Preparation and NMR Determination of Structures of Tri-, Tetra- and Pentacyclic Isoindolone Derivatives

Pal Sohár*

Spectroscopic Laboratory, Department of General and Inorganic Chemistry, Loránd Eötvös University, P.O.B. 32, H-1518 Budapest, Hungary

Samuel Frimpong-Manso, Géza Stájer and Gábor Bernáth

Institute of Pharmaceutical Chemistry, Albert Szent-Györgyi Medical University, P.O.B. 121, H-6701 Szeged, Hungary

From the reactions of 3-endo-benzoyl-6-exo-phenylbicyclo[2.2.1]heptane-2-endo-carboxylic acid (2) and α,ω diamines or o-aminophenol/thiophenol, different tri-, tetra- and pentacyclic phenyl-substituted norbornanecondensed heterocycles were prepared. With ethylenediamine, 2 furnished two isomeric imidazolo[2,1-a]isoindolones. In the formation of one of them, an endo $\rightarrow exo$ isomerizaton was observed. The stereostructures (configurations and conformations) of the compounds were elucidated by ¹H and ¹³C NMR spectroscopy, with the aid of routine spectra and also DR, DNOE, DEPT, COLOC and 2D-HSC measurements.

KEY WORDS NMR ¹H NMR ¹³C NMR Norbornane-fused O,N-heterocycles Reaction mechanism Stereostructure DR DNOE 2D-HSC DEPT COLOC

INTRODUCTION

Earlier work relating to the development of a new family of potentially anorexic compounds led to condensed saturated or partially saturated isoindolone derivatives.¹⁻³ To achieve a favourable pharmacological effect, methylene-bridged benzoxazine derivatives saturated in the carbocycle were also prepared.²

This paper presents the preparation of methylenebridged saturated isoindolone derivatives which are phenyl-substituted on the norbornane moiety. The synthetic route involves the possibility of the formation of stereoisomers, and the occurrence of isomerization during the ring-closure reaction also cannot be excluded. Elucidation of the structure of the fairly complex tetra- and pentacyclic system lends particular interest to the topic and poses an exciting challenge from an NMR spectroscopic aspect.

SYNTHESIS

The AlCl₃-catalysed Friedel–Crafts reaction of bicyclo[2.2.1]hept-5-ene-2,3-di-*endo*-dicarboxylic an-hydride (1) with benzene gives 3-*endo*-benzoyl-6-*exo*-phenybicyclo[2.2.1]heptane-2-*endo*-carboxylic acid (2) in 71% yield. The similar reaction of the analogous 4-cyclohexene-*cis*-dicarboxylic anhydride and dimethyl ester⁴ gives the compound which contains the 5-phenyl group *trans*-equatorial to the carboxylic group. We presume that first the benzene acylation and subsequently the addition takes place in this reaction because, for the cyclohexene analogue, the addition and

CCC 0749-1581/94/120705-06 © 1994 by John Wiley & Sons, Ltd.

subsequent acylation lead to an isomeric mixture of aroycarboxylic acids which contain the phenyl group in position 4 or 5.^{3,5} Thus, Friedel-Crafts acylation of benzene with 4-phenycyclohexane-cis-1,2-dicarboxylic anhydride furnishes 2-benzoyl-4-phenylcyclohexanecarboxylic acid as the main product (yield (67%),⁴ while the 5-phenyl regioisomer is obtained in only 11% yield. However, in the AlCl₃-catalysed one-step reaction of 4cyclohexene-cis-1,2-dicarboxylic anhydride, we experienced a reversed regioselectivity. In this reaction, 2-benzoyl-5-phenyl-1-cyclohexanecarboxylic acid was obtained in 72% yield,³ which lends support to the postulated reaction mechanism. This reaction is an example of a C-aryl substitution on the bicycloalkene ring, and provides a versatile synthon suitable for the preparation of a great variety of phenyl-disubstituted condensedskeleton saturated heterocycles.

