

Divergent Reactivity of Alkyl Aryl Sulfones with Bases: Selective Functionalization of *ortho*-Aryl and α-Alkyl Units Enabled by a Unique Carbanion Transmetalation

Lucie Řehová,^[a] Ivana Císařová,^[b] and Ullrich Jahn*^[a]

Keywords: Sulfones / Transmetalation / Lithiation / Deprotonation / Alkylation / Acidity

The electron-accepting sulfonyl group exhibits a strong acidifying influence on neighboring α -H atoms. The Julia and related olefinations are based on this effect. Here a surprising reversal in the metalation selectivity of branched alkyl aryl sulfones is described. Such sulfones were found to initially undergo directed *ortho*-metalation with good regioselectivity, despite having a more acidic α -H atom. The structure of the alkyl unit profoundly, but predictably, influences the regioselectivity of the attack of the base. In β - and γ -branched *ortho*-(alkylsulfonyl)aryllithiums a transmetalation to the α carbanion proceeds only upon warming. Correspondingly generated *ortho*- or α -carbanions were then selectively applied thus permitting access to synthetically interesting compound classes.

Introduction

Carbanions, especially organolithium compounds, are central intermediates in organic chemistry.^[1] They are crucial intermediates in a number of widely applied transformations, such as nucleophilic addition,^[1,2] alkylation,^[3] cross-coupling,^[4] and rearrangement reactions,^[5] as exemplified by [1,2]-^[6] or [2,3]-Wittig rearrangements.^[7] The facility and selectivity of carbanion generation is strongly dependent on the availability of exchangeable or activating groups. The electron-accepting sulfonyl group displays a strongly acidifying influence on neighboring α -H atoms in a fashion similar to that associated with carbonyl groups (I \rightarrow II, Scheme 1).^[8] The Julia olefination and related variants are based on this molecular feature.^[9] In contrast, aryl sulfones, sulfonates, sulfonamides, sulfoximines, sulfoxides, sulfides and related compounds III bearing no α -H atoms undergo directed ortho-metalations (DOMs) at the aryl unit based on the complex-induced proximity effect (CIPE), a well-known strategy for activating protons kinetically.^[10] Both processes are very effectively mediated by bases, such as *n*-, sec-, or tert-butyllithium as well as LDA.

These two basic metalation modes generally exclude each other because of the dominating acidity of α -H atoms. DOM was thus thought possible only if α -H atoms are ab-

- [b] Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Ulayura 2020/8, 128/2 Progue Crack Depublic
- Hlavova 2030/8, 12843 Prague, Czech Republic
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201301553

Scheme 1. Generally observed metalation modes for sulfones.

sent (Scheme 1). So far only one strategy exists to reverse the selectivity of metalation; this consists of dianion generation by initial α -deprotonation and subsequent DOM, which reacts with electrophiles initially at the more nucleophilic *ortho*-position and only then at the α -position.^[11] However, this procedure is compromised by low atom economy, since one equivalent of base is wasted, and the reaction displays low levels of selectivity with various electrophiles.

We recently discovered a surprising reversal in metalation selectivity with the special β , β -disilylated sulfone V (Scheme 2).^[12] This species was found to initially undergo DOM with essentially complete regioselectivity, despite having an acidic α -H atom; the formed aryllithium VI subsequently rearranges completely to afford sulfonylalkyllithium VII upon warming. The site of initial deprotonation was unequivocally determined by deuteration studies. Moreover, it was demonstrated for a single example of a branched alkyl phenyl sulfone that DOM dominates.

Gais and co-workers subsequently reported that a number of conformationally constrained sulfoximines also

[[]a] Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 16610 Prague, Czech Republic E-mail: jahn@uochb.cas.cz http://www.uochb.cz/web/structure/616.html

Scheme 2. Reversed metalation selectivity and transmetalation of sulfone V.

react by initial DOM followed by transmetalation to the corresponding α -carbanions.^[13] A conceptually different $\gamma \rightarrow \alpha$ -transmetalation of two similarly acidic positions initiated by deprotonation with LDA was very recently observed in alkynyl benzyl sulfones.^[14]

Nothing is known about the scope of kinetic DOM over α -deprotonation for alkyl aryl sulfones with respect to sulfone structure and metalation conditions. We present herein a detailed reactivity study of branched alkyl phenyl sulfones toward bases. The factors, which are responsible for the regioselectivity of the deprotonation, will be outlined. In β -and γ -branched alkyl aryl sulfones DOM is favored over α -deprotonation and a subsequent transmetalation to the α -carbanion proceeds upon warming. Both carbanions can be selectively applied to give access to a variety of synthetically interesting compound classes.

Results

Preparation of Starting Materials

A previous alkylation approach to 2,2,6,6-tetramethylhept-4-yl phenyl sulfone (7a) proceeded in only 0.8%yield.^[12] Radical addition conditions proved to be much more efficient in permitting access to 7a (Scheme 3). Monoalkylated sulfone 3a was synthesized by Zn/CuI-mediated reductive coupling of *tert*-butyl iodide (2) with phenyl vinyl sulfone (1) in formamide in good yield.^[15] The

Scheme 3. Synthesis of 2,2,6,6-tetramethylhept-4-yl phenyl sulfone (7a).

resulting alkylated sulfone 3a was subsequently deprotonated with *n*BuLi in the presence of TMEDA. Nucleophilic addition of the resulting α -anion to Eschenmoser's salt furnished amine 4 in excellent yield.

Subsequent elimination to vinyl sulfone 6 was achieved in two high-yielding steps by initial methylation of 4 with methyl iodide in methanol and subsequent treatment of the corresponding quarternary ammonium salt 5 with DBU. Repetition of the reductive *tert*-butyl radical addition provided sulfone 7a in an overall 49% yield over the five steps.

Isopentyl phenyl sulfone (**3b**) and isobutyl phenyl sulfone (**3c**) were prepared from methyl phenyl sulfone (**8**) by deprotonation with *n*BuLi and subsequent alkylation using isobutyl or isopropyl iodide, respectively (Scheme 4). Monosubstituted sulfones **3a**–**c** and commercially available ethyl phenyl sulfone (**3d**) were used as starting materials for the synthesis of unsymmetrically branched sulfones **7b,c,e,f,h** (Table 1, Entries 1,2,4,5,7) and symmetrical **7l** (Table 1, Entry 11) by alkylation reactions in good to excellent yields. No overalkylation was observed except for **7l**, where 10% of *tert*-butyl phenyl sulfone **3d**, **g,i–k** (R¹ = R²) were prepared by sequential alkylation of **8** with the same alkyl halide in the presence of TMEDA in good to excellent yield in a one-pot procedure (Table 1, Entries 3,6,8–10). When

Scheme 4. Preparation of α-substituted phenyl sulfones 7b-l.

Table 1. $\alpha\text{-Substituted phenyl sulfones }7b\text{--}l$ by alkylation reactions. $^{[a]}$

Entry	3 or 8	R ² X	Product	\mathbb{R}^1	\mathbb{R}^2	Yield [%][b]
1	3 a	EtI	7b	CH ₂ tBu	Et	95
2	3a	MeI	7c	$CH_2 tBu$	Me	94
3	8	<i>i</i> BuI	7d	iBu	<i>i</i> Bu	81
4	3b	EtI	7e	<i>i</i> Bu	Et	89
5	3b	MeI	7f	<i>i</i> Bu	Me	85
6	8	iPrI	7g	iPr	<i>i</i> Pr	54
7	3c	EtI	7h	<i>i</i> Pr	Et	80
8	8	BnBr	7i	Bn	Bn	70
9	8	<i>i</i> PentI ^[c]	7j	iPent	iPent	61
10	8	EtI	7k	Et	Et	72
11	3d ^[d]	MeI	71	Me	Me	79 ^[e]

[a] General conditions: 10 mmol sulfone, 13 mmol *n*BuLi, 20 mmol TMEDA, -78 °C, 10 min, then 13 mmol alkyl halide, -78 °C, 10 min, then warmed to room temp. until complete (see table entries 1,2,4,5,7). For symmetrically branched sulfones, the addition of reagents was repeated (see table entries 3,6,8–10). [b] Isolated. [c] *i*Pent = isopentyl. [d] Used from commercial supplier. [e] 10% of *tert*-butyl phenyl sulfone isolated.

Eurjoc af Omanic Chemist

2.6 equiv. of *n*BuLi and the alkyl halide were used, the reaction stopped after some time and mixtures of desired symmetrically branched products 7 and monoalkylated sulfones 3 were isolated in less than satisfactory yields.

The structures of the most and least sterically encumbered sulfones 7d, 7g, and 7k were determined by X-ray crystallography to establish whether a correlation between their geometric features and deprotonation selectivity exists (see Figures 1, 2, and 3).^[16] Significantly, the α -H atom of 7d is in an almost synclinal arrangement to the C10 and C14 methyl groups, respectively, leading to significant steric shielding (Figure 1). In contrast, the α -H atom of 7g displays a close contact to only one methyl group (Figure 2). Compounds 7d and 7k have an almost staggered conformation about the C7-S1 bond. Compound 7g deviates more strongly from a staggered conformation having torsion angles from O1 to C8, C11 and H(C7) of -83.0, 49.9 and 162.9°, respectively, and from O2 to C8, C11 and H(C7) of 48.1, -179.5 and -66.1°, respectively. The torsion angles O1-S1-C1-C2 of 7d, 7g and 7k vary to some extent and amount to 12.2(1), -8.3(2) and $11.1(3)^\circ$, respectively, whereas the O2-S1-C1-C6 torsion angle has a narrow range of -40.3(1), 40.2(2) and -38.9(3)°, respectively. The distances between O1 and H(C2) are similar, around 2.5 Å (2.53, 2.50, 2.52 Å), whereas the O2–H(C6) distance is

Figure 1. X-ray crystallographic view of 2,6-dimethylhept-4-yl phenyl sulfone (7d). Displacement ellipsoids are drawn at 30% probability level.

Figure 2. Crystal structure of 2,4-dimethylpent-3-yl phenyl sulfone (**7g**). Displacement ellipsoids are drawn at 30% probability level.

around 2.77 Å (2.76, 2.79, 2.75 Å). The distance of the *gauche*-oriented O2 to H(C7) is within 2.80–2.83 Å (2.82, 2.83, 2.80 Å).

Figure 3. X-ray crystal structure of pent-3-yl phenyl sulfone (**7k**). Displacement ellipsoids are drawn at 30% probability level. (The molecule contains two independent units in the elementary cell.)

Determination of the Site of Initial Metalation and the Facility of the Subsequent Transmetalation Reactions of Diverse Sulfones 7

The deprotonation regioselectivity of sulfones 7 with diverse steric demands around the α -position and the potential of subsequent rearrangement was investigated by treating sulfones 7a-l with nBuLi in the presence of different additives at -78 °C for a constant time of 10 min (Table 2). A defined amount of the solution was removed quickly by syringe and added to a vial containing deuterium oxide under inert conditions. Products 11 and/or 12 were then isolated and analyzed by ¹H NMR spectroscopy. The remainders of reaction mixtures were warmed at intervals of 20 degrees to 0 °C and aliquots were similarly analyzed. The mass balance for all reactions was quantitative and the observed ratio of 11:12 accounted for deprotonation and/or transmetalation intermediates ortho-9:α-10. Symmetrically substituted sulfones 7a or 7d bearing γ -branched alkyl groups were deprotonated with high selectivity at the orthoposition in the presence of TMEDA at -78 °C forming ortho-9a,d (Table 2, Entries 1,5). Their transmetalation to the α -carbanion α -10a,d occurred upon warming to 0 °C. When one of the branched groups was replaced by a linear alkyl chain as in unsymmetrical sulfones 7b,c or 7e,f, the regioselectivity of the initial deprotonation to *ortho*-9 dropped (Table 2, Entries 1 vs. 2,3 and 5 vs. 9,10). The bulkier the γ -branching of one alkyl chain, the slower was the transmetalation of *ortho*-9 to α -10 (Table 2, Entries 2,3 vs. 9,10).

Additives had a significant impact on the course of deprotonation. For all studied substrates **7c,d,g**, HMPA triggered immediate α -deprotonation to α -**10c,d,g** (Table 2, Entries 4,8,12); even after very short deprotonation times, essentially no *ortho*-**9** was observed. Moreover, *ortho*-**9d** produced by deprotonation of **7d** in the presence of 2 equiv. TMEDA instantaneously rearranged to α -**10d** at -78 °C after adding 6 equiv. of HMPA (not shown). Lithium chloride, which leads to the modification of aggregates of organolithium compounds and acts as a catalyst in a

Table 2. Metalation selectivity of sulfones 7 and subsequent carbanion transmetalation.

Entry	7	R ¹	R ²	Base	Additive		1	1/12 ^[a]		
-						−78 °C	−60 °C	−40 °C	−20 °C	0 °C
1	7a	CH ₂ tBu	CH ₂ tBu	nBuLi	TMEDA	23.7:1	12.2:1	1:1.4	1:6.4	1:9.4
2	7b	CH ₂ tBu	Et	nBuLi	TMEDA	8.3:1	7:1	2:1	0:100	0:100
3 ^[b]	7c	CH ₂ tBu	Me	nBuLi	TMEDA	1.4:1	1.5:1	1:1.7	1:2.5	1:2.9
4	7c	CH ₂ tBu	Me	nBuLi	HMPA ^[c]	0:100	1:57	n.d. ^[d]	n.d.	n.d.
5	7d	<i>i</i> Bu	iBu	nBuLi	TMEDA	31.3:1	22.8:1	2.7:1	1:46.5	1:46
6	7d	<i>i</i> Bu	iBu	nBuLi	TMEDA/LiCl ^[e]	12:1	3.9:1	1:1.6	0:100	0:100
7	7d	<i>i</i> Bu	iBu	LDA	_	16.5:1	2.3:1	1:2.3	1:6.1	1:75
8	7d	<i>i</i> Bu	iBu	nBuLi	HMPA ^[c]	0:100	0:100	n.d.	n.d.	n.d.
9	7e	<i>i</i> Bu	Et	nBuLi	TMEDA	1:1.3	1:3.9	1:35	1:68	0:100
10	7f	<i>i</i> Bu	Me	nBuLi	TMEDA	1:3.3	1:2.8	n.d.	n.d.	n.d.
11 ^[b]	7g	<i>i</i> Pr	<i>i</i> Pr	nBuLi	TMEDA	1.9:1	1:2.6	1:47	0:100	0:100
12	7g	<i>i</i> Pr	<i>i</i> Pr	nBuLi	HMPA ^[c]	1:99	1:99	n.d.	n.d.	n.d.
13	7h	<i>i</i> Pr	Et	nBuLi	TMEDA	1:3.6	1:6.8	0:100	0:100	0:100
14	7i	Bn	Bn	nBuLi	TMEDA	1:13.3	1:10.1	1:24	1:31	1:9.6
15	7j	<i>i</i> Pent ^[f]	iPent	nBuLi	TMEDA	1:29.7	1:75	n.d.	n.d.	n.d.
16	7k	Et	Et	nBuLi	TMEDA	1:15.8	1:13.3	n.d.	n.d.	n.d.
17	71	Me	Me	nBuLi	TMEDA	1:23.5	1:23:5	n.d.	n.d.	n.d.

[a] Initial conditions: 0.5 mmol sulfone, 0.55 mmol base, 1 mmol TMEDA, THF, -78 °C, ratio **11:12** determined by integration of the ¹H NMR spectra. [b] Reaction run in duplicate with very similar result. [c] 3 mmol HMPA. [d] n.d.: not determined since immediate α -deprotonation. [e] 2 mmol LiCl. [f] *i*Pent = isopentyl.

number of transformations,^[17] did not influence the metalation regioselectivity of **7d** to a large extent, but accelerated the transmetalation of *ortho*-**9d** to α -**10d** (Table 2, Entry 6). LDA can also be used as a base with similar results (Table 2, Entry 7), whereas KHMDS was unreactive as a base under the conditions.^[18]

The nature of branching and its distance from the sulfone group proved to be important factors dictating regioselectivity of the initial deprotonation. Surprisingly, only a low 1.9:1 deprotonation regioselectivity in favor of DOM intermediate ortho-9g was observed for 7g, where the branching point is in the closer β -position (Table 2, Entry 11). An experiment run at -100 °C improved the initial ortho-9g/ α -10g ratio to 6:1 (not shown). The selectivity switched, however, to preferred formation of α -10h for the less branched substrate 7h (Table 2, Entry 13). Two-dimensional branching, as in diarylated sulfone 7i, or a more distant branching at the δ -position as in 7j, changed the regioselectivity to complete α -deprotonation generating α -10i,j (Table 2, Entries 14,15). Sulfones 7k and 7l, having chains without additional branching, were selectively deprotonated at the α -position regardless of deprotonation time (Table 2, Entries 16,17). It must be mentioned that withdrawing samples by syringe may introduce a small temperature error, which is inherent to all entries. However, the results, as such, are self-consistent since it can be expected that the same error applies to all entries.

