. 39 (2010) 8071–8073.
- [33] Y. Lei, F. Chen, Y. Luo, P. Xu, Y. Wang, Y. Zhang, Inorg. Chim. Acta 368 (2011)
- 179-186. [34] L.-C. Liang, F.-Y. Chen, M.-H. Huang, L.-C. Cheng, C.-W. Li, H.M. Lee, Dalton Trans. 39 (2010) 9941–9951.
- [35] W.-A. Ma, Z.-X. Wang, Organometallics 30 (2011) 4364-4373.
- [36] J.J. Delpuech, P. Laszlo, NMR of Newly Accessible Nuclei, vol. 2, Academic Press, New York, 1983, pp. 153-195.
- [37] H.-J. Weng, Thesis of Master's Degree in Department of Chemistry, National Chung-Hsing University, 2008.

- [38] X. Liu, W. Gao, Y. Mu, G. Li, L. Ye, H. Xia, Y. Ren, S. Feng, Organometallics 24 (2005) 1614-1619.
- [39] C. Jin, Z.-X. Wang, New J. Chem. 33 (2009) 659-667.
- [40] A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, J. Chem. Soc., Dalton Trans. (1984) 1349-1356.
- [41] D.A. Culkin, W.J. eong, S. Csihony, E.D. Gomez, N.P. Balsara, J.L. Hedrick, R.M. Waymouth, Angew. Chem. Int. Ed. 46 (2007) 2627–2630.
- [42] K. Phomphrai, C. Pongchan-o, W. Thumrongpatanaraks, P. Sangtrirutnugul, P. Kongsaeree, M. Pohmakotr, Dalton Trans. 40 (2011) 2157–2159.
- [43] K.C. Hultzsch, T.P. Spaniol, J. Okuda, Organometallics 16 (1997) 4845-4856. [44] C.E. Willans, M.A. Sinenkov, G.K. Fukin, K. Sheridan, J.M. Lynam, A.A. Trifonov,
- F.M. Kerton, Dalton Trans. (2008) 3592–3598. [45] M.T. Gamer, P.W. Roesky, I. Palard, M.L. Hellaye, S.M. Guillaume, Organome-
- tallics 26 (2007) 651-657.
- [46] H.A. McManus, P.J. Guiry, J. Org. Chem. 67 (2002) 8566–8573.
 [47] J.C. Antilla, J.M. Baskin, T.E. Barder, S.L. Buchwald, J. Org. Chem. 69 (2004) 5578-5587
- [48] A. Mukherjee, U. Subramanyam, V.G. Puranik, T.P. Mohandas, A. Sarkar, Eur. J. Inorg. Chem. (2005) 1254–1263.
- [49] J.-Y. Kim, S.-H. Park, J. Ryu, S.-H. Cho, S.-H. Kim, S. Chang, J. Am. Chem. Soc. 134 (2012) 9110-9113
- [50] R.-J. Tang, C.-P. Luo, L. Yang, C.-J. Li, Adv. Synth. Catal. 355 (2013) 869-873.
- V.S. Thirunavukkarasu, K. Raghuvanshi, L. Ackermann, Org. Lett. 15 (2013) [51] 3286-3289
- [52] G.M. Sheldrick, SHELXTL-97, Program for Refinement of Crystal Structures, University of Göttingen, Germany, 1997.