On boiling in toluene with *p*-toluenesulphonic acid as catalyst, the reaction of **2** and hydrazine (Scheme 1) yields the methylene-bridged 1,6-diphenyl-hexahydrophthalazine-4(3H)-one **3**. Benzophthalazin-ones analogous to **3**, containing an aromatic ring instead of the phenyl-substituted norbornane skeleton, are already known.^{5,6} However, though aromatic fused-skeleton heterocycles were prepared many decades ago, their saturated carbocycle-fused analogues have not yet been described. Of course, the stereochemistry of the saturated polycyclic systems is rather involved, a feature providing spectroscopic interest.

If the bifunctional reagents contain carbon(s) between the two reactive groups, condensed tetra- or pentacyclic hetero derivatives are formed from 2. Thus, ethylenediamine and 1,3-diaminopropane yield methylenebridged decahydroimidazo- (4a and b) and dodecahydropyrimido[2,1-a]isoindolones (5), respectively. The imidazo[2,1-a]isoindolone analogous to 4,

> Received 18 January 1994 Accepted (revised) 12 July 1994

^{*} Author to whom correspondence should be addressed.

Scheme 1

containing a benzene ring instead of a norbornane moiety, is already known.⁷

From the reaction of 2 and ethylenediamine, two compounds (4a and b) were isolated. Compound 4a contains an 8-exo-phenyl-di-exo- and 4b and 8-endophenyl-di-endo structural moiety. In the products 4b and 5-8, the di-endo configuration of the starting norbornane synthon remained unchanged and the 6-phenyl group on the norbornane skeleton was in the exoposition without exception. In the formation of 4a, the observed isomerization in the ring closure, i.e. the change of the starting di-endo configuration to di-exo, is noteworthy. The di-endo compounds, e.g. di-endo-3aminobicyclo[2.2.1]hexane- and -5-hexene-2-carboxylic acids, and their derivatives always retained their configuration in the target heterocyclic compounds.^{8,9} In the literature, we have found only a single example of isomerization, when 1 was transformed in the di-exonorbornenedicarboxylic anhydride on prolonged heating.¹⁰ In our experience, however, the *cis* configuration of similar saturated starting compounds often changes in ring-closure reactions, and the more stable trans isomers are formed.²

The reaction of 2 with o-phenylenediamine led to the isoindolo[2,1-a]benzimidazole 6, that with oaminophenol to the corresponding benzoxazolo derivative 7 and that with o-aminothiophenol to the isoindolo[1,2-b]benzothiazole 8.

STRUCTURE

The spectral data on the new compounds are listed in Tables 1 and 2. For easy comparison of analogous spectroscopic data, the numbering of compound 2 is applied for all derivatives in the text and tables (see Scheme 1). The IUPAC numbering can be found in the Experimental section.

For 3, the di-endo- annelation of the hetero ring and the norbornane skeleton are proved unambiguously by the coupling contants J(H-1,H-2) = 4.7 Hz and J(H-3,H-4) = 3.0 Hz.¹¹ The differential nuclear Overhauser effect^{12a,13} (DNOE) result proves the nearness of the hydrogen having the double doublet at 3.69 ppm to the

phenyl substituent on the sp² carbon and consequently the assignment of this signal to H-3. From this and the results of the double resonance (DR) and twodimensional heteronuclear shift correlation (2D-HSC)¹⁴ measurements, the assignment of all the other ¹H and ¹³C NMR signals is also unambiguous. In comparison with C-4, the large downfield shift of the C-1 line (by 5.9 ppm) indicates the position of the 6-phenyl group on the saturated carbon (the downfield shift of the C-1 line is caused by the α -effect of the tertiary C-6^{12b}). The exo position of the phenyl group follows from the shifts of H-5,5' and H-6 and the corresponding ¹³C chemical shifts. For the norbornane, the ¹H NMR shift of H-exo is 1.46 ppm and that of H-endo is 1.18 ppm.¹⁵ In the event of an endo-6-phenyl group (which is sterically unfavourable ab ovo), the H-5(endo) shift would decrease because of the anisotropic shielding.^{12c} In contrast, we found that δ H-5(endo) $\approx \delta$ H-5(endo, exo) ≈ 1.5 ppm. Hence, the shielding of the endo-hydrogens decreases, which can be explained by the downfield shift caused by the anisotropy of the C=O or C=N groups.^{12d,16}

A comparison of the carbon shifts with those for analogous compounds¹¹ containing other heterorings diendo-annelated to the norbornane likewise supports the exo position of the 6-phenyl group (see below). Hence, the stereostructure $1R^*$, $2S^*$, $3R^*$, $4S^*$, 6R follows.