Preparative Applications of Selected Sulfones 7

Both regioselective deprotonation of sulfones 7 and the rearrangement of derived carbanions *ortho*-9 and α -10 are synthetically valuable transformations. The aryllithium derived from 7d, generated under standard conditions at -78 °C after short metalation time, underwent addition to aldehydes providing secondary benzylic alcohols 13a–f in good to excellent yields (Table 3).

It is noteworthy that nucleophilic additions to enolizable and non-enolizable ketones giving tertiary benzylic alcohols also proceeded in very good yields (Table 3, Entries 5 and 6).

The α -carbanion generated from sulfone 7k at -78 °C added smoothly to aldehydes affording α -(hydroxyalkyl)-phenyl sulfones 14a–e in good yields (Table 4, Entries 1–5). However, its reaction with ketones failed to provide desired tertiary alcohols 14f–g (Table 4, Entries 6,7).

For sulfones, such as 7d, initially subjected to DOM, conditions for selective reaction with aldehydes at the α -

Table 3. Deprotonation of **7d** and addition of *ortho*-9d to aldehydes and ketones.

Table 4. Deprotonation of 7k and addition of α -10k to aldehydes and ketones.

[a] Product **14f** was inseparable from **7k** (80% recovered). [b] 97% **7k** and 95% benzophenone recovered.

position, (i.e. the first step of the Julia olefination) had to be identified by varying deprotonation conditions (Table 5). Under condition A starting sulfone **7d** was deprotonated by *n*BuLi with TMEDA in THF at -78 °C and the reaction mixture was warmed to 0 °C over the course of one hour thus allowing transmetalation of *ortho*-9d to α -10d. Subsequently, structurally different aldehydes were added and found to afford α -(hydroxyalkyl) phenyl sulfones 15a–f (recovery of starting 7d 29–45%).

Under condition B, the deprotonation of 7d with *n*BuLi in the presence of TMEDA was performed at -20 °C for 10 min and the aldehyde was added to the reaction mixture at -78 °C. Condition C involved deprotonation of 7d with *n*BuLi and HMPA as an additive at -78 °C for 10 min followed by addition of the aldehyde. Benzaldehyde provided hydroxy sulfone 15a in good yield under all conditions (Table 5, Entry 1), products 15b-c resulting from reactions of 7d with bromobenzaldehydes were obtained in moderate yield and were accompanied by unidentified byproducts and partial recovery of starting material (Table 5, Entries 2,3). Reaction with enolizable hydrocinnamic aldehyde was complicated by competing formation of self-aldol condensation product 16 (Table 5, Entry 4). Condition A proved ideal for the coupling, whereas the use of HMPA corresponded to a low yield of 15d. Reactions with α . β -unsaturated aldehydes furnished hydroxy sulfones 15e and 15f in good to excellent yields (Table 5, Entries 5,6).

Because the Julia olefination remains the most important application of α -sulfonyl carbanions, it was investigated with substrates **7k** (Table 6, Entries 1–6) and **7d** (Table 6, Entries 7–12). For reactions using **7k** standard deprotonation conditions worked well for reaction with diverse aldehydes (cf. Table 2). For the reaction of aromatic and α , β unsaturated aldehydes with **7d** the use of HMPA as an additive according to condition C (vide supra, Table 5) proved ideal (Table 6, Entries 7–9). Deprotonation of **7d** by *n*BuLi with TMEDA and subsequent transmetalation of *ortho*-**9d** to α -**10d** similar to conditions A (vide supra, Table 5) was most effective for enabling aliphatic aldehydes to avoid competitive deprotonation of the aldehyde (Table 6, Entries

Table 5. ortho-Deprotonation/transmetalation of 7d to α -10d and addition to structurally diverse aldehydes.

	$ \begin{array}{c} $						
Entry	R	Product	Yield [%] condition A ^[a]	Yield [%] condition B ^[b]	Yield [%] condition C ^[c]		
1	Ph	15a	78	82	75		
2	$4-BrC_6H_4$	15b	42 ^[d]	_[e]	48 ^[f]		
3	$3-BrC_6H_4$	15c	44 ^[g]	_[e]	63 ^[h]		
4	PhCH ₂ CH ₂	15d	61 ^[i]	53 ^[j]	25 ^[k]		
5	EtCH=CH	15e	50	_[e]	61		
6	PhCH=CH	15f	70	96	98		

[a] Condition A: Deprotonation at -78 °C in the presence of 2 equiv. TMEDA, then warmed to 0 °C during 1 h, addition of the aldehyde at -78 °C. [b] Condition B: Deprotonation at -20 °C in the presence of 2 equiv. TMEDA for 10 min, addition of the aldehyde at -78 °C. [c] Condition C: Deprotonation in the presence of 6 equiv. HMPA at -78 °C for 10 min, addition of the aldehyde at -78 °C. [d] 45% 7d recovered. [e] Not performed. [f] 31% 7d recovered. [g] 33% 7d recovered. [h] 18% 7d recovered. [i] Additionally, 29% 16 formed and 26% 7d recovered. [k] Additionally, 63% 16 formed and 69% 7d recovered.

Table 6. Scope of the Julia reaction with 7d and 7k.

[a] General conditions: 0.5 mmol sulfone, 0.6 mmol *n*BuLi, 1 mmol TMEDA, -78 °C, 10 min, then 0.6 mmol aldehyde, warmed to 0 °C until complete conversion, then 0.65 mmol benzoyl chloride, -78 °C, 20 min, then 0.75 mmol 3-(dimethylamino)propan-1-ol. [b] General conditions: 0.37 mmol sulfone, 0.43 mmol *n*BuLi, 2.22 mmol HMPA, -78 °C, 10 min, then 0.47 mmol aldehyde, -78 °C until complete conversion, then 0.49 mmol benzoyl chloride, 20 min, warmed to room temp., then 0.56 mmol 3-(dimethylamino)propan-1-ol. [c] General conditions: 0.74 mmol sulfone, 0.86 mmol *n*BuLi, 2 mmol TMEDA, -78 °C to -20 °C, 1 h, then 0.93 mmol aldehyde at -78 °C, then -20 °C until complete conversion, then 0.96 mmol benzoyl chloride, 20 min, warmed to room temp., then 1.11 mmol 3-(dimethylamino) propan-1-ol. [d] 0.16 mmol 17, 6 mmol DMPU, 0.96 mmol SmI₂, 0 °C, 2 h. [e] 0.13 mmol 17, 0.31 mmol Na/Hg, -20 °C, 3 h.

10–12). All resulting alkoxides were acylated in situ with benzoyl chloride affording β -benzoyloxy sulfones **17a–I** in good yields (Table 6, Entries 1–12). For the reductive elimination of **17a–c** and **17g–i** SmI₂ in THF/DMPU was used at –78 °C^[19] providing the corresponding olefins **18a–c** and **18g–i** in good yields (Table 6, Entries 1–3 and 7–9).

However, saturated β -benzoyloxy sulfones 17d–f and 17j– I resulting from aliphatic aldehydes were completely inert to treatment with SmI₂ and even after prolonged reaction times the starting material was fully recovered. Conversely, classical deoxygenations with sodium amalgam in methanol at -20 °C afforded desired olefins 18d–f and 18j–l in good to excellent yields (Table 6, Entries 4–6 and 10–12). These results are in agreement with recent results obtained using different substrates.^[20]

Discussion

Several aspects of this chemistry deserve comment. Alkyl aryl sulfones bearing H atoms in α -position and being branched in both γ -positions such as **7a** or **7d** (R¹ = Me, R² = Me, H) undergo, in contrast to the vast majority of known alkyl aryl sulfones bearing H atoms in the α -position, selective DOM to *ortho*-**9a**,**d** instead of α -deprotonation (Scheme 5). Steric hindrance seems to be responsible for the different metalation selectivity. The conformation

around the α -H atom of **7a** and **7d** is very constrained (viz. Figure 1 vs. Figures 2, 3). Considering that butyllithium in THF will initially precomplex at one of the Lewis-basic sulfonyl oxygen atoms in **19a,d**, it is likely that the transition state for deprotonation of the at best *gauche*-oriented H atom in the α -position, which is shielded by the methyl groups of the chain (cf. Figure 1), has a considerable activation barrier. At the same time, the *ortho*-position of the arene unit in **19a,d**, despite being thermodynamically much less acidic, is accessible without steric constraints. Therefore deprotonation proceeds selectively at the *ortho*-position affording *ortho*-**9a,d**.

Several scenarios for the transmetalation from *ortho*-9a,d to α -10a,d may be envisaged. It may proceed by an intramolecular lithium-proton transfer through a four-membered transition state 20a,d. Alternatively, a concerted lithium-proton exchange of two monomeric aryllithium units proceeding through transition state 21a,d or from a similar dimeric aggregate may lead to α -10a,d. A third possibility involves possible stepwise transmetalation, in which one *or*-*tho*-9a,d deprotonates another *ortho*-9a,d molecule. This would result in an *ortho*, α -sulfonyl dilithium intermediate *ortho*, α -22a,d and free 7a,d. Such intermediates are indeed known, but have previously been generated by reverse sequential metalation reactions starting with α -deprotonation followed by a slower DOM.^[11,13,21] A distinction of these three transmetalation pathways cannot be made at present.

Scheme 5. Mechanistic proposal for the initial lithiation of sufones 7a, d and their *ortho* $\rightarrow \alpha$ -transmetalation.

If only one γ -position is branched or the branching is flat as in the dibenzylic derivative 7i the *ortho*-: α -lithiation selectivity drops in the order 7b > 7c > 7e > 7i, because α -deprotonation becomes increasingly more favorable with increasing degrees of conformational freedom. Sulfones with no additional branching, such as 7k (R¹ = R² = H), (or more remote branching, such as 7j), undergo regular α deprotonation to α -10k, because the α -proton of the alkyl chain in flexible 7k is freely exposed for deprotonation by precoordinated BuLi (cf. Figure 3).

Compound 7g, despite having the branching points in the closer β -position, can occupy orientations in which only one face around the α -proton is shielded by an adjacent methyl group (cf. Figure 2). Therefore α -deprotonation competes with moderately favored *ortho*-metalation (Table 2, Entry 11).

However, if the available coordination sites at butyllithium are blocked by the much stronger Lewis base HMPA, a direct approach of the base proceeds to the most acidic α -proton for all studied substrates, regardless of their steric features via a much earlier transition state.

Conclusions

A surprising reversal of the deprotonation selectivity of alkyl phenyl sulfones has been discovered. If the alkyl unit is branched in the γ -position with respect to the sulfone unit, the initial deprotonation takes place at the less acidic *ortho*-position due to steric shielding of the H atom located in the α -position. The scope and limitations for this process were determined. The *ortho*-sulfonylphenyllithium intermediates transmetalate to the thermodynamically preferred asulfonyl carbanions on warming. Both carbanion types can be applied as nucleophiles; the former provide *ortho*-disubstituted aryl sulfones, whereas the latter can be used in Julia olefinations upon completion of the transmetalation process.

The metalation methodology described here has many implications for organic chemistry as such processes may also be observed and exploited in other compound classes, such as sulfides, sulfoxides or phosphine oxides. Such scenarios are currently under investigation in these laboratories and will be elaborated upon in due course.

Experimental Section

For general information see the Supporting information. Compounds 3a,^[15] 3b,^[22] 3c,^[23] 6,^[24] 7a,^[12] 7c,^[15] 7d,^[25] 7g,^[25] 7i,^[26] 7k,^[25] 7l,^[27] 18a,^[28] and 18b^[29] are literature-known and their analytical data agree to those reported in the cited references.

Monoalkylation of Methyl Phenyl Sulfone 8 (General Procedure): *n*BuLi (8.13 mL, 13 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of **8** (1.56 g, 10 mmol) and TMEDA (3 mL, 19.5 mmol) in dry THF (50 mL) under a nitrogen atmosphere at $-78 \,^{\circ}$ C. After stirring for 15 min, the corresponding alkyl iodide (13 mmol) was added dropwise at $-78 \,^{\circ}$ C. The reaction mixture was stirred at this temperature for 10 min and at $-60 \,^{\circ}$ C until complete as indicated by TLC. The reaction mixture was quenched with saturated NH₄Cl solution. The layers were separated and the aqueous was extracted with diethyl ether (3 \times 50 mL). The combined organic extracts were washed with brine, dried with MgSO₄, filtered

and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20, gradient to 1:10) gave sulfones **3b**,c.

N,*N*,4,4-Tetramethyl-2-(phenylsulfonyl)pentylamine (4): *n*BuLi (0.316 mL, 0.51 mmol, 1.6 м in hexane) was added dropwise to a stirred solution of sulfone 3a (100 mg, 0.44 mmol) and TMEDA (0.15 mL, 0.98 mmol) in dry THF (3 mL) under a nitrogen atmosphere at -78 °C. After stirring for 15 min, Eschenmoser's salt (244 mg, 1.32 mmol) was added as a solid at -78 °C. The reaction mixture was warmed to room temperature and stirred for 30 min until complete as indicated by TLC. The mixture was quenched with water, acidified with HCl (1 M) and the ammonium salt was extracted with water (2×20 mL). The aqueous layer was treated with sodium hydroxide until the solution had pH 8-9. The desired product was extracted with diethyl ether $(3 \times 20 \text{ mL})$. The combined organic extracts were washed with brine, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20) gave 120 mg (96%) of amine 4 as colorless crystals, m.p. 89–91 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.28. IR: $\tilde{v} = 2952, 2867, 2770, 1467, 1449, 1368, 1287, 1262, 1139,$ 1084, 731, 690 cm⁻¹. MS (ESI⁺): m/z (%) = 284 (100) [M + H⁺]. C₁₅H₂₅NO₂S (283.43): calcd. C 63.56, H 8.89, N 4.94, S 11.31; found C 63.53, H 8.87, N 4.84, S 11.03. ¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.85$ (s, 9 H), 1.16 (dd, J = 6.3, 14.7 Hz, 1 H), 1.90 (s, 6 H), 2.12 (dd, J = 2.6, 14.7 Hz, 1 H), 2.28 (dd, J = 4.6, 13.6 Hz, 1 H), 2.72 (dd, J = 8.9, 13.6 Hz, 1 H), 3.07 (m, 1 H), 7.44 (m, 2 H), 7.53 (m, 1 H), 7.84 (m, 2 H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 29.5 (q), 31.0 (s), 39.8 (t), 44.9 (q), 60.1 (d), 61.5 (t), 128.6 (d), 128.9 (d), 133.1 (d), 140.5 (s) ppm.

N,N,N,4,4-Pentamethyl-2-(phenylsulfonyl)pent-1-ylammonium Iodide (5): Iodomethane (185 µL, 3 mmol) was added to a solution of amine 4 (100 mg, 0.35 mmol) in methanol (3 mL) at room temperature. After standing in the dark for 48 h, the mixture was concentrated and the residue was diluted with diethyl ether, filtered and washed with diethyl ether, giving 138 mg (93%) of ammonium salt **5** as a pale yellow solid, m.p. 147–149 °C. IR: $\tilde{v} = 3001, 2954, 1477,$ 1447, 1303, 1237, 1147, 1085, 968, 748, 727, 693, 599 cm⁻¹. MS $(ESI^{+}): m/z \ (\%) = 298 \ (100) \ [M - I^{-}], \ 156 \ (20) \ [M - PhSO_{2}H - I^{-}].$ HRMS (ESI⁺): m/z [M - I⁻] calcd. for C₁₆H₂₈NO₂S⁺: 298.1835, found 298.1833. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.71$ (s, 9 H), 1.51 (dd, J = 6.7, 15.7 Hz, 1 H), 1.66 (dd, J = 2.1, 15.7 Hz, 1 H), 3.74 (s, 9 H), 3.90 (m, 1 H), 3.97 (dd, J = 2.5, 15.4 Hz, 1 H), 4.20 (dd, J = 8.1, 15.4 Hz, 1 H), 7.62 (m, 2 H), 7.70 (m, 1 H), 7.82 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 29.6 (q), 31.6 (s), 43.7 (t), 56.6 (q), 57.8 (d), 68.1 (t), 129.8 (d), 130.4 (d), 135.1 (d), 135.8 (s) ppm.

4,4-Dimethyl-2-(phenylsulfonyl)-1-pentene (6): Ammonium salt **5** (688 mg, 1.62 mmol) and DBU (0.48 mL, 3.23 mmol) were stirred in dry toluene (50 mL) at 80 °C for 5 h. The reaction mixture was washed with HCl (1 M, 50 mL), water (50 mL), brine (50 mL) and dried with MgSO₄. After filtration and evaporation, the product was purified by column chromatography (EtOAc/hexane, 1:20) giving 360 mg (94%) of **6** as a colorless oil. The spectroscopic data are in agreement with those in the cited literature.^[24]

Phenyl 2,2,6,6-Tetramethylhept-4-yl sulfone (7a): A mixture of zinc dust (153 mg, 2.52 mmol) and CuI (111 mg, 0.56 mmol) in formamide (10 mL) was stirred at 0–10 °C for 15 min. Vinyl sulfone **6** (340 mg, 1.4 mmol) was added followed by *tert*-butyl iodide (140 μ L, 1.15 mmol). The mixture was aged at 0 °C for 1 h, warmed to room temperature and kept at this temperature for 5 h. Ethyl acetate (50 mL) was added, the precipitate was filtered off and rinsed with ethyl acetate. Heptane (50 mL) and HCl (1 M, 30 mL) were added to the filtrate. The layers were separated, the organic was dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:10) gave 224 mg (68%) of sulfone **7a** as colorless crystals, m.p. 98–99 °C. The spectroscopic data are in agreement with those in the cited literature.^[12] *CAUTION:* The Zn/CuI residue should not be dried completely as it may self-ignite in air, particularly on larger scale. It should be covered by water after filtration and rinsing with ethyl acetate.

Alkylation of Sulfones 3a–d (General Procedure): *n*BuLi (1.31 mL, 2.1 mmol, 1.6 m in hexane) was added dropwise to a stirred solution of sulfones 3a–d (2 mmol) and TMEDA (0.6 mL, 4 mmol) in dry THF (10 mL) at -78 °C under a nitrogen atmosphere. After stirring for 15 min, the corresponding alkyl iodide (2.2 mmol) was added dropwise at -78 °C. After 10 min, the reaction mixture was stirred at temperature *T* until complete as indicated by TLC (Table 7). The reaction mixture was quenched with saturated NH₄Cl solution, the layers were separated and the aqueous was extracted with diethyl ether (3 × 20 mL). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20) gave sulfones 7b,c,e,f,h,l.

Table 7. Alkylation of sulfones 3a-d.

Entry	Starting sulfone	Iodide	Product	<i>T</i> [°C]
1	3a	EtI	7b	-60
2	3a	MeI	7c	-60
3	3b	EtI	7e	-40
4	3b	MeI	7f	-40
5	3c	EtI	7h	-78
6	3d	MeI	71	_[a]

[a] Quenched directly after 10 min of deprotonation.

2,2-Dimethylhex-4-yl Phenyl Sulfone (7b): Yield 483 mg (95%) as colorless crystals, m.p. 41–42 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.46. IR: $\tilde{v} = 2957$, 2868, 1474, 1447, 1303, 1086, 727, 692 cm⁻¹. MS (ESI⁺): m/z (%) = 277 (100) [M + Na⁺], 239 (20), 185 (20). C₁₄H₂₂O₂S (254.39): calcd. C 66.10, H 8.72, S 12.60; found C 66.25, H 8.75, S 12.49. ¹H NMR (400 MHz, CDCl₃): δ = 0.81 (s, 9 H), 1.04 (t, J = 7.0 Hz, 3 H), 1.39 (dd, J = 7.0, 14.8 Hz, 1 H), 1.72 (m, 1 H), 1.92 (m, 2 H), 2.89 (m, 1 H), 7.56 (m, 2 H), 7.64 (m, 1 H), 7.90 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 11.7 (q), 24.2 (t), 29.3 (q), 30.8 (s), 40.6 (t), 62.9 (d), 129.0 (d), 129.1 (d), 133.6 (d), 138.4 (s) ppm.

2-Methylhex-4-yl Phenyl Sulfone (7e): Yield 428 mg (89%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.33. IR: \tilde{v} = 2958, 2871, 1465, 1447, 1301, 1140, 1084, 762, 728, 692 cm⁻¹. MS (ESI⁺): *m/z* (%) = 263 (100) [M + Na⁺]. C₁₃H₂₀O₂S (240.36): calcd. C 64.96, H 8.39, S 13.34; found C 65.13, H 8.45, S 13.47. ¹H NMR (400 MHz, CDCl₃): δ = 0.78 (d, J = 6.2 Hz, 3 H), 0.88 (d, J = 6.4 Hz, 3 H), 0.98 (t, J = 7.5 Hz, 3 H), 1.43 (m, 1 H), 1.50–1.72 (m, 3 H), 1.85 (m, 1 H), 2.89 (m, 1 H), 7.54 (m, 2 H), 7.63 (m, 1 H), 7.86 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 11.4 (q), 21.95 (q), 22.02 (t), 23.1 (q), 26.0 (d), 36.7 (t), 64.0 (d), 129.1 (d), 129.3 (d), 133.7 (d), 138.5 (s) ppm.

4-Methylpent-2-yl Phenyl Sulfone (7f): Yield 385 mg (85%) as a colorless solid, m.p. 39–40 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.30. IR: \tilde{v} = 2958, 2874, 1468, 1447, 1303, 1290, 1141, 1085, 766, 732, 692 cm⁻¹. MS (ESI⁺): m/z (%) = 249 (100) [M + Na⁺]. C₁₂H₁₈O₂S (226.34): calcd. C 63.68, H 8.02, S 14.17; found C 63.91, H 8.00, S 14.43. ¹H NMR (400 MHz, CDCl₃): δ = 0.75 (d, J = 6.4 Hz, 3 H), 0.86 (d, J = 6.4 Hz, 3 H), 1.22 (d, J = 6.9 Hz, 3 H), 1.35 (m, 1 H), 1.68 (m, 2 H), 3.02 (m, 1 H), 7.51 (m, 2 H), 7.59 (m, 1 H), 7.82 (m, 2

H) ppm. 13 C NMR (100 MHz, CDCl₃): $\delta = 13.6$ (q), 21.1 (q), 23.8 (q), 25.3 (d), 38.0 (t), 58.7 (d), 129.24 (d), 129.27 (d), 133.7 (d), 137.6 (s) ppm.

2-Methylpent-3-yl Phenyl Sulfone (7h): Yield 362 mg (80%) as colorless crystals, m.p. 54–55 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.27. IR: \tilde{v} = 3065, 2966, 2938, 2879, 1585, 1467, 1447, 1392, 1303, 1288, 1178, 1142, 1080, 999 cm⁻¹. MS (ESI⁺): m/z (%) = 249 (100) [M + Na⁺]. C₁₂H₁₈O₂S (226.34): calcd. C 63.68, H 8.02, S 14.17; found C 63.46, H 8.25, S 14.29. ¹H NMR (400 MHz, CDCl₃): δ = 0.91 (t, J = 7.6 Hz, 3 H), 1.00 (d, J = 6.5 Hz, 3 H), 1.01 (d, J = 7.0 Hz, 3 H), 1.69 (m, 1 H), 1.88 (m, 1 H), 2.36 (m, 1 H), 2.78 (td, J = 2.4, 5.8 Hz, 1 H), 7.54 (m, 2 H), 7.62 (m, 1 H), 7.87 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.8 (q), 17.2 (q), 17.4 (t), 21.8 (q), 27.0 (d), 71.4 (d), 128.4 (d), 129.1 (d), 133.4 (d), 139.5 (s) ppm.

Sequential Dialkylation of Methyl Phenyl Sulfone 8 (General Procedure): nBuLi (8.13 mL, 13 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of 8 (1.56 g, 10 mmol) and TMEDA (3 mL, 19.5 mmol) in dry THF (50 mL) at -78 °C under a nitrogen atmosphere. After stirring for 15 min, the corresponding alkyl halide (13 mmol) was added dropwise at -78 °C. After stirring for 10 min, the reaction mixture was warmed to temperature T_1 and stirred for time t (Table 8). The reaction mixture was cooled to -78 °C, TMEDA (3 mL, 19.5 mmol) and nBuLi (8.13 mL, 13 mmol, 1.6 M in hexane) were added dropwise. After 10 min, the corresponding alkyl halide (13 mmol) was added, the solution was stirred at -78 °C for 5 min, warmed to temperature T_2 and stirred until complete as indicated by TLC. The reaction mixture was quenched with saturated NH₄Cl solution. The layers were separated and the aqueous was extracted with diethyl ether $(3 \times 50 \text{ mL})$. The combined organic extracts were washed with brine, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:40, gradient to 1:10) gave alkylated sulfones 7d,g,i-k.

Table 8. Reaction temperatures and times for the preparation of $7d, \ g,i{-}k.$

Entry	Halide	Product	T_1 [°C]	<i>t</i> [h]	$T_2 [^{\circ}\mathrm{C}]$
1	<i>i</i> BuI	7d	room temp.	1	room temp.
2	iPrI	7 g	-60	4	room temp.
3	BnBr	7i	room temp.	1	-78
4	iAmI	7j	-78	2	-78
5	EtI	7k	0	1	room temp.

2,8-Dimethylnon-5-yl Phenyl Sulfone (7j): Yield 1.81 g (61%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.45. IR: \tilde{v} = 2955, 2870, 1467, 1447, 1302, 1141, 1084, 757, 726, 691 cm⁻¹. MS (ESI⁺): *m/z* (%) = 615 (10) [2M + Na⁺], 319 (100) [M + Na⁺]. C₁₇H₂₈O₂S (296.47): calcd. C 68.87, H 9.52, S 10.82; found C 68.81, H 9.55, S 10.71. ¹H NMR (400 MHz, CDCl₃): δ = 0.77 (2×d, *J* = 6.7 Hz, 12 H), 1.13 (m, 2 H), 1.24 (m, 2 H), 1.47 (m, 2 H), 1.52 (m, 2 H), 1.79 (m, 2 H), 2.86 (m, 1 H), 7.49 (m, 2 H), 7.59 (m, 1 H), 7.82 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.3 (q), 22.6 (q), 25.6 (t), 28.0 (d), 35.9 (t), 65.1 (d), 128.9 (d), 129.2 (d), 133.6 (d), 138.5 (s) ppm.

ortho- to a-Rearrangement of 7a–l and Deuteration: The respective additive (TMEDA, HMPA) (1 mmol, 3 mmol) and base (0.55 mmol) were added to a stirred solution of sulfone 7a–l (0.5 mmol) in THF (5 mL) at -78 °C. After 10 min at -78 °C 1 mL of the solution was taken by a syringe and added to a dry capped vial containing D₂O. The product was extracted with diethyl ether (2 mL). The organic extract was dried with MgSO₄, filtered and the solvents evaporated. The remaining reaction mixture was placed in a bath at -60 °C and kept for 10 min. Another sample (1 mL) was removed and deuterated as described above. The procedure was repeated at -40 °C, -20 °C and 0 °C. The mass balance was determined to be quantitative for each mixture and the products were analyzed by ¹H NMR spectroscopy.

2,6-Dimethylhept-4-yl 2-(1-Hydroxyalkyl)phenyl Sulfones 13a–f (General Procedure): *n*BuLi (0.72 mL, 1.15 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of sulfone 7d (268 mg, 1 mmol) and TMEDA (0.3 mL, 1.95 mmol) in dry THF (5 mL) at $-78 \,^{\circ}$ C under a nitrogen atmosphere. After stirring for 15 min, the aldehyde or ketone (1.2 mmol) in THF (2.5 mL) was added dropwise at $-78 \,^{\circ}$ C. The reaction mixture was stirred for 3 h until complete as indicated by TLC, quenched with water and warmed to room temperature. The layers were separated and the aqueous was extracted with diethyl ether (3 × 20 mL). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20) gave sulfones 13a–f.

2,6-Dimethylhept-4-yl 2-(1-Hydroxybenzyl)phenyl Sulfone (13a): Yield 315 mg (84%) as colorless crystals, m.p. 99–100 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.45. IR: \tilde{v} = 3435, 2950, 1468, 1441, 1388, 1371, 1296, 1278, 1141, 1114, 954, 765 cm⁻¹. MS (ESI⁺): m/z (%) = 771 (40) $[2M + Na^+]$, 397 (25) $[M + Na^+]$, 392 (100) $[M^+ + H_2O]$. C₂₂H₃₀O₃S (374.54): calcd. C 70.55, H 8.07, S 8.56; found C 70.53, H 8.10, S 8.69. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.70$ (d, J =6.5 Hz, 3 H), 0.78 (d, J = 6.5 Hz, 3 H), 0.83 (d, J = 6.5 Hz, 3 H), 0.87 (d, J = 6.5 Hz, 3 H), 1.41 (m, 2 H), 1.54 (m, 1 H), 1.69 (m, 2 H), 1.82 (m, 1 H), 3.21 (tt, J = 7.1, 5.1 Hz, 1 H), 3.35 (d, J =4.6 Hz, 1 H), 6.71 (d, J = 4.6 Hz, 1 H), 7.35 (m, 7 H), 7.53 (dd, J= 7.6, 1.4 Hz, 1 H), 8.00 (dd, J = 7.9, 1.4 Hz, 1 H) ppm. ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3): \delta = 22.1 \text{ (q)}, 22.3 \text{ (q)}, 23.12 \text{ (q)}, 23.14 \text{ (q)}, 25.8$ (d), 25.9 (d), 38.1 (t), 38.8 (t), 61.8 (d), 71.1 (d), 127.5 (d), 128.3 (d), 128.4 (d), 129.2 (d), 131.2 (d), 132.2 (d), 134.9 (d), 137.1 (s), 142.4 (s), 144.9 (s) ppm.

2,6-Dimethylhept-4-yl 2-(1-Hydroxyisobutyl)phenyl Sulfone (13b): Yield 306 mg (90%) as colorless crystals, m.p. 44–46 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.44. IR: \tilde{v} = 3495, 2960, 1468, 1336, 1295, 1143, 1131, 1026, 744, 723 cm⁻¹. MS (ESI+): *m/z* (%) = 363 (100) [M + Na⁺]. C₁₉H₃₂O₃S (340.52): calcd. C 67.02, H 9.47, S 9.42; found C 67.27, H 9.43, S 9.54. ¹H NMR (400 MHz, CDCl₃): δ = 0.71 (d, J = 6.3 Hz, 3 H), 0.77 (m, 6 H), 0.85 (2×d, J = 6.3 Hz, 6 H), 1.11 (d, J = 6.5 Hz, 3 H), 1.39 (m, 4 H), 1.68 (m, 2 H), 2.22 (m, 1 H), 2.66 (d, J = 4.9 Hz, 1 H), 3.16 (tt, J = 7.3, 4.9 Hz, 1 H), 5.01 (dd, J = 4.9, 8.4 Hz, 1 H), 7.45 (m, 1 H), 7.63 (m, 2 H), 7.95 (dd, J = 8.0, 1.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.0 (q), 20.1 (q), 22.1 (q), 22.2 (q), 23.0 (q), 23.1 (q), 25.8 (d), 25.9 (d), 33.8 (d), 38.3 (t), 38.7 (t), 61.7 (d), 75.2 (d), 127.8 (d), 128.7 (d), 131.4 (d), 134.0 (d), 136.7 (s), 144.3 (s) ppm.