In 4a, the heteroring and norbornane moiety are di-*exo*-annelated, as can be concluded from the upfield shifts and doublet splits of the H-2,3 signals^{11,16} and from the opposite shifts (by *ca.* 5 ppm) of the C-5 (downfield) and C-7 lines (upfield) relative to those for $3.^{16}$

From the 2D-HSC and DNOE measurements, the assignments of the H-2,3 signals are unambiguous. Starting from the two unequivocally identified H-7 doublets (the 7-methylene group has an AB spectrum) and the DNOE spectra obtained by saturation of these doublets, the H-1 and H-4 signals can be assigned with certainty (and the 2D-HSC measurements indicate the corresponding carbon signals). As the H-2 and H-3 multiplets are absent from the above-mentioned DNOE spectra, this is again proof of the di-exo annelation. The DNOE spectra contain the signals of the orthohydrogens of one or the other phenyl group [on satura-

	250 MHz ^a		•									
Compound	NNH band	vC = 0 band	H-1 d(11) ^b	H-2 dd(1H)⁰	H-3 dd(1H) ^d	H-4 ∿s(1H)	H-6 dd(1H)°	ָ פַ	1 ₂ (5) ddd®	CH ₂ (d(1H) ^r	7) ^h d(1H) ⁹	ArH 1–5 signals 10H/14H) [,]
ĸ	3210	1666	∿ 2.8 ¹	3.07	3.69	2.66	ر 2.8 ¹	1.4	-1.6	4	1.6	~7.15. ^k , 7.25. ^{k,1} ~7.4. ^m , 7.77 ^{m,n}
4a	3280	1680	\sim 2.85 ⁱ	2.50	$\sim 2.85^{i}$	\sim 2.85 ⁱ	\sim 1.65 ¹	1.25	∿1.65 ⁱ	\sim 1.65 ⁱ	1.37	7.1–7.35, 7.45, ^{k,p} 7.62 ^{m,n}
4b	3292	1695	2.82	$\sim 3.25^{i}$	∿3.1 ⁱ	2.25	∿ 3.1 i	1.30	1.78	1.68	1.42	~7.15, k.n.º 7.2–7.5
S	3268	1661	\sim 2.80 ⁱ	3.18	$\sim 2.55^{1}$	2.02	3.03	1.20	1.85	د 1.6 ¹	2 1.3	7.0–7.6 ^p
9	3268	1684	$\sim 2.85^{i}$	3.28	2.95	\sim 2.85 ⁱ	3.13	1.84	2.52	1.78	1.32	6.65,ª 6.85,ª 6.95,ª 7.1–7.45, 7.65ª
7	1	1705	2.84	3.46	ر3.0 ⁱ	$\sim 2.95^{i}$	∿3.1 ⁱ	1.86	2.22	1.78	1.36	6.9–7.1, ^r 7.1–7.4, 7.5–7.6 ^r
8	١	1729	2.91	∿ 3.6 ⁱ	~3.6 ⁱ	\sim 2.46	3.18	1.35	∿ 1.6 ^j	1.72	د 1.5 ^ت	7.1–7.4, 7.69 ^{m.n}
Solveni (2 × 1H) (2 × 1H) (2 × 1H) (4a), 2.((4a), 2.((1+-2.) (1-2.)	t DMSO- <i>d</i> ₆ : 3.00 and 3 2.45 broat 1.45 broat H-6) : 6.0 (4 H-3) and J(1 H-3) and J(1 H-3) and J(1 H-6) and J(1 H-1). H-6) and J(1 H-1). H-6) and J(1 h-7 h-6) and A h-6) and A h-6) and J(1 h-7 h-1).h-1). h-1). h-1). h-1). h-1). h-1). h-1). h-1). h-1). h-1	for 3. <i>b</i> (46), 3. <i>b</i> (46), 1. (40), 1. (40), 1. (41),	 \ssignments \ssignments \ssignments \$55 and 2. \$13.4 and \$14.4 and \$	were prove ad 4.05 (4b) 85' (5), CCI 3.0 (3), 9.4 5.5 (5), 9.0 a 4-7,H-7'): 1 1 groups and 4a, 8. 4a, 8.	ad by DNOE 1, for 5 : 3.38 H ₂ C (5), 2 × and 4.5 Hz (f) and 4.7 (6) 8.4 1.1 (4a), 10.5 ithe condense ithe condense ithe 8-Ph gro	and 2D-HS dt (/: 13:0, m (2 × 1H): 9.5 and 6.0 5). 2 Hz (4b, 6 – ed aromatic i tup). 11, 4' (dt) ar	50, for 3 al 13.0 and 3 (6, 7), 7.9 (6, 7), 7.9 (7, 7)	lso by DI (7 Hz) and and <1 H and <1 H and <1 H with incre	R measuren Id 4.40 dd (NH, s (1H) rt (doublet s 10H for 3, asing chem	vents. Furth J: 13.4 and for 4a). 4a and b an ical shifts.	er signals 5.2 Hz);N p (3), ~1, d 5, 14H f	in ¹ H NMR spectra: CONC <i>H</i> ₂ , 2 × m HC <i>H</i> ₂ , 2 × m (2 × 1H): 2.60 and 3.15 8 broad (4a), 1.88 sharp (4b), ~1.75 or 6-8.