(*E*)-2,6-Dimethylhept-4-yl 2-(1-Hydroxypent-2-enyl)phenyl Sulfone (13c): Yield 279 mg (79%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.25. IR: \tilde{v} = 3496, 2957, 2931, 1468, 1379, 1289, 1136, 1113, 998, 762 cm⁻¹. MS (ESI+): *m*/*z* (%) = 375 (100) [M + Na⁺]. C₂₀H₃₂O₃S (352.53): calcd. C 68.14, H 9.15, S 9.10; found C 67.97, H 9.29, S 9.07. ¹H NMR (400 MHz, CDCl₃): δ = 0.66 (d, *J* = 6.5 Hz, 3 H), 0.77 (d, *J* = 6.5 Hz, 3 H), 0.81 (d, *J* = 6.5 Hz, 3 H), 0.86 (d, *J* = 6.5 Hz, 3 H), 0.97 (t, *J* = 7.5 Hz, 3 H), 1.37 (m, 2 H), 1.50 (m, 1 H), 1.56–1.84 (m, 3 H), 2.07 (m, 2 H), 2.95 (br. s, 1 H), 3.21 (m, 1 H), 5.70 (dd, *J* = 5.9, 15.4 Hz, 1 H), 5.88 (dt, *J* = 6.2, 15.4 Hz, 1 H), 6.00 (m, 1 H), 7.41 (m, 1 H), 7.59 (m, 1 H), 7.67 (m, 1 H), 7.91 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.7 (q), 22.0 (q), 22.2 (q), 23.0 (q), 23.1 (q), 25.4 (t), 25.78 (d),

25.81 (d), 38.2 (t), 38.7 (t), 61.6 (d), 69.7 (d), 127.9 (d), 128.3 (d), 129.8 (d), 131.3 (d), 134.1 (d), 134.9 (d), 135.9 (s), 144.1 (s) ppm.

2,6-Dimethylhept-4-yl 2-(1-Hydroxy-3-phenylpropyl)phenyl Sulfone (13d): Yield 374 mg (93%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.35. IR: \bar{v} = 3498, 2957, 1468, 1454, 1331, 1295, 1140, 1115, 1058, 747, 725 cm⁻¹. MS (ESI+): m/z (%) = 425 (100) [M + Na⁺]. C₂₄H₃₄O₃S (402.59): calcd. C 71.60, H 8.51, S 7.96; found C 71.43, H 8.55, S 7.77. ¹H NMR (400 MHz, CDCl₃): δ = 0.73 (d, J = 6.4 Hz, 3 H), 0.82 (d, J = 6.4 Hz, 3 H), 0.87 (d, J = 6.4 Hz, 3 H), 1.41 (m, 2 H), 1.57 (m, 1 H), 1.62–1.86 (m, 3 H), 2.13 (m, 1 H), 2.27 (m, 1 H), 2.75 (m, 1 H), 3.00 (m, 2 H), 3.15 (m, 1 H), 5.46 (m, 1 H), 7.25 (m, 5 H), 7.47 (m, 1 H), 7.65 (m, 1 H), 7.75 (m, 1 H), 7.99 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.9 (q), 22.1 (q), 22.8 (q), 22.9 (q), 25.5 (d), 25.6 (d), 32.8 (t), 38.2 (t), 38.5 (t), 39.4 (t), 61.5 (d), 69.2 (d), 126.0 (d), 128.1 (d), 128.5 (d), 128.7 (d, 2 C), 131.2 (d), 133.4 (d), 135.7 (s), 141.5 (s), 144.9 (s) ppm.

2,6-Dimethylhept-4-yl 2-(1-Hydroxycyclohexyl)phenyl Sulfone (13e): Yield 312 mg (85%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.44. IR: $\tilde{v} = 3495$, 2955, 2930, 1468, 1386, 1288, 1267, 1133, 1112, 994, 768, 745 cm⁻¹. MS (ESI+): m/z (%) = 389 (30) [M + Na⁺], 349 (100) [M - OH⁻], 223 (20) [M + H⁺ - OH - CH(*i*Bu)₂]. C₂₁H₃₄O₃S (366.56): calcd. C 68.81, H 9.35, S 8.75; found C 68.87, H 9.23, S 8.97. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.70$ (d, J = 6.2 Hz, 6 H), 0.78 (d, J = 6.2 Hz, 6 H), 1.32 (m, 2 H), 1.54 (m, 4 H), 1.65–1.89 (m, 10 H), 4.21 (m, 1 H), 4.53 (s, 1 H), 7.30 (ddd, J = 8.1, 6.7, 1.8 Hz, 1 H), 7.48 (m, 2 H), 8.07 (dd, J = 8.1, 1.2 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.9$ (t), 22.3 (q), 23.0 (q), 25.7 (t), 25.9 (d, 2 C), 38.8 (t, 2 C), 40.1 (t), 61.9 (d), 75.3 (s), 126.7 (d), 129.2 (d), 133.1 (d), 133.2 (d), 136.7 (s), 152.2 (s) ppm.

2,6-Dimethylhept-4-yl 2-(1-Hydroxy-1-phenylbenzyl)phenyl Sulfone (13f): Yield 424 mg (94%) as colorless crystals, m.p. 112–113 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.59. IR: \tilde{v} = 3403, 2955, 1467, 1441, 1383, 1291, 1167, 1113, 1072, 1043, 956, 765, 748 cm⁻¹. MS (ESI+): m/z (%) = 473 (100) [M + Na⁺], 329 (40) [M + Na⁺ - OH - $CH(iBu)_{2}$], 307 (30) [M + H⁺ – OH – $CH(iBu)_{2}$]. HRMS (ESI+): m/z [M + Na⁺] calcd. for C₂₈H₃₄O₃SNa⁺: 473.2121, found 473.2120. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.74$ (d, J = 6.6 Hz, 6 H), 0.87 (d, J = 6.6 Hz, 6 H), 1.35 (m, 2 H), 1.52 (m, 2 H), 1.74 (m, 2 H), 3.75 (m, 1 H), 6.30 (s, 1 H), 6.88 (dd, J = 7.9, 1.3 Hz, 1 H), 7.08 (m, 4 H), 7.23 (m, 6 H), 7.35 (td, J = 7.9, 1.5 Hz, 1 H), 7.41 (td, *J* = 7.9, 1.3 Hz, 1 H), 8.14 (dd, *J* = 7.9, 1.5 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.3 (q), 23.1 (q), 25.8 (d, 2 C), 38.4 (t), 38.5 (t), 62.6 (d), 83.4 (s), 127.6 (d), 127.7 (d), 128.1 (d), 128.2 (d), 132.4 (d), 133.7 (d), 134.0 (d), 137.2 (s), 147.4 (s), 148.2 (s) ppm.

(2-Hydroxyalkyl) Phenyl Sulfones 14a–e (General Procedure): *n*BuLi (0.41 mL, 0.65 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of sulfone 7k (106 mg, 0.5 mmol) and TMEDA (0.15 mL, 0.98 mmol) in dry THF (4 mL) at -78 °C under a nitrogen atmosphere. After stirring for 10 min, the aldehyde (0.7 mmol) in THF (2 mL) was added dropwise at -78 °C. The reaction mixture was warmed to 0 °C, stirred at this temperature for 1 h until complete as indicated by TLC and quenched with water. The layers were separated and the aqueous was extracted with diethyl ether (3 × 20 mL). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:50) gave sulfones 14a–e.

2-Ethyl-1-phenyl-2-(phenylsulfonyl)butan-1-ol (14a): Yield 127 mg (80%) as colorless crystals, m.p. 119–121 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.30. IR: \tilde{v} = 3488, 2975, 2943, 1447, 1281, 1143, 1073, 722,

691 cm⁻¹. MS (ESI+): *m/z* (%) = 341 (100) [M + Na⁺], 199 (20) [M + Na⁺ – PhSO₂H], 165 (20) [PhSO₂H + Na⁺]. C₁₈H₂₂O₃S (318.43): calcd. C 67.89, H 6.96, S 10.07; found C 67.91, H 7.11, S 9.89. ¹H NMR (400 MHz, CDCl₃): δ = 0.58 (t, *J* = 7.4 Hz, 3 H), 1.12 (t, *J* = 7.5 Hz, 3 H), 1.47 (dq, *J* = 7.5, 15.0 Hz, 1 H), 1.72 (dq, *J* = 7.4, 15.0 Hz, 1 H), 1.96 (dq, *J* = 7.5, 15.1 Hz, 1 H), 2.21 (dq, *J* = 7.5, 15.1 Hz, 1 H), 4.19 (d, *J* = 2.5 Hz, 1 H), 4.92 (d, *J* = 2.5 Hz, 1 H), 7.22 (m, 5 H), 7.54 (m, 2 H), 7.65 (m, 1 H), 7.90 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 8.5 (q), 9.4 (q), 19.5 (t), 24.0 (t), 74.1 (d), 76.1 (s), 128.1 (d), 128.38 (d), 128.41 (d), 129.0 (d), 130.2 (d), 133.9 (d), 137.5 (s), 139.1 (s) ppm.

1-(4-Bromophenyl)-2-ethyl-2-(phenylsulfonyl)butan-1-ol (14b): Yield 129 mg (65%) as colorless crystals, m.p. 119–121 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.22. IR: \tilde{v} = 3487, 2981, 2940, 1485, 1446, 1281, 1144, 1073, 1010, 725, 690 cm⁻¹. MS (ESI+): *mlz* (%) = 419/417 (100/100) [M + Na⁺], 165 (40) [PhSO₂H + Na⁺]. C₁₈H₂₁BrO₃S (396.33): calcd. C 54.41, H 5.33, S 8.07, Br 20.11; found C 54.41, H 5.33, S 7.98, Br 20.21. ¹H NMR (400 MHz, CDCl₃): δ = 0.67 (t, J = 7.4 Hz, 3 H), 1.10 (t, J = 7.5 Hz, 3 H), 1.53 (dq, J = 7.4, 14.8 Hz, 1 H), 1.69 (dq, J = 7.4, 14.8 Hz, 1 H), 1.92 (dq, J = 7.5, 15.0 Hz, 1 H), 2.16 (dq, J = 7.5, 15.0 Hz, 1 H), 4.32 (d, J = 2.5 Hz, 1 H), 7.15 (m, 2 H), 7.39 (m, 2 H), 7.56 (m, 2 H), 7.67 (m, 1 H), 7.90 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 8.7 (q), 9.5 (q), 19.8 (t), 24.1 (t), 73.9 (d), 75.8 (s), 122.0 (s), 129.1 (d), 130.2 (d), 130.3 (d), 131.3 (d), 134.1 (d), 137.4 (s), 138.3 (s) ppm.

4-Ethyl-2-methyl-4-(phenylsulfonyl)hexan-3-ol (14c): Yield 100 mg (70%) as colorless crystals, m.p. 90–91 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.29. IR: \tilde{v} = 3515, 2966, 2886, 1446, 1278, 1120, 1073, 1016, 758, 721, 690 cm⁻¹. MS (ESI+): m/z (%) = 307 (100) [M + Na⁺], 165 (40) [PhSO₂H + Na⁺]. C₁₅H₂₄O₃S (284.41): calcd. C 63.34, H 8.51, S 11.27; found C 63.53, H 8.48, S 11.25. ¹H NMR (400 MHz, CDCl₃): δ = 0.91 (2×t, J = 7.5 Hz, 6 H), 1.04 (2×d, J = 6.6 Hz, 6 H), 1.54 (dq, J = 7.5, 14.8 Hz, 1 H), 1.83 (dq, J = 7.5, 15.1 Hz, 1 H), 2.03 (dq, J = 7.5, 14.8 Hz, 2 H), 2.21 (m, 1 H), 3.19 (d, J = 7.8 Hz, 1 H), 3.80 (dd, J = 3.0, 7.8 Hz, 1 H), 7.51 (m, 2 H), 7.61 (m, 1 H), 7.87 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 8.9 (q), 9.1 (q), 17.6 (q), 23.3 (t), 24.3 (q), 24.9 (t), 29.5 (d), 74.4 (s), 77.8 (d), 128.9 (d), 130.2 (d), 133.8 (d), 138.8 (s) ppm.

(*E*)-3-Ethyl-3-(phenylsulfonyl)oct-5-en-4-ol (14d): Yield 96 mg (64%) as colorless crystals, m.p. 65–66 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.32. IR: $\tilde{v} = 3493$, 2969, 2939, 1446, 1281, 1131, 1075, 971, 721, 691, 604 cm⁻¹. MS (ESI+): m/z (%) = 319 (100) [M + Na⁺], 165 (30) [PhSO₂H + Na⁺]. C₁₆H₂₄O₃S (296.42): calcd. C 64.83, H 8.16, S 10.82; found C 64.94, H 8.24, S 10.52. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.96$ (m, 9 H), 1.61 (dq, J = 7.4, 14.8 Hz, 1 H), 1.80 (dq, J = 7.5, 15.1 Hz, 1 H), 1.94 (m, 4 H), 3.47 (d, J = 6.1 Hz, 1 H), 4.34 (t, J = 6.1 Hz, 1 H), 5.55 (ddt, J = 1.4, 6.2, 15.2 Hz, 1 H), 5.71 (dtd, J = 0.8, 7.1, 15.2 Hz, 1 H), 7.50 (m, 2 H), 7.60 (m, 1 H), 7.86 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 8.5$ (q), 8.8 (q), 13.3 (q), 22.0 (t), 23.6 (t), 25.5 (t), 73.4 (s), 74.8 (d), 126.7 (d), 128.8 (d), 130.4 (d), 133.8 (d), 136.9 (d), 138.3 (s) ppm.

(*E*)-4-Ethyl-1-phenyl-4-(phenylsulfonyl)hex-1-en-3-ol (14e): Yield 122 mg (71%) as colorless crystals, m.p. 85–86 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.20. IR: \tilde{v} = 3491, 2974, 2943, 2886, 1446, 1361, 1279, 1133, 1073, 969, 755, 721, 690, 604 cm⁻¹. MS (ESI+): *m/z* (%) = 367 (100) [M + Na⁺], 327 (10) [M - OH⁻]. C₂₀H₂₄O₃S (344.15): calcd. C 69.73, H 7.02, S 9.31; found C 69.67, H 6.89, S 9.13. ¹H NMR (400 MHz, CDCl₃): δ = 1.05 (m, 6 H), 1.77 (dq, J = 7.4, 15.0 Hz, 1 H), 1.88 (dq, J = 7.6, 15.1 Hz, 1 H), 2.04 (m, 2 H), 3.69 (d, J = 6.6 Hz, 1 H), 4.56 (td, J = 1.3, 6.6 Hz, 1 H), 6.28 (dd, J = 6.6, 15.8 Hz, 1 H), 6.64 (dd, J = 1.3, 15.8 Hz, 1 H), 7.27 (m, 5 H),

7.48 (m, 2 H), 7.61 (m, 1 H), 7.89 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 8.5 (q), 8.7 (q), 22.2 (t), 23.2 (t), 73.6 (s), 74.6 (d), 126.7 (d), 127.1 (d), 127.9 (d), 128.6 (d), 128.7 (d), 130.3 (d), 132.9 (d), 133.7 (d), 136.4 (s), 138.0 (s) ppm.

2-Hydroxyalkyl Phenyl Sulfones 15a–f (General Procedure). Condition A: *n*BuLi (0.27 mL, 0.43 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of sulfone **7d** (100 mg, 0.37 mmol) and TMEDA (0.1 mL, 0.65 mmol) in dry THF (4 mL) at -78 °C under a nitrogen atmosphere. After stirring for 10 min, the reaction mixture was warmed to 0 °C during 1 h, followed by dropwise addition of the aldehyde (0.44 mmol) in THF (2 mL) at -78 °C. The reaction mixture was warmed to -20 °C, stirred at this temperature until complete as indicated by TLC, quenched with water and warmed to room temperature. The layers were separated and the aqueous was extracted with diethyl ether (3 × 20 mL). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20) gave sulfones **15a–f**.

Condition B: *n*BuLi (0.27 mL, 0.43 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of sulfone **7d** (100 mg, 0.37 mmol) and TMEDA (0.1 mL, 0.65 mmol) in dry THF (4 mL) at -20 °C under a nitrogen atmosphere. After stirring for 10 min, the aldehyde (0.44 mmol) in THF (2 mL) was added dropwise at -78 °C. The reaction mixture was warmed to -20 °C, stirred at this temperature until complete as indicated by TLC, quenched with water and warmed to room temperature. The layers were separated and the aqueous was extracted with diethyl ether (3 × 20 mL). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20) gave sulfones **15a,d,f**.

Condition C: *n*BuLi (0.27 mL, 0.43 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of sulfone **7d** (100 mg, 0.37 mmol) and HMPA (0.4 mL, 2.22 mmol) in dry THF (4 mL) at -78 °C under a nitrogen atmosphere. After stirring for 10 min, the aldehyde (0.44 mmol) in THF (2 mL) was added dropwise at -78 °C. The reaction mixture was stirred at this temperature until complete as indicated by TLC, quenched with water and warmed to room temperature. The layers were separated and the aqueous was extracted with diethyl ether (3 × 20 mL). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20) gave sulfones **15a–f**.

2-Isobutyl-4-methyl-1-phenyl-2-(phenylsulfonyl)pentan-1-ol (15a): Yield 104 mg (75%, condition C) as a colorless oil. $R_{\rm f}$ (EtOAc/ hexane, 1:5) = 0.37. IR: \tilde{v} = 3476, 2961, 2870, 1470, 1446, 1389, 1280, 1123, 1075, 751, 723, 690, 631 cm⁻¹. MS (ESI+): m/z (%) = $397 (100) [M + Na^+], 256 (60) [M - PhSO_2 + Na^+], 165 (20)$ $[PhSO_2H + Na^+]$. $C_{22}H_{30}O_3S$ (374.54): calcd. C 70.55, H 8.07, S 8.56; found C 70.26, H 8.03, S 8.39. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.78$ (d, J = 6.6 Hz, 3 H), 0.83 (d, J = 6.5 Hz, 3 H), 1.06 (2×d, J = 6.5 Hz, 6 H), 1.37 (dd, J = 4.2, 15.0 Hz, 1 H), 1.52 (dd, J =6.0, 15.0 Hz, 1 H), 1.71 (m, 1 H), 1.88 (dd, J = 5.4, 15.4 Hz, 1 H), 1.96 (dd, J = 4.6, 15.4 Hz, 1 H), 2.43 (m, 1 H), 4.00 (d, J = 3.3 Hz, 1 H), 5.16 (d, J = 3.3 Hz, 1 H), 7.31 (m, 3 H), 7.36 (m, 2 H), 7.49 (t, J = 7.8 Hz, 2 H), 7.62 (m, 1 H), 7.83 (m, 2 H) ppm.¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 23.60 \text{ (d)}, 23.63 \text{ (d)}, 25.5 \text{ (g)}, 25.9 \text{ (g)}, 26.1 \text{$ (q), 26.1 (q), 38.7 (t), 41.8 (t), 76.2 (s), 76.8 (d), 128.2 (d), 128.6 (d), 128.7 (d), 129.2 (d), 130.5 (d), 133.7 (d), 138.7 (s), 139.4 (s) ppm.

1-(4-Bromophenyl)-2-isobutyl-4-methyl-2-(phenylsulfonyl)pentan-1ol (15b): Yield 80 mg (48%, condition C) as a colorless solid, m.p. 109–110 °C. R_f (EtOAc/hexane, 1:5) = 0.30. IR: $\tilde{\nu}$ = 3478, 2961, 2931, 2870, 1488, 1472, 1446, 1282, 1125, 1075, 1011, 759, 730, 690 cm⁻¹. MS (ESI+): m/z (%) = 931/929/927 (15/30/15) [2M + Na⁺], 477/475 (95/100) [M + Na⁺], 165 (40) [PhSO₂H + Na⁺]. C₂₂H₂₉BrO₃S (452.43): calcd. C 58.27, H 6.45, S 7.07, Br 17.62; found C 58.56, H 6.39, S 7.32, Br 17.84. ¹H NMR (400 MHz, CDCl₃): δ = 0.81 (d, J = 6.6 Hz, 3 H), 0.87 (d, J = 6.5 Hz, 3 H), 1.05 (d, J = 6.5 Hz, 6 H), 1.36 (dd, J = 4.1, 15.0 Hz, 1 H), 1.51 (dd, J = 6.1, 15.0 Hz, 1 H), 1.67 (m, 1 H), 1.83 (dd, J = 5.4, 15.4 Hz, 1 H), 1.91 (dd, J = 4.6, 15.4 Hz, 1 H), 2.39 (m, 1 H), 4.14 (d, J = 3.3 Hz, 1 H), 5.09 (d, J = 3.3 Hz, 1 H), 7.24 (m, 2 H), 7.46 (m, 2 H), 7.54 (m, 2 H), 7.66 (m, 1 H), 7.85 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.8 (d), 24.0 (d), 25.5 (q), 25.9 (q), 26.1 (q), 26.2 (q), 38.9 (t), 41.8 (t), 75.9 (s), 76.5 (d), 122.7 (s), 128.9 (d), 129.1 (d), 130.5 (d), 131.0 (d), 133.9 (d), 138.5 (s), 138.6 (s) ppm.

1-(3-Bromophenyl)-2-isobutyl-4-methyl-2-(phenylsulfonyl)pentan-1ol (15c): Yield 106 mg (63%, condition C) as a colorless solid, m.p. 81–82 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.39. IR: \tilde{v} = 3488, 2961, 2871, 1668, 1473, 1457, 1447, 1389, 1282, 1129, 1075, 759, 728, 690 cm⁻¹. MS (ESI+): m/z (%) = 477/475 (100/98) [M + Na⁺], 165 (40) [PhSO₂H + Na⁺]. C₂₂H₂₉BrO₃S (452.43): calcd. C 58.27, H 6.45, S 7.07, Br 17.62; found C 58.44, H 6.47, S 6.96, Br 17.94. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (2×d, J = 6.6 Hz, 6 H), 1.07 (2×d, J= 6.6 Hz, 6 H), 1.39 (dd, J = 4.6, 15.0 Hz, 1 H), 1.47 (dd, J = 5.6, 15.0 Hz, 1 H), 1.66 (m, 1 H), 1.85 (dd, J = 5.4, 15.4 Hz, 1 H), 1.92 (dd, J = 4.6, 15.4 Hz, 1 H), 2.41 (m, 1 H), 4.20 (d, J = 3.0 Hz, 1H), 5.08 (d, J = 3.0 Hz, 1 H), 7.19 (t, J = 7.8 Hz, 1 H), 7.33 (d, J = 7.9 Hz, 1 H), 7.44 (m, 1 H), 7.51 (t, J = 1.7 Hz, 1 H), 7.56 (t, J = 7.7 Hz, 2 H), 7.67 (m, 1 H), 7.89 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.5 (d), 23.8 (d), 25.3 (q), 25.6 (q), 25.9 (q), 26.0 (q), 38.5 (t), 41.7 (t), 75.5 (s), 76.3 (d), 122.7 (s), 127.6 (d), 128.7 (d), 129.5 (d), 130.3 (d), 131.5 (d), 132.1 (d), 133.8 (d), 138.2 (s), 141.5 (s) ppm.

4-Isobutyl-6-methyl-1-phenyl-4-(phenylsulfonyl)heptan-3-ol (15d): Yield 123 mg (61%, condition A) as a colorless oil. $R_{\rm f}$ (EtOAc/ hexane, 1:5) = 0.46. IR: \tilde{v} = 3509, 3085, 2960, 2925, 1603, 1584, 1496, 1469, 1446, 1388, 1279, 1123, 1075, 1000, 931, 755 $\rm cm^{-1}.~MS$ (ESI+): m/z (%) = 425 (95) [M + Na⁺], 283 (100) [M + Na⁺ - $PhSO_2H$]. HRMS (ESI+): m/z [M + Na⁺] calcd. for C₂₄H₃₄O₃SNa⁺: 425.2121, found 425.2120. ¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.75$ (d, J = 6.6 Hz, 3 H), 0.87 (d, J = 6.5 Hz, 3 H), 0.88 (d, J = 6.4 Hz, 3 H), 0.99 (d, J = 6.4 Hz, 3 H), 1.35 (dd, J = 5.6, 15.2 Hz, 1 H), 1.60 (dd, J = 6.1, 15.3 Hz, 1 H), 1.70 (dd, J =3.9, 15.3 Hz, 1 H), 1.86 (m, 1 H), 1.89–2.09 (m, 4 H), 2.62 (m, 1 H), 2.97 (m, 1 H), 3.20 (d, J = 6.6 Hz, 1 H), 4.19 (m, 1 H), 7.17 (m, 3 H), 7.25 (m, 2 H), 7.49 (t, J = 7.7 Hz, 2 H), 7.58 (m, 1 H), 7.89 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.5 (d), 24.0 (d), 25.3 (q), 25.46 (q), 25.50 (q), 25.7 (q), 33.3 (t), 35.1 (t), 39.4 (t), 41.2 (t), 72.7 (d), 77.4 (s), 126.0 (d), 128.5 (d), 128.6 (d), 128.7 (d), 130.2 (d), 133.5 (d), 139.2 (s), 141.7 (s) ppm.

(*E*)-4-Isobutyl-2-methyl-4-(phenylsulfonyl)non-6-en-5-ol (15e): Yield 80 mg (61%, condition C) as a colorless oil. R_f (EtOAc/hexane, 1:5) = 0.30. IR: \tilde{v} = 3489, 2960, 2928, 2871, 1447, 1335, 1284, 1127, 1077, 972, 758, 724, 690 cm⁻¹. MS (ESI+): *m*/*z* (%) = 375 (100) [M + Na⁺], 233 (30) [M – PhSO₂H + Na⁺], 165 (30) [PhSO₂H + Na⁺]. HRMS (ESI+): *m*/*z* [M + Na⁺] calcd. for C₂₀H₃₂O₃SNa⁺: 375.1964, found 375.1964. ¹H NMR (400 MHz, CDCl₃): δ = 0.88 (3×d+t, *J* = 6.5 Hz, 12 H), 0.94 (d, *J* = 6.6 Hz, 3 H), 1.45 (dd, *J* = 4.5, 15.0 Hz, 1 H), 1.60 (dd, *J* = 5.6, 15.3 Hz, 1 H), 1.72 (dd, *J* = 4.5, 15.3 Hz, 1 H), 1.79 (dd, *J* = 5.7, 15.0 Hz, 1 H), 2.00 (m, 4 H), 2.90 (d, *J* = 5.0 Hz, 1 H), 4.51 (t, *J* = 4.9 Hz, 1 H), 5.56 (dd, *J* = 5.3, 15.3 Hz, 1 H), 7.84 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃: δ = 13.4 (q), 23.7 (d), 23.9 (d), 25.4 (q), 25.6 (t), 25.7 (q),

25.9 (q), 26.0 (q), 39.1 (t), 40.9 (t), 74.7 (d), 75.9 (s), 127.0 (d), 128.7 (d), 130.7 (d), 133.6 (d), 137.4 (d), 139.3 (s) ppm.

(E)-4-Isobutyl-6-methyl-1-phenyl-4-(phenylsulfonyl)hept-1-en-3-ol (15f): Yield 145 mg (98%, condition C) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.32. IR: \tilde{v} = 3479, 2960, 2870, 1447, 1281, 1124, 1075, 972, 752, 724, 691 cm⁻¹. MS (ESI+): m/z (%) = 824 $(20), 423 (100) [M + Na^+], 281 (40) [M - PhSO_2H + Na^+], 165 (10)$ [PhSO₂H + Na⁺]. C₂₄H₃₂O₃S (400.57): calcd. C 71.96, H 8.05, S 8.00; found C 71.74, H 7.77, S 8.27. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88 \ (2 \times d, J = 6.6 \ Hz, 6 \ H), \ 0.92 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ H), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ Hz), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ Hz), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ Hz), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ Hz), \ 0.99 \ (d, J = 6.7 \ Hz, 3 \ Hz), \ 0.99 \ (d, J = 6.7 \ Hz), \ 0.99 \ (d, J =$ J = 6.6 Hz, 3 H), 1.58 (dd, J = 4.6, 15.0 Hz, 1 H), 1.65 (dd, J =5.6, 15.3 Hz, 1 H), 1.78 (dd, J = 4.5, 15.3 Hz, 1 H), 1.92 (dd, J = 5.7, 15.0 Hz, 1 H), 2.05 (m, 2 H), 3.18 (s, 1 H), 4.76 (d, J = 6.0 Hz, 1 H), 6.28 (dd, J = 6.3, 15.7 Hz, 1 H), 6.63 (dd, J = 1.3, 15.7 Hz, 1 H), 7.15–7.28 (m, 5 H), 7.40 (t, J = 7.8 Hz, 2 H), 7.53 (m, 1 H), 7.85 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.6 (d), 23.9 (d), 25.3 (q), 25.5 (q), 25.7 (q), 25.9 (q), 39.2 (t), 40.6 (t), 74.2 (d), 76.1 (s), 126.7 (d), 127.3 (d), 128.0 (d), 128.5 (d), 128.6 (d), 130.6 (d), 133.4 (d), 133.5 (d), 136.5 (s), 139.0 (s) ppm.

(*E*)-2-Benzyl-5-phenyl-2-pentenal (16): For yields see Table 5, colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.54. IR: \tilde{v} = 3085, 3062, 3027, 1685, 1638, 1602, 1584, 1495, 1453, 1289, 1030, 1002, 698 cm⁻¹. MS (ESI+): m/z (%) = 525 (25), 273 (100) [M + Na⁺]. HRMS (ESI+): m/z [M + Na⁺] calcd. for C₁₈H₁₈ONa⁺: 273.1250, found 273.1251. ¹H NMR (400 MHz, CDCl₃): δ = 2.70 (m, 4 H), 3.54 (s, 2 H), 6.59 (m, 1 H), 7.10 (m, 5 H), 7.18 (m, 3 H), 7.26 (m, 2 H), 9.40 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 30.1 (t), 31.2 (t), 34.4 (t), 126.3 (d), 126.6 (d), 128.52 (d), 128.55 (d), 128.7 (d), 128.8 (d), 139.3 (s), 140.1 (s), 143.1 (s), 154.8 (d), 194.8 (d) ppm.

2-Benzoyloxy Sulfones 17a-f (General Procedure): nBuLi (0.37 mL, 0.6 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of sulfone 7k (106 mg, 0.5 mmol) and TMEDA (0.15 mL, 0.98 mmol) in dry THF (5 mL) at -78 °C under a nitrogen atmosphere. After stirring for 10 min, the aldehyde (0.6 mmol) in THF (2 mL) was added dropwise at -78 °C. The reaction mixture was slowly warmed to 0 °C and stirred until complete as indicated by TLC. Benzoyl chloride (75 µL, 0.65 mmol) was added at -78 °C. After 20 min, 3-(dimethylamino)propan-1-ol (88 µL, 0.75 mmol) was added. After 10 min, the reaction was quenched with water. The layers were separated and the aqueous was extracted with diethyl ether $(3 \times 20 \text{ mL})$. The combined organic extracts were washed successively with 1 M HCl, 5% NaHCO₃ and brine solutions, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20) gave benzoyloxy sulfones 17a-f.