Table 2. ¹³C NMR chemical shifts ($\delta_{TMS} = 0$ ppm) of compounds 3, 4a and b and 5-8 in CDCl₃ solution at 62.89 MHz^a

	C 11	cu										L	ines of the 8	-phenyl grou	ps
Compound	(5)	(7)	CH-1	CH-2	CH-3	CH-4	CH-6	c-0	C ^a b	NCH ₂ °	хсн₂⁴	C-1′	C-2',6'	C-3',5'	C-4'
3	33.6	37.5	50.6	43.2	41.4	44.7	43.4	168.4	150.0	_		138.2	130.2	128.6	131.0
4a	36.9	31.4	46.3	49.8	54.7	45.3	40.0	181.3	90.9	44.0	44.2	139.0	125.9 126.3	127.5	128.8
4b	30.7	39.0	46.1	48.7	51.6	40.5	42.2	183.3	87.7	45.8	43.4	140.4	126.4 [†]	128.0 ^f	125.6
5	30.1	38.9	45.8	48.8	53.1	40.3°	41.4	177.5	79.0	39.2	40.4°	139.3	?†	?†	125.4
6	28.5	38.6	47.4	52.4	52.1	41.2	41.8	174.5	87.7	128.8	141.9	145.6	123.4	129.2	125.5°
7	28.8	38.9	47.1	51.9	52.9	40.8	41.5	175.2	104.6	127.6	151.9	144.2	124.1	128.7	125.8
8	29.9	38.9	46.6	48.9	52.0	41.6	42.1	180.0	86.5	133.4	139.5	143.1	125.1 ⁺	127.4 ^h	125.9°

a Assignments were proved by DEPT and 2D-HSC measurements. Solvent for 3: DMSO- d_6 . Further signals: 6-phenyl group, C-1': 147.2 (3, 6), 145.4 ± 0.2 (4a, b, 5, 7, 8), C-2',6': 127.9 (3), 127.2 ± 0.2 (4-8), C-3',5': 130.4 (3), 128.2 ± 0.2 (4-8), C-4' [coalesced with the C-3',5' (6) or C-2',6' line (7)]: 127.6 ± 0.3 (3-5, 7, 8), 128.1 (6). Condensed benzene ring: C-2': 120.8 (6, 8), 121.9 (7), C-3': 114.8 (6), 115.7 (7), 125.5^h (8), C-4': 125.7^a (6), 126.0 (7), 123.2 (8), C-5': 111.3 (6), 110.1 (7), 125.5^a (8).

^b sp³ Carbon in the five-membered hetero ring (4-8), C=N for 3.

^c (CON)—CH₂ (4, 5) or N—C-1'(Ar) group (6–8).