2-Ethyl-1-phenyl-2-(phenylsulfonyl)but-1-yl Benzoate (17a): Yield 186 mg (88%) as a colorless solid, m.p. 120–121 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.21. IR: $\tilde{v} = 2981$, 2946, 1724, 1450, 1294, 1264, 1145, 1107, 1089, 1073, 759, 715 cm⁻¹. MS (ESI): m/z (%) = 445 (100) [M + Na⁺], 303 (70) [M – PhSO₂H + Na⁺]. HRMS (ESI+): m/z [M + Na⁺] calcd. for C₂₅H₂₆O₄SNa⁺: 445.1444, found 445.1443. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.5 Hz, 3 H), 1.26 (t, J = 7.5 Hz, 3 H), 1.95 (dq, J = 7.5, 15.1 Hz, 1 H), 1.98 (dq, J = 7.5, 15.1 Hz, 1 H), 2.16 (dq, J = 7.5, 15.2 Hz, 1 H), 2.38 (dq, J = 7.4, 15.2 Hz, 1 H), 6.51 (s, 1 H), 7.53 (m, 1 H), 7.77 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 8.8$ (q), 9.0 (q), 22.4 (t), 23.1 (t), 74.2 (s), 76.8 (d), 128.17 (d), 128.24 (d), 128.3 (d), 128.6 (d, 2 C), 129.58 (d), 129.63 (d), 129.72 (s), 133.0 (s), 133.1 (d), 136.8 (s), 138.8 (s), 164.4 (s) ppm.

1-(4-Bromophenyl)-2-ethyl-2-(phenylsulfonyl)butyl Benzoate (17b): Yield 218 mg (87%) as colorless crystals, m.p. 150–151 °C. *R*_f (EtOAc/hexane, 1:5) = 0.44. IR: \tilde{v} = 2981, 1725, 1299, 1265, 1146, 1095, 723, 714 cm⁻¹. MS (ESI): *m/z* (%) = 638 (40), 525/523 (100/100) [M + Na⁺], 383/381 (40/40) [M - PhSO₂H + Na⁺]. C₂₅H₂₅BrO₄S (500.44): calcd. C 59.88, H 5.03, S 6.39, Br 15.94; found C 60.06, H 5.11, S 6.22, Br 15.92. ¹H NMR (400 MHz, CDCl₃): δ = 0.92 (t, *J* = 7.5 Hz, 3 H), 1.17 (t, *J* = 7.5 Hz, 3 H), 1.93 (m, 3 H), 2.28 (dq, *J* = 7.5, 15.0 Hz, 1 H), 6.42 (s, 1 H), 7.21 (m, 4 H), 7.29 (m, 3 H), 7.36 (m, 2 H), 7.47 (m, 1 H), 7.65 (m, 2 H), 7.68 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 9.07 (q), 9.12 (q), 21.9 (t), 23.4 (t), 74.1 (s), 76.3 (d), 123.0 (s), 128.5 (d), 128.9 (d), 130.1 (d), 131.6 (d), 133.4 (d), 133.5 (d), 136.1 (s), 138.8 (s), 164.5 (s) ppm.

(*E*)-4-Ethyl-1-phenyl-4-(phenylsulfonyl)hex-1-en-3-yl Benzoate (17c): Yield 198 mg (88%) as colorless crystals, m.p. 140–142 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.26. IR: \tilde{v} = 2980, 2888, 1720, 1449, 1299, 1286, 1263, 1144, 1095, 1070, 1025, 965, 756, 713, 691, 603 cm⁻¹. MS (ESI+): *m/z* (%) = 471 (100) [M + Na⁺], 185 (30) [M – PhSO₂H – PhCOO⁻]. C₂₇H₂₈O₄S (448.58): calcd. C 72.29, H 6.29, S 7.15; found C 72.58, H 6.39, S 7.34. ¹H NMR (400 MHz, CDCl₃): δ = 1.26 (2×t, *J* = 7.5 Hz, 6 H), 2.14 (m, 3 H), 2.34 (dq, *J* = 7.5, 15.0 Hz, 1 H), 6.23 (d, *J* = 7.9 Hz, 1 H), 6.42 (dd, *J* = 7.9, 15.7 Hz, 1 H), 6.81 (d, *J* = 15.7 Hz, 1 H), 7.22–7.45 (m, 9 H), 7.52 (m, 2 H), 7.62 (m, 2 H), 7.94 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 8.6 (q), 8.8 (q), 22.9 (t), 23.5 (t), 73.4 (s), 75.6 (d), 122.8 (d), 126.9 (d), 128.1 (d), 128.3 (d), 128.6 (d), 128.8 (d), 129.57 (d), 129.64 (s), 130.2 (d), 133.1 (d), 133.2 (d), 135.9 (s), 136.1 (d), 139.2 (s), 164.9 (s) ppm.

4-Ethyl-1-phenyl-4-(phenylsulfonyl)hex-3-yl Benzoate (17d): Yield 205 mg (91%) as a colorless solid, m.p. 126–127 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.36. IR: \tilde{v} = 2980, 2871, 1719, 1451, 1387, 1302, 1268, 1177, 1143, 1105, 1077, 1026, 758, 712, 693 cm⁻¹. MS (ESI+): m/z (%) = 473 (100) [M + Na⁺], 331 (60) [M - PhSO₂H + Na⁺]. C₂₇H₃₀O₄S (450.59): calcd. C 71.97, H 6.71, S 7.12; found C 71.93, H 6.92, S 6.83. ¹H NMR (400 MHz, CDCl₃): δ = 1.08 (t, J = 7.5 Hz, 3 H), 1.14 (t, J = 7.5 Hz, 3 H), 1.87 (dq, J = 7.5, 15.0 Hz, 1 H), 2.10 (m, 3 H), 2.32 (m, 1 H), 2.53 (m, 1 H), 2.68 (m, 1 H), 2.72 (m, 1 H), 5.72 (dd, J = 1.7, 10.5 Hz, 1 H), 7.26 (m, 3 H), 7.32 (m, 2 H), 7.39 (t, J = 7.8 Hz, 2 H), 7.56 (m, 3 H), 7.66 (m, 3 H), 7.88 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 8.3 (q), 8.6 (q), 22.3 (t), 23.4 (t), 32.9 (t), 33.4 (t), 73.4 (s), 74.4 (d), 126.1 (d), 128.4 (d), 128.6 (d, 2 C), 128.7 (d), 129.4 (s), 129.7 (d), 130.4 (d), 133.2 (d), 133.4 (d), 138.9 (s), 141.1 (s), 166.0 (s) ppm.

3-Ethyl-3-(phenylsulfonyl)non-4-yl Benzoate (17e): Yield 138 mg (66%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.30. IR: \tilde{v} = 2956, 2932, 2859, 1720, 1449, 1301, 1268, 1145, 1105, 1077, 1026, 757, 712, 692 cm⁻¹. MS (ESI+): m/z (%) = 855 (10) [2M + Na⁺], 439 (100) [M + Na⁺]. C₂₄H₃₂O₄S (416.57): calcd. C 69.20, H 7.74, S 7.70; found C 69.47, H 7.71, S 8.00. ¹H NMR (400 MHz, CDCl₃): δ = 0.82 (t, J = 6.8 Hz, 3 H), 1.10 (2×t, J = 7.5 Hz, 6 H), 1.16–1.35 (m, 6 H), 1.87 (m, 2 H), 2.01 (m, 3 H), 2.13 (m, 1 H), 5.60 (dd, J = 1.9, 10.6 Hz, 1 H), 7.30 (t, J = 7.5 Hz, 2 H), 7.49 (m, 3 H), 7.54 (m, 2 H), 7.60 (t, J = 7.5 Hz, 1 H), 7.89 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 8.6 (q), 8.7 (q), 14.2 (q), 22.7 (t), 22.8 (t), 22.9 (t), 26.7 (t), 31.6 (t), 31.8 (t), 73.8 (s), 75.1 (d), 128.4 (d), 129.1 (d), 129.76 (s), 129.82 (d), 130.3 (d), 133.2 (d), 133.5 (d), 139.4 (s), 166.1 (s) ppm.

3-Ethyl-3-(phenylsulfonyl)pentadec-4-yl Benzoate (17f): Yield 208 mg (83%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.40. IR: \tilde{v} = 2925, 2854, 1720, 1449, 1302, 1267, 1146, 1077, 1070, 1026, 757, 711, 691 cm⁻¹. MS (ESI+): m/z (%) = 523 (100) [M + Na⁺], 359 (20) [M⁺ – PhSO₂]. C₃₀H₄₄O₄S (500.73): calcd. C 71.96, H 8.86, S 6.40; found C 71.82, H 8.68, S 6.65. ¹H NMR (400 MHz,

CDCl₃): $\delta = 0.84$ (t, J = 6.8 Hz, 3 H), 1.10 (2×t, J = 7.5 Hz, 6 H), 1.15–1.34 (m, 18 H), 1.87 (m, 2 H), 2.01 (m, 3 H), 2.13 (m, 1 H), 5.61 (dd, J = 1.9, 10.6 Hz, 1 H), 7.30 (t, J = 7.5 Hz, 2 H), 7.48 (m, 3 H), 7.54 (m, 2 H), 7.59 (t, J = 7.5 Hz, 1 H), 7.90 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 8.66$ (q), 8.72 (q), 14.3 (q), 22.78 (t), 22.82 (t), 22.9 (t), 26.9 (t), 29.4 (t), 29.49 (t), 29.53 (t), 29.6 (t), 29.7 (t, 2 C), 31.5 (t), 32.0 (t), 73.6 (s), 74.9 (d), 128.3 (d), 129.0 (d), 129.7 (s), 129.8 (d), 130.2 (d), 133.1 (d), 133.4 (d), 139.3 (s), 165.9 (s) ppm.

2-Benzoyloxy Sulfones 17g-i (General Procedure): nBuLi (0.27 mL, 0.43 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of sulfone 7d (100 mg, 0.37 mmol) and HMPA (0.4 mL, 2.22 mmol) in dry THF (4 mL) at -78 °C under a nitrogen atmosphere. After stirring for 10 min, the aldehyde (0.47 mmol) in THF (1.5 mL) was added dropwise at -78 °C. The reaction mixture was stirred at this temperature until complete as indicated by TLC. Benzoyl chloride (57 µL, 0.49 mmol) was added. After 20 min, the reaction mixture was warmed to room temperature during 20 min and 3-(dimethylamino)propan-1-ol (65 µL, 0.56 mmol) was added. After 10 min, the reaction was quenched with water. The layers were separated and the aqueous was extracted with diethyl ether (3 \times 20 mL). The combined organic extracts were washed successively with 1 M HCl, 5% NaHCO₃ and brine solutions, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20) gave compounds 17gi.

2-Isobutyl-4-methyl-1-phenyl-2-(phenylsulfonyl)pentyl Benzoate (17g): Yield 97 mg (55%) as colorless crystals, m.p. 176–177 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.38. IR: \tilde{v} = 2963, 2871, 1725, 1449, 1314, 1298, 1142, 1126, 1105, 1094, 1077, 1069, 1002, 754, 724, 713, 692 cm^{-1} . MS (ESI+): m/z (%) = 501 (100) [M + Na⁺], 359 (50) $[M - PhSO_2H + Na^+]$. $C_{29}H_{34}O_4S$ (478.64): calcd. C 72.77, H 7.16, S 6.70; found C 72.98, H 6.85, S 6.42. $^1\mathrm{H}$ NMR (400 MHz, $CDCl_3$): $\delta = 0.83$ (d, J = 6.7 Hz, 3 H), 1.03 (d, J = 6.7 Hz, 3 H), 1.10 (d, J = 6.6 Hz, 3 H), 1.12 (d, J = 6.5 Hz, 3 H), 1.59 (dd, J = 3.4, 15.2 Hz, 1 H), 2.03 (dd, J = 6.4, 15.2 Hz, 1 H), 2.18 (d, J =5.0 Hz, 2 H), 2.30 (m, 1 H), 2.45 (m, 1 H), 6.71 (s, 1 H), 7.18 (t, J = 7.8 Hz, 2 H), 7.32 (m, 6 H), 7.51 (m, 3 H), 7.57 (dd, J = 1.2, 8.3 Hz, 2 H), 7.69 (dd, J = 1.1, 8.4 Hz, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.7 (d), 23.8 (d), 25.7 (q), 25.9 (q), 26.1 (q), 26.3 (q), 40.3 (t), 41.5 (t), 76.6 (s), 77.4 (d), 128.3 (d), 128.46 (d), 128.52 (d), 128.9 (d), 129.6 (d), 129.9 (d), 130.1 (s), 130.2 (d), 133.0 (d), 133.5 (d), 136.8 (s), 139.5 (s), 164.7 (s) ppm.

1-(4-Bromophenyl)-2-isobutyl-4-methyl-2-(phenylsulfonyl)pentyl Benzoate (17h): Yield 126 mg (61%) as colorless crystals, m.p. 209-210 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.50. IR: \tilde{v} = 2964, 2872, 1726, 1451, 1389, 1301, 1264, 1143, 1126, 1093, 1076, 756, 713, 691 cm⁻¹. MS (ESI+): m/z (%) = 581/579 (60/60) [M + Na⁺], 439/437 (100/ 95) [M - PhSO₂H + Na⁺], 295/293 (50/50) [M - PhSO₂H -PhCOO⁻], 214 (40) [M – PhSO₂H – PhCOO⁻ – Br]. C₂₉H₃₃BrO₄S (557.54): calcd. C 62.47, H 5.97, S 5.75, Br 14.33; found C 62.18, H 5.59, S 5.92, Br 14.41. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.87$ (d, *J* = 6.6 Hz, 3 H), 1.01 (d, *J* = 6.6 Hz, 3 H), 1.07 (d, *J* = 6.6 Hz, 3 H), 1.12 (d, J = 6.4 Hz, 3 H), 1.58 (dd, J = 3.7, 15.2 Hz, 1 H), 2.02 (dd, J = 6.3, 15.2 Hz, 1 H), 2.08 (dd, J = 4.5, 15.2 Hz, 1 H), 2.16 (dd, J = 5.3, 15.2 Hz, 1 H), 2.30 (m, 1 H), 2.43 (m, 1 H), 6.63 (s, 1 H), 7.24 (m, 2 H), 7.36 (m, 4 H), 7.43 (m, 3 H), 7.53 (m, 1 H), 7.58 (m, 2 H), 7.69 (m, 2 H) ppm. $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ = 23.75 (d), 23.84 (d), 25.7 (q), 25.8 (q), 26.1 (q), 26.3 (q), 40.4 (t), 41.5 (t), 76.4 (s), 76.8 (d), 123.2 (s), 128.58 (d), 128.64 (d, 2 C), 129.6 (d), 129.8 (s), 130.1 (d), 131.5 (d), 133.3 (d), 133.5 (d), 135.9 (s), 139.3 (s), 164.7 (s) ppm.

(E)-4-Isobutyl-6-methyl-1-phenyl-4-(phenylsulfonyl)hept-1-en-3-yl Benzoate (17i): Yield 149 mg (80%) as colorless crystals, m.p. 95– 96 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.36. IR: \tilde{v} = 3028, 2870, 1721, 1448, 1298, 1262, 1141, 1094, 1078, 752, 727, 712, 691 cm⁻¹. MS $(ESI+): m/z \ (\%) = 527 \ (100) \ [M + Na^+], \ 385 \ (30) \ [M - PhSO_2H +$ Na⁺], 241 (30) [M - PhSO₂H - PhCOO⁻], 185 (40) [M - PhSO₂H -PhCOO⁻ - CH₂=C(CH₃)₂]. C₃₁H₃₆O₄S (504.68): calcd. C 73.78, H 7.19, S 6.35; found C 73.80, H 7.18, S 6.27. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (m, 12 H), 1.83–2.03 (m, 3 H), 2.09 (dd, J = 4.9, 15.1 Hz, 1 H), 2.20 (m, 2 H), 6.15 (m, 2 H), 6.71 (d, J = 14.8 Hz, 1 H), 7.06–7.33 (m, 10 H), 7.38 (m, 3 H), 7.76 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.8 (d), 24.0 (d), 25.5 (g), 25.7 (g), 25.8 (q), 25.9 (q), 40.1 (t), 40.6 (t), 75.5 (s), 76.2 (d), 122.8 (d), 127.1 (d), 128.4 (d), 128.6 (d), 128.75 (d), 128.81 (d), 129.6 (d), 130.0 (s), 130.6 (d), 133.1 (d), 133.2 (d), 136.1 (s), 137.5 (d), 140.0 (s), 164.9 (s) ppm.