^dCH₂ (4a, b, 5) or X-C-6'(Ar) group, X: NH (4a, b, 5, 6), O (7), S(8).

^e Two overlapping lines.

^t Broadened lines due to hindered rotation of the phenyl group; in the case of 5 the chemical shift is not identifiable.

Interchangeable assignments.

h Reversed assignments with C-2',6' line of the 6-phenyl group at 127.2 ppm may also be possible.

tion of the H-7(exo) and H-7(endo) doublets the enhancement of the $H^{ortho}(6-Ph)$ or $H^{ortho}(8-Ph)$ signals was observed], hence the exo position of the latter, i.e. the trans position of the 6- and 8-phenyl groups to H-2, 3, follows.

The structure with the configuration $1R^*$, $2R^*$, $3S^*$, $4S^*$, $6R^*$, $8S^*$ is especially interesting, because we have found no change in the C-2, C-3 configurations in the reactions of norbornane derivatives with di-exo or di-endo substituents suitable for cyclization in positions 2 and 3. The literature includes only one such example of di-endo \rightarrow di-exo isomerism.¹⁰ In our case, however, the mobile norbornane annelation hydrogens in the α -position to the carbonyl groups can facilitate the isomerization for **2**.

For 4b, the multiplets of the two annelation hydrogens overlap partly (H-2) or fully (H-3) with other signals. However, the double doublet splits of the H-2 signal (12.0 and 6.0 Hz) can be identified and indicate the unchanged di-*endo* configuration. In accordance, the C-7 line is downfield shifted (by 7.6 ppm) relative to that for 4a, while the C-5 line is shifted upfield (steric compression shift,¹⁷ manifested as an upfield shift of lines of sterically hindered carbons).

For further proof of the di-endo annelation, the upfield 7-methylene doublet was irradiated. In the DNOE spectrum, besides the trivial appearance of the H-1 and H-4 signals, the multiplets of H-2 and H-3 were observed, and the double doublet split of H-2 could be identified; the latter was hidden by overlapping in the routine spectrum. The response of the H-2 and H-3 signals proved the assignment of the irradiated doublet to H-7(endo). On saturation of the H-7(exo) signal, the signals of H-2,3 were absent, of course, but the doublet of the ortho-hydrogens of the 6-phenyl group appeared, proving the exo position of the substituent.

The strong NOE between *ortho*-hydrogens of the phenyl group on the quaternary carbon and H-5(endo) and H-4 confirms the *endo* position of the aryl group, i.e. the *trans* position to H-2,3. The hindered rotation

indicated by the separated appearance of the C-2' and C-6' and C-3' and C-5' signals, respectively, supports this. Further evidence is the strong shielding of the signal of H-4 (the anisotropic effect of the phenyl ring^{12c}) and the upfield shift of the lines of C-5 and the quaternary carbon relative to those for **4a** (the latter shift is due to steric hindrance¹⁷).

The routine spectra of 5 and the DR, DNOE and 2D-HSC results are analogous to those for 4b, which proves the similar steric structures. These results also support the conclusions concerning the structure of 4b. For both 4b and 5, the configurations are $1R^*$, $2S^*$, $3R^*$, $4S^*$, $6R^*$, $8S^*$.

For the benzimidazole-condensed derivative 6, the di-*endo* annelation of the norbornane moiety is unambiguously proved by the double doublet splits of the H-2 and H-3 signals (9.4 and 6.0 Hz), the mutual NOE between H-2,3 and the more shielded 7-methylene hydrogen [which indicates at the same time that the doublet at 1.32 ppm originates from H-7(*endo*)], and the 38.6 ppm shift of the C-7 line. As a strong NOE was found between the doublet at 2.95 ppm and the *ortho*-hydrogens of the phenyl group on the quaternary carbon, the assignment of the former to H-3[†] and the *exo*-position of the latter are obvious.