2-Benzoyloxy Sulfones 17j-l (General Procedure): nBuLi (0.54 mL, 0.86 mmol, 1.6 M in hexane) was added dropwise to a stirred solution of sulfone 7d (200 mg, 0.74 mmol) and TMEDA (0.3 mL, 2 mmol) in dry THF (6 mL) at -78 °C under a nitrogen atmosphere. The reaction mixture was warmed to -20 °C during 1 h and the aldehyde (0.93 mmol) in THF (2 mL) was added dropwise. The reaction mixture was stirred at this temperature until complete as indicated by TLC. Benzoyl chloride (114 µL, 0.96 mmol) was added and the reaction mixture was warmed to room temperature after 20 min. 3-(Dimethylamino)propan-1-ol (130 µL, 1.11 mmol) was added and the reaction was quenched with water after 10 min. The layers were separated and the aqueous was extracted with diethyl ether $(3 \times 20 \text{ mL})$. The combined organic extracts were washed successively with 1 M HCl, 5% NaHCO₃ and brine solutions, dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:20) provided compounds 17j–l.

4-Isobutyl-6-methyl-1-phenyl-4-(phenylsulfonyl)hept-3-yl Benzoate (17j): Yield 251 mg (67%) as colorless crystals, m.p. 78–79 °C. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.39. IR: \tilde{v} = 2961, 2870, 1720, 1602, 1470, 1266, 1230, 1141, 1105, 1070, 1026, 755, 711, 693 cm⁻¹. MS (ESI+): m/z (%) = 1035 (10) [2M + Na⁺], 529 (100) [M + Na⁺], 387 (30) [M – PhSO₂H + Na⁺]. C₃₁H₃₈O₄S (506.70): calcd. C 73.48, H 7.56, S 6.33; found C 73.45, H 7.69, S 6.44. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.96 (2 \times d, J = 6.5 \text{ Hz}, 6 \text{ H}), 1.02 (2 \times d, J = 6.5 \text{ Hz}, 6 \text{ H})$ 6 H), 1.84 (dd, J = 4.3, 15.2 Hz, 1 H), 1.87 (dd, J = 4.3, 15.2 Hz, 1 H), 1.91–2.06 (m, 3 H), 2.11 (m, 1 H), 2.23 (m, 2 H), 2.57 (m, 1 H), 2.66 (m, 1 H), 5.89 (dd, J = 2.0, 9.9 Hz, 1 H), 7.09 (m, 2 H), 7.12 (m, 1 H), 7.21 (m, 2 H), 7.29 (m, 4 H), 7.41 (t, J = 7.8 Hz, 1 H), 7.48 (m, 1 H), 7.53 (m, 2 H), 7.79 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 23.9 (d), 24.0 (d), 25.7 (q), 26.1 (q), 33.5 (t), 34.9 (t), 39.6 (t), 40.4 (t), 75.3 (d), 76.1 (s), 126.1 (d), 128.45 (d), 128.54 (d), 128.7 (d), 128.9 (d), 129.7 (d), 129.8 (s), 130.4 (d), 133.2 (d), 133.3 (d), 139.9 (s), 141.3 (s), 166.0 (s) ppm.

4-Isobutyl-2-methyl-4-(phenylsulfonyl)dec-5-yl Benzoate (17k): Yield 273 mg (78%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.38. IR: \tilde{v} = 3063, 2959, 2929, 2870, 1722, 1602, 1585, 1492, 1450, 1446, 1266, 1079, 1069, 935, 758, 726 cm⁻¹. MS (ESI+): m/z (%) = 495 (60) [M + Na⁺], 353 (100) [M - PhSO₂H + Na⁺]. C₂₈H₄₀O₄S (472.68): calcd. C 71.15, H 8.53, S 6.78; found C 71.38, H 8.53, S 6.65. ¹H NMR (400 MHz, CDCl₃): δ = 0.79 (t, J = 6.9 Hz, 3 H), 0.97 (d, J = 6.6 Hz, 3 H), 1.00 (d, J = 6.6 Hz, 3 H), 1.03 (d, J = 6.6 Hz, 3 H), 1.05 (d, J = 6.5 Hz, 3 H), 1.10–1.37 (m, 6 H), 1.68 (m, 1 H), 1.82–1.99 (m, 4 H), 2.04 (dd, J = 4.1, 15.1 Hz, 1 H), 2.14 (m, 1 H), 2.22 (m, 1 H), 5.78 (dd, J = 2.0, 10.1 Hz, 1 H), 7.27 (t, J = 8.0 Hz, 2 H), 7.32 (t, J = 8.0 Hz, 2 H), 7.43 (m, 1 H), 7.46 (m,

1 H), 7.50 (m, 2 H), 7.81 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.2 (q), 22.6 (t), 23.8 (d), 24.0 (d), 25.7 (q, 2 C), 25.8 (q), 26.1 (q), 26.8 (t), 32.1 (t), 32.6 (t), 39.6 (t), 40.4 (t), 75.6 (d), 76.6 (s), 128.4 (d), 128.9 (d), 129.7 (d), 130.1 (s), 130.4 (d), 133.1 (d, 2 C), 140.1 (s), 165.9 (s) ppm.

4-Isobutyl-2-methyl-4-(phenylsulfonyl)hexadec-5-yl Benzoate (17l): Yield 239 mg (58%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:5) = 0.49. IR: $\tilde{v} = 2931, 2923, 2854, 1721, 1450, 1302, 1268, 1175, 1078,$ 1026, 756, 711, 691 cm⁻¹. MS (ESI+): m/z (%) = 579 (100) [M + Na^{+}], 437 (40) [M - PhSO₂H + Na^{+}]. $C_{34}H_{52}O_4S$ (556.84): calcd. C 73.34, H 9.41, S 5.76; found C 73.47, H 9.47, S 6.04. ¹H NMR (400 MHz, CDCl₃): δ = 0.80 (t, J = 6.9 Hz, 3 H), 0.96 (2×d, J = 6.5 Hz, 6 H), 1.02 (2×d, J = 6.5 Hz, 6 H), 1.06–1.33 (m, 18 H), 1.66 (m, 1 H), 1.88 (m, 4 H), 2.02 (dd, J = 4.1, 15.1 Hz, 1 H), 2.10 (m, 1 H), 2.19 (m, 1 H), 5.74 (dd, J = 2.0, 10.1 Hz, 1 H), 7.21–7.32 (m, 4 H), 7.36–7.51 (m, 4 H), 7.79 (m, 2 H) ppm. ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3): \delta = 14.1 \text{ (q)}, 22.6 \text{ (t)}, 23.6 \text{ (d)}, 23.8 \text{ (d)}, 25.5$ (q, 2 C), 25.6 (q), 25.9 (q), 26.9 (t), 29.30 (t), 29.33 (t), 29.5 (t), 29.6 (t, 2 C), 29.7 (t), 31.9 (t), 32.5 (t), 39.4 (t), 40.2 (t), 75.4 (d), 76.4 (s), 128.1 (d), 128.6 (d), 129.5 (d), 129.9 (s), 130.2 (d), 132.9 (d, 2 C), 140.0 (s), 165.6 (s) ppm.

Julia Olefination with Samarium Diiodide (General Procedure): Benzoylated compound 17a–c, g–i (0.16 mmol) was dissolved in THF (1.5 mL) and DMPU (0.73 mL, 6 mmol). After degassing the mixture by three freeze-pump-thaw cycles, a solution of SmI₂ (9.6 mL, 0.96 mmol) was added at 0 °C. After 2 h at room temperature, the reaction mixture was diluted with diethyl ether and decanted from samarium salts, which were washed thoroughly with diethyl ether. The combined organic layers were washed with a saturated NH₄Cl solution and the aqueous was extracted with diethyl ether (3×20 mL). The combined organic extracts were dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:10) afforded olefins 18a–c, g–i.

(*E*)-(4-Ethylhexa-1,3-dien-1-yl)benzene (18c): Yield 20 mg (68%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.96. IR: \tilde{v} = 3030, 2967, 2936, 2878, 1682, 1495, 1452, 1399, 1029, 962, 919, 748, 695 cm⁻¹. MS (EI): m/z (%) = 186 (100) [M⁺], 157 (40), 145 (50). C₁₄H₁₈ (186.30): calcd. C 90.26, H 9.74; found C 89.91, H 9.77. ¹H NMR (400 MHz, CDCl₃): δ = 0.98 (2×t, J = 7.5 Hz, 6 H), 2.08 (q, J = 7.5 Hz, 2 H), 2.22 (q, J = 7.5 Hz, 2 H), 5.90 (d, J = 11.0 Hz, 1 H), 6.39 (d, J = 15.5 Hz, 1 H), 6.96 (dd, J = 11.0, 15.5 Hz, 1 H), 7.11 (m, 1 H), 7.23 (m, 2 H), 7.33 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 12.7 (q), 13.7 (q), 24.2 (t), 29.7 (t), 123.2 (d), 125.5 (d), 126.1 (d), 126.9 (d), 128.5 (d), 130.0 (d), 138.2 (s), 148.1 (s) ppm.

(2-Isobutyl-4-methylpent-1-en-1-yl)benzene (18g): Yield 26 mg (68%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.85. IR: \tilde{v} = 2980, 2956, 2926, 2868, 1462, 1383, 1365, 1164, 1076, 953, 737, 698, 669 cm⁻¹. MS (EI): m/z (%) = 216 (100) [M⁺], 173 (50). HRMS (EI): m/z [M⁺] calcd. for C₁₆H₂₄⁺: 216.1878, found 216.1876. ¹H NMR (400 MHz, CDCl₃): δ = 0.79 (d, J = 6.6 Hz, 6 H), 0.92 (d, J = 6.6 Hz, 6 H), 1.81 (m, 2 H), 1.99 (d, J = 7.4 Hz, 2 H), 2.09 (d, J = 7.4 Hz, 2 H), 6.30 (s, 1 H), 7.16 (m, 3 H), 7.27 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.77 (q), 22.80 (q), 26.6 (d), 26.7 (d), 39.1 (t), 47.1 (t), 125.9 (d), 127.5 (d), 128.1 (d), 129.2 (d), 139.1 (s), 141.7 (s) ppm.

4-Bromo-1-(2-isobutyl-4-methylpent-1-en-1-yl)benzene (18h): Yield 33 mg (71%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.89. IR: $\tilde{v} = 2980, 2955, 2926, 2868, 1486, 1463, 1384, 1366, 1260, 1164, 1097, 1072, 1011, 953, 824, 669 cm⁻¹. MS (EI): <math>m/z$ (%) = 296/294 (30/30) [M⁺], 172 (90) [M⁺ - Br - *i*Pr], 129 (100) [M⁺ - Br - 2 *i*Pr]. HRMS (EI): m/z [M⁺] calcd. for C₁₆H₂₃⁷⁹Br⁺: 294.0983, found

294.0980. ¹H NMR (400 MHz, CDCl₃): δ = 0.80 (d, *J* = 6.6 Hz, 6 H), 0.92 (d, *J* = 6.6 Hz, 6 H), 1.81 (m, 2 H), 2.00 (d, *J* = 7.1 Hz, 2 H), 2.07 (d, *J* = 7.1 Hz, 2 H), 6.23 (s, 1 H), 7.04 (d, *J* = 8.4 Hz, 2 H), 7.40 (d, *J* = 8.4 Hz, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.75 (q), 22.78 (q), 26.61 (d), 26.63 (d), 39.1 (t), 47.1 (t), 119.7 (s), 126.3 (d), 130.9 (d), 131.2 (d), 138.0 (s), 142.7 (s) ppm.

(*E*)-1-(4-Isobutyl-6-methyl-1-phenyl)hepta-1,3-heptadiene (18i): Yield 32 mg (82%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.89. IR: $\tilde{v} = 2954$, 2925, 2868, 1595, 1497, 1383, 1366, 962, 746, 691 cm⁻¹. MS (EI): m/z (%) = 242 (50) [M⁺], 199 (30) [M⁺ - iPr], 143 (100) [M⁺ - iPr - CH₂=C(CH₃)₂]. C₁₈H₂₆ (242.40): calcd. C 89.19, H 10.81; found C 89.16, H 10.88. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (d, J = 6.5 Hz, 6 H), 0.88 (d, J = 6.5 Hz, 6 H), 1.77 (m, 2 H), 1.93 (d, J = 7.3 Hz, 2 H), 2.08 (d, J = 7.3 Hz, 2 H), 6.01 (d, J = 11.0 Hz, 1 H), 6.41 (d, J = 15.5 Hz, 1 H), 6.99 (dd, J = 11.0, 15.5 Hz, 1 H), 7.13 (m, 1 H), 7.27 (m, 2 H), 7.31 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.9$ (q), 23.0 (q), 27.0 (d), 27.7 (d), 40.1 (t), 47.6 (t), 126.0 (d), 126.3 (d), 127.1 (d), 127.7 (d), 128.8 (d), 130.1 (d), 138.2 (s), 143.4 (s) ppm.

Julia Olefination with Sodium Amalgam (General Procedure): Compound 17d–f, j–l (0.134 mmol) was dissolved in THF (1 mL) and methanol (2 mL) under a nitrogen atmosphere. Sodium amalgam (67 mg, 0.31 mmol) was added at –20 °C. After 3 h at this temperature, the reaction mixture was diluted with diethyl ether and decanted from mercury. The organic layer was washed with brine and the aqueous layer was extracted with diethyl ether (3×25 mL). The combined organic extracts were dried with MgSO₄, filtered and the solvents evaporated. Purification by column chromatography (EtOAc/hexane, 1:30) afforded olefins 18d–f, j–l.

(4-Ethylhex-3-en-1-yl)benzene (18d): Yield 19 mg (76%) as a colorless oil. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.91. IR: \tilde{v} = 2964, 2929, 2874, 2856, 1496, 1456, 1261, 1082, 1029, 802, 746, 698 cm⁻¹. MS (EI): m/z (%) = 188 (20) [M⁺], 97 (60), 91 (40), 55 (100). HRMS (EI): m/z [M⁺] calcd. for C₁₄H₂₀⁺: 188.1565, found 188.1560. ¹H NMR (400 MHz, CDCl₃): δ = 0.82 (t, J = 7.5 Hz, 3 H), 0.89 (t, J = 7.5 Hz, 3 H), 1.91 (2×q, J = 7.5 Hz, 4 H), 2.23 (m, 2 H), 2.55 (m, 2 H), 5.04 (t, J = 7.1 Hz, 1 H), 7.09 (m, 3 H), 7.18 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.1 (q), 13.4 (q), 23.4 (t), 29.4 (t), 29.9 (t), 36.8 (t), 122.0 (d), 125.9 (d), 128.4 (d), 128.7 (d), 142.5 (s), 144.0 (s) ppm.

3-Ethylnon-3-ene (18e): Yield 13 mg (64%) as a colorless volatile liquid. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.91. IR: \tilde{v} = 2964, 2929, 2874, 2856, 1456, 1261 cm⁻¹. MS (EI): *m/z* (%) = 154 (40) [M⁺], 125 (20), 111 (20), 97 (30), 83 (40), 55 (100), 41 (40). C₁₁H₂₂ (154.29): calcd. C 85.63, H 14.37; found C 85.80, H 14.16. ¹H NMR (400 MHz, CDCl₃): δ = 0.82 (t, *J* = 6.9 Hz, 3 H), 0.88 (t, *J* = 7.4 Hz, 3 H), 0.91 (t, *J* = 7.4 Hz, 3 H), 1.21 (m, 6 H), 1.83–2.02 (m, 6 H), 5.00 (t, *J* = 7.1 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.2 (q), 13.5 (q), 14.3 (q), 22.9 (t), 23.3 (t), 27.7 (t), 29.5 (t), 30.1 (t), 31.9 (t), 123.2 (d), 142.8 (s) ppm.