If the phenyl substituent on the norbornane is in the 6-exo position, the relative configuration $1R^*$, $2S^*$, $3R^*$, $4S^*$, $6R^*$, $8R^*$ follows from the above. Indirect proof of the 6-exo position of the CH-phenyl group is in the high (0.9 ppm) downfield shift of the H-5(endo) signal in comparison with that in 4a, in which the 8-phenyl group is also in the exo position. This is a consequence of the anisotropic effect of the lone electron pair on the very close-lying (ca. 1.9Å) amiine-nitrogen.^{12e} The 5- or 6-endo position of the phenyl group also cannot come into consideration for steric reasons.

[†] The assignment of the H-3 (2.95 ppm) and H-2 (3.28 ppm) signals was also proved by COLOC measurements^{18,19} [${}^{3}J(C,H)$ couplings with carbonyl carbon at 174.5 ppm].

On the basis of the ¹H and ¹³C NMR data and the analogous NOE, the benzoxazole derivatives 7 and 6 have identical structures (this means a different configuration of C-8 in 7: 1R*, 2S*, 3R*, 4S*, 6R*, 8S*). For 7, the H-1 and H-4 signals appear separately and the relationship δH -2 > δH -3 is undoubtedly due to the deshielding effect of the carbonyl vicinal to H-2^{12d} and the shielding effect of the exo-8-phenyl group close to H-3.[‡] Consequently, the assignments of the H-2 and H-3 signals are unambiguous. The mutual NOE between the signals at 3.46 ppm (H-2) and 2.84 ppm proves that the latter doublet belongs to the H-1 signal. The 2D-HSC measurements show that the downfield (47.1 ppm) of the C-1 and C-4 signals corresponds to C-1 (from the ${}^{1}H{}^{-13}C$ correlations 2.84 to 47.1 and ca. 3.0 to 40.8 ppm). The downfield shift can be rationalized by the β -effect of the substituent in position 6, and consequently the phenyl group on the norbornane moiety must be in position 6.^{12f}

The benzthiazole 8 contains an *endo*-phenyl group on the quaternary C-8. Hence, the configuration of the latter is the reverse of the analogues 6 and 7, i.e. $1R^*$, $2S^*$, $3R^*$, $4S^*$, $6R^*$, $8R^*$. This structure was confirmed by x-ray measurements,²⁰ and is indicated by the following changes in the spectra: (a) In the ¹H NMR spectrum of 8, the H-3 signal is shifted downfield significantly (by ca. 0.6 ppm) relative to 6 and 7 [this also holds for H-2 and H-7(endo) to a lesser extent] because of the opposite influence of the C-S bond instead of the shielding effect of the 8-phenyl ring. (b) The rotation of the sterically unfavourable endo-phenyl group is hindered. Hence, its C-2',6' lines are broadened. (c) The anisotropic effect of the close-lying 8-phenyl group results in the shielding of H-5(endo) being increased to a great extent (by 0.95 and 0.6 ppm) relative to that in the analogues 6 and 7. (d) A weak NOE was found between H-6(endo) and the ortho-hydrogens of the 8-phenyl ring, which is proof of the endo position of the latter. (e) For 8, the downfield shift of the carbonyl carbon (by more than 5 ppm) relative to those for 6 and 7 indicates the different steric structure. The reasons for this steric structure is probably that the sulphur, with a larger atomic radius than that of the NH group or oxygen, would come close to H-5(endo) and to avoid the considerable steric hindrance, the molecule forms the structure involving the reverse position of the 8-phenyl ring on the quaternary carbon compared with that in 6 and 7.

EXPERIMENTAL

IR spectra were run in KBr discs on a vacuum optic 113v FT spectrometer equipped with an Aspect 2000 computer. ¹H and ¹³C NMR spectra were recorded in CDCl₃ or DMSO- d_6 solution in 5 mm tubes at room temperature on a Bruker WM-250 FT spectrometer controlled by an Aspect 2000 computer at 250.13 (¹H) and 62.89 (¹³C) MHz, respectively, using the deuterium signals of the solvent as the lock and TMS as internal standard. The most important measurement parameters were as follows: spectral width 5 and 15 kHz, pulse

[‡] For **6**, this was also proved by COLOC measurements.

width 1 and 7 μ s (ca. 35° flip angle), acquisition time 1.64 and 1.02 s, number of scans 4–16 and 0.5–1.5 K, computer memory 16K and 32K. Complete proton noise decoupling (ca. 3 W) for the ¹³C spectra and Lorentzian exponential multiplication for signal-to-noise enhancement were used (linewidth 0.7 and 1.0 kHz).