3-Ethylpentadec-3-ene (18f): Yield 29 mg (92%) as a colorless liquid. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.95. IR: \bar{v} = 2963, 2925, 2873, 2854, 1664, 1464, 1378 cm⁻¹. MS (CI+): *m/z* (%) = 239 (100) [M + H⁺], 125 (20), 111 (20), 97 (40). HRMS (CI+): *m/z* [M + H⁺] calcd. for C₁₇H₃₅⁺: 239.2739, found 239.2738. ¹H NMR (400 MHz, CDCl₃): δ = 0.84 (t, *J* = 6.8 Hz, 3 H), 0.91 (t, *J* = 7.6 Hz, 3 H), 0.94 (t, *J* = 7.4 Hz, 3 H), 1.22 (m, 18 H), 1.97 (m, 6 H), 5.03 (t, *J* = 7.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.2 (q), 13.5 (q), 14.3 (q), 22.9 (t), 23.4 (t), 27.8 (t), 29.4 (t), 29.6 (t), 29.7 (t), 29.86 (t), 29.90 (t, 2 C), 29.93 (t), 30.5 (t), 32.2 (t), 123.2 (d), 142.8 (s) ppm.

(4-Isobutyl-6-methylhept-3-en-1-yl)benzene (18j): Yield 44 mg (79%) as a colorless liquid. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.93. IR: \tilde{v} = 2953, 2926, 2868, 1496, 1462, 1383, 1365, 909, 735, 698 cm⁻¹. MS (EI): m/z (%) = 244 (10) [M⁺], 97 (100), 91 (40), 55 (90). HRMS (EI): m/z [M⁺] calcd. for C₁₈H₂₈⁺: 244.2191, found 244.2192. ¹H NMR (400 MHz, CDCl₃): δ = 0.76 (d, J = 6.5 Hz, 6 H), 0.79 (d, J = 6.5 Hz, 6 H), 1.63 (m, 2 H), 1.75 (d, J = 7.2 Hz, 2 H), 1.79 (d, J = 7.3 Hz, 2 H), 2.27 (m, 2 H), 2.57 (m, 2 H), 5.13 (t, J = 7.1 Hz, 1 H), 7.12 (m, 3 H), 7.21 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.8 (q), 22.9 (q), 26.4 (d, 2 C), 30.2 (t), 36.8 (t), 39.1 (t), 47.1 (t), 125.9 (d), 126.6 (d), 128.4 (d), 128.8 (d), 138.2 (s), 142.8 (s) ppm.

4-Isobutyl-2-methyldec-4-ene (18k): Yield 25 mg (89%) as a color-less liquid. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.96. IR: \tilde{v} = 2954, 2926, 2868, 1465, 1366, 1166, 1135 cm⁻¹. MS (EI): m/z (%) = 210 (50) [M⁺], 154 (30), 153 (30), 111 (40), 97 (100), 83 (95), 69 (90), 55 (60), 43 (30), 41 (30). HRMS (EI): m/z [M⁺] calcd. for C₁₅H₃₀⁺: 210.2348, found 210.2345. ¹H NMR (400 MHz, CDCl₃): δ = 0.82 (m, 15 H), 1.18 (m, 6 H), 1.67 (m, 2 H), 1.77 (d, J = 7.1 Hz, 2 H), 1.82 (d, J = 7.1 Hz, 2 H), 1.95 (m, 2 H), 5.10 (t, J = 7.2 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.3 (q), 22.8 (q), 22.86 (t), 22.89 (q), 26.4 (d), 27.0 (d), 28.1 (t), 30.1 (t), 31.9 (t), 39.1 (t), 47.1 (t), 127.6 (d), 137.3 (s) ppm.

4-Isobutyl-2-methylhexadec-4-ene (18l): Yield 25 mg (64%) as a colorless liquid. $R_{\rm f}$ (EtOAc/hexane, 1:10) = 0.94. IR: \tilde{v} = 2953, 2923, 2854, 1464, 1382, 1365 cm⁻¹. MS (EI): m/z (%) = 294 (40) [M⁺], 238 (40), 125 (80), 111 (40), 97 (100), 83 (95), 69 (90), 55 (80), 43 (40), 41 (40). HRMS (EI): m/z [M⁺] calcd. for $C_{21}H_{42}^{+}$: 294.3287, found 294.3280. ¹H NMR (400 MHz, CDCl₃): δ = 0.78 (m, 15 H), 1.18 (m, 18 H), 1.63 (m, 2 H), 1.73 (d, J = 7.2 Hz, 2 H), 1.78 (d, J = 7.2 Hz, 2 H), 1.90 (m, 2 H), 5.06 (t, J = 7.2 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.2 (q), 22.7 (q), 22.78 (q), 22.82 (t), 26.3 (d), 26.9 (d), 28.0 (t), 29.49 (t), 29.51 (t), 29.7 (t), 29.79 (t, 2 C), 29.80 (t), 30.3 (t), 32.1 (t), 38.9 (t), 46.9 (t), 127.5 (d), 137.1 (s) ppm.

Supporting Information (see footnote on the first page of this article): Experimental procedures, analytical data for all compounds, X-ray crystallographic data of compounds **7d**, **7g** and **7k**, and copies of ¹H and ¹³C NMR spectra of all new compounds.

Acknowledgments

This work was generously supported by the Grant Agency of the Czech Republic (P207/11/1598) and the Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Rebublic (RVO: 61388963). I. C. thanks the Ministry of Education, Youth, and Sports of the Czech Republic (grant number MSM0021620857) for financial support.

- For selected reviews, see: a) E. Buncel, J. M. Dust, Carbanion Chemistry: Structures and Mechanisms, American Chemical Society, Washington, DC, 2003; b) J. Clayden, Organolithiums: Selectivity for Synthesis Pergamon, Oxford, UK, 2002; c) A. Deagostino, C. Prandi, S. Tabasso, P. Venturello, Curr. Org. Chem. 2011, 15, 2390–2412; d) The Chemistry of Organolithium Compounds (Eds.: Z. Rappoport, I. Marek), Wiley, Chichester, UK, 2004; e) Top. Stereochem. 2010, 26; f) H. J. Reich, J. Org. Chem. 2012, 77, 5471–5491.
- [2] For selected reviews, see: a) M. R. Luderer, W. F. Bailey, M. R. Luderer, J. D. Fair, R. J. Dancer, M. B. Sommer, *Tetrahedron: Asymmetry* 2009, 20, 981–998; b) G. G. Wu, M. Huang, *Top. Organomet. Chem.* 2004, 6, 1–35; c) B. Goldfuss, *Top. Organomet. Chem.* 2003, 5, 21–35; d) M. P. Sibi, S. Manyem, *Tet-*

rahedron 2000, 56, 8033-8061; e) D. A. Hunt, Org. Prep. Proced. Int. 1989, 21, 705-749.

- [3] For selected reviews, see: a) F. Chemla, E. Vrancken, in: *The Chemistry of Organolithium Compounds* (Eds.: Z. Rappoport, I. Marek), Wiley, Chichester, UK, **2004**, vol. 2, p. 1165–1242; b) G. Wu, M. S. Huang, *Chem. Rev.* **2006**, *106*, 2596–2616.
- [4] For selected reviews, see: a) S.-I. Murahashi, J. Organomet. Chem. 2002, 653, 27–33; b) Metal-Catalyzed Cross-Coupling Reactions (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, Germany, 1998.
- [5] For reviews, see: a) M. Sasaki, K. Takeda, Synlett 2012, 2153–2164; b) J. Clayden, M. Donnard, J. Lefranc, D. J. Tetlow, Chem. Commun. 2011, 47, 4624–4639; c) M. Sasaki, H. Ikemoto, K. Takeda, Heterocycles 2009, 78, 2919–2941; d) A. B. Smith III, W. M. Wuest, Chem. Commun. 2008, 5883–5895; e) E. Schaumann, A. Kirschning, Synlett 2007, 177–190; f) K. Tomooka, in: The Chemistry of Organolithium Compounds (Eds.: Z. Rappoport, I. Marek), Wiley, Chichester, UK, 2004, p. 749–828; g) W. H. Moser, Tetrahedron 2001, 57, 2065–2084.
- [6] For reviews, see: a) G. Gao, F.-L. Gu, J.-X. Jiang, K. Jiang, C.-Q. Sheng, G.-Q. Lai, L.-W. Xu, *Chem. Eur. J.* 2011, 17, 2698–2703; b) K. Tomooka, H. Yamamoto, T. Nakai, *Liebigs Ann./Recueil* 1997, 1275–1281.
- [7] For selected reviews, see: a) D. M. Hodgson, K. Tomooka, E. Gras, *Top. Organomet. Chem.* 2003, *5*, 217–250; b) M. Hiersemann, L. Abraham, A. Pollex, *Synlett* 2003, 1088–1095; c) T. Nakai, K. Tomooka, *Pure Appl. Chem.* 1997, *69*, 595–600; d) T. Nakai, K. Mikami, *Org. React.* 1996, *46*, 105–209; e) K. Mikami, T. Nakai, *Synthesis* 1991, 594–604.
- [8] For reviews, see: a) F. Martinelli, A. Palmieri, M. Petrini, *Phosphorus Sulfur Silcion Relat. Elem.* 2011, *186*, 1032–1045; b) M. Nielsen, C. B. Jacobsen, N. Holub, M. W. Paixao, K. A. Jørgensen, *Angew. Chem.* 2010, *122*, 2726–2738; *Angew. Chem. Int. Ed.* 2010, *49*, 2668–2679; c) A.-N. R. Alba, X. Companyo, R. Rios, *Chem. Soc. Rev.* 2010, *39*, 2018–2033; d) A. El-Awa, M. N. Noshi, X. M. du Jourdin, P. L. Fuchs, *Chem. Rev.* 2009, *109*, 2315–2349, and previous reviews cited therein; e) R. J. K. Taylor, G. Casy, *Org. React.* 2003, *62*, 357–475; f) E. N. Prilezhaeva, *Russ. Chem. Rev.* 2001, *70*, 897–920; g) E. N. Prilezhaeva, *Russ. Chem. Rev.* 2000, *69*, 367–408.
- [9] For reviews, see: a) I. E. Markó, J. Pospisil, in: Science of Synthesis (Ed.: A. de Meijere), Thieme, Stuttgart, Germany, 2009, vol. 47a, p. 105–160; b) R. Dumeunier, I. E. Markó, in: Modern Carbonyl Olefination (Ed.: T. Takeda), Wiley-VCH, Weinheim, Germany, 2004, p. 104–150; c) B. Zajc, R. Kumar, Synthesis 2010, 1822–1836; d) C. Aissa, Eur. J. Org. Chem. 2009, 1831–1844; e) K. Plesniak, A. Zarecki, J. Wicha, Top. Curr. Chem. 2007, 275, 163–250; f) P. R. Blakemore, J. Chem. Soc. Perkin Trans. 1 2002, 2563–2585.
- [10] a) M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew. Chem. 2004, 116, 2256–2276; Angew. Chem. Int. Ed. 2004, 43, 2206–2225; b) M. Schlosser, Angew. Chem. 2005, 117, 380–398; Angew. Chem. Int. Ed. 2005, 44, 376–393; c) E. J.-G. Anctil, V. Snieckus, in: Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. (Eds.: A. de Meijere, F. Diederich), Wiley-VCH, Weinheim, Germany, 2004, p. 761–813; d) A. E. H. Wheatley, Eur. J. Inorg. Chem. 2003, 3291–3303, and reviews cited therein; e) C. G. Hartung, V. Snieckus, in: Modern Arene Chemistry (Ed.: D. Astruc), Wiley-VCH, Weinheim, Germany, 2002, p. 330–367; f) J. Clayden, Organolithiums: Selectivity for Synthesis Pergamon, Oxford, UK, 2002, p. 28–73.
- [11] a) H.-J. Gais, J. Vollhardt, *Tetrahedron Lett.* 1988, 29, 1529–1532; b) J. Vollhardt, H.-J. Gais, K. L. Lukas, *Angew. Chem.* 1985, 97, 607–608; *Angew. Chem. Int. Ed. Engl.* 1985, 24, 610–611; c) M. G. Cabiddu, S. Cabiddu, C. Fattuoni, C. Floris, G. Gelli, S. Melis, *Phosphorus Sulfur Silcion Relat. Elem.* 1992, 70, 139–143; d) S. Cabiddu, C. Fattuoni, C. Floris, G. Gelli, S. Melis, *Synthesis* 1993, 41–42; e) for a two-fold α-deprotonation sequence, see: J. Vollhardt, H.-J. Gais, K. L. Lukas, *Angew.*

Chem. 1985, 97, 695–696; Angew. Chem. Int. Ed. Engl. 1985, 24, 696–697.

- [12] B. Puget, U. Jahn, Synlett 2010, 2579-2582.
- [13] M. Wessels, V. Mahajan, S. Boßhammer, G. Raabe, H.-J. Gais, *Eur. J. Org. Chem.* 2011, 2431–2449.
- [14] M. S. Hossain, A. L. Schwan, Org. Lett. 2011, 13, 5330-5333.
- [15] M. M. Zhao, C. Qu, J. E. Lynch, J. Org. Chem. 2005, 70, 6944– 6947.
- [16] CCDC-915126 (for 7k), -915127 (for 7d) and -915128 (for 7g) contain the crystallographic data for this article. Copies of data can be obtained, free of charge by application to the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44-(0)1223-336033 or E-mail: deposit@ccdc.cam.ac.uk].
- [17] a) A. C. Hoepker, L. Gupta, Y. Ma, M. F. Faggin, D. B. Collum, J. Am. Chem. Soc. 2011, 133, 7135–7151; b) Y. Ma, A. C. Hoepker, L. Gupta, M. F. Faggin, D. B. Collum, J. Am. Chem. Soc. 2010, 132, 15610–15623.
- [18] KHMDS has been used frequently for the deprotonation of sulfones, especially in the Julia–Kocienski variant, see for instance: a) J. A. Marshall, D. G. Cleary, J. Org. Chem. 1986, 51, 858–863; b) H. Fujishima, H. Takeshita, S. Suzuki, M. Toyota, M. Ihara, J. Chem. Soc. Perkin Trans. 1 1999, 2609–2616; c) H. Miyaoka, T. Baba, H. Mitome, Y. Yamada, Tetrahedron Lett. 2001, 42, 9233–9236; d) C. A. G. Baker-Glenn, A. G. M. Barrett, A. A. Gray, P. A. Procopiou, M. Ruston, Tetrahedron Lett. 2005, 46, 7427–7430.

- [19] I. E. Markó, F. Murphy, L. Kumps, A. Ates, R. Touillaux, D. Craig, S. Carballares, S. Dolan, *Tetrahedron* 2001, 57, 2609–2619.
- [20] a) E. O. Volz, G. W. O'Neil, J. Org. Chem. 2011, 76, 8428–8432;
 b) G. W. O'Neil, D. J. Moser, E. O. Volz, Tetrahedron Lett. 2009, 50, 7355–7357.
- [21] H.-J. Gais, H. J. Lindner, J. Vollhardt, Angew. Chem. 1985, 97, 865–865; Angew. Chem. Int. Ed. Engl. 1985, 24, 859–860.
- [22] H. Miyabe, M. Ueda, A. Nishimura, T. Naito, Org. Lett. 2002, 4, 131–134.
- [23] P. M. Gannett, D. L. Nagel, P. J. Reilly, T. Lawson, J. Sharpe, B. Toth, J. Org. Chem. 1988, 53, 1064–1071.
- [24] A. Padwa, D. N. Kline, S. S. Murphree, P. E. Yeske, J. Org. Chem. 1992, 57, 298–306.
- [25] M. Pohmakotr, W. Ieawsuwan, P. Tuchinda, P. Kongsaeree, S. Prabpai, V. Reutrakul, Org. Lett. 2004, 6, 4547–4550.
- [26] S. H. Pine, G. Shen, J. Bautista, C. Sutton Jr., W. Yamada, L. Apodaca, J. Org. Chem. 1990, 55, 2234–2237.
- [27] F. Schoenebeck, J. A. Murphy, S.-z. Zhou, Y. Uenoyama, Y. Miclo, T. Tuttle, J. Am. Chem. Soc. 2007, 129, 13368–13369.
- [28] Q. Xiao, J. Ma, Y. Yang, Y. Zhang, J. Wang, Org. Lett. 2009, 11, 4732–4735.
- [29] L. J. Loeffler, S. B. Delorefice, J. Pharm. Sci. 1975, 64, 1170– 1173.

Received: October 13, 2013 Published Online: December 20, 2013