Conventional cw irradiation of ca. 0.15 W was used in the DR experiments.

DEPT²¹ spectra were run in a standard way,²² using the $\theta = 135^{\circ}$ pulse to separate the CH/CH₃ and CH₂ lines phased up and down, respectively. Typical acquisition data were number of scans 128–12K, relaxation delay for protons 3 s and 90° pulse widths 10.8 and 22.8 µs for ¹³C and ¹H, respectively. The estimated value for J(C,H) resulted in a 3.7 ms delay for polarization.

The standard Bruker microprogram DNOE-MULT.AU to generate NOE was used with a selective pre-irradiation time of 5 s and a decoupling power (cw mode) of ca. 30-40 mW; number of scans 64-256, dummy scans 4-8, pulse widths 5.0 μ s (90°) and 16K data points for ca. 2 kHz spectral width. A line broadening of 1.0 Hz was applied to diminish signals in the difference spectra.

The 2D-HSC spectra were obtained by using the standard Bruker pulse program XHCOORD.AU. The number of data points was 4K in the ¹³C domain, and 64–256 increments were used to give better than 5 Hz per point digital resolution in the ¹H domain. 256 transients were obtained with a relaxation delay of 3 s. All C-H correlations were found by using J(C,H) = 135 Hz for calculation of the delay.

Physical and analytical data on compounds 3, 4a, and b and 5-8 are listed in Table 3.

Preparation of *endo*-3- benzoyl-*exo*-6phenylbicyclo [2.2.1] heptane-2-*endo*-carboxylic acid (2)

To a solution of di-endo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride (20.52 g, 0.125 mol) in dry benzene (80 ml), anhydrous AlCl₃ (17.07 g, 0.128 mol) was added in small portions, with cooling and stirring. The mixture was refluxed for 4 h, then cooled to -10° C and HCl (20%, 80 ml) was added dropwise with stirring. After extraction with benzene (3 × 30 ml), the organic layer was washed with water (3 × 50 ml) and dried (Na₂SO₄), and the solvent was evaporated off. To the residue, diethyl ether (30 ml) was added and the mixture was allowed to stand for crystallization. Colourless crystals from EtOAc, mp. 191–193 °C, yield 28.4 g (71%). Analysis: found, C 78.64, H 6.38: required for C₂₁H₂₀O₃ (320.39), C 78.73, H 6.29%.

The methyl ester of 2 was prepared with diazomethane.

Preparation of 5,8-methano-1,6-diphenyl-4a,5,6,7,8,8ahexahydrodrophthaliazine-4(3H)-one (3)

A mixture of 3-endo-benzoyl-6-exo-phenylbicyclo[2.2.1]heptane-2endo-carboxylic acid (2) (8.00 g, 0.025 mol), hydrazine monohydrate (98%, 2.0 g, 0.04 mol) and p-toluenesulphonic acid (one crystal) in dry toluene (40 ml) was refluxed for 7 h. After evaporation of the solvent, the residue was eluted with benzene from an Al_2O_3 column (Brockmann II neutr.). The residue of the eluate was crystallized.

Preparation of 6,9-methano-7,9b-

diphenyl-1,2,3,5a,6,7,8,9,9a,9b-decahydro-5*H*-imidazo[2,1-*a*] isoindol-5-ones (4a and b) and 7,10-methano-8,10bdiphenyl-1,2,3,4,6,6a,7,8,9,10,10a,10bdodecahydropyrimido[2,1-*a*] isoindol-6-one (5)

Compound 2 (6.4 g, 0.2 mol) and ethylenediamine monohydrate (3.12 g, 0.04 mol) or 1,3-diaminopropane (2.97 g 0.04 mol) were used for 3. The product was transferred to a silica gel column (Kieselgel 60. 0.063-0.2 mm) and eluted with EtOAc. After evaporation of the solvent, the residue was crystallized several times from EtOH to yield **4a**. The isomer **4b** was prepared from the mother liquor of **4a** by crystallization from EtOAc.

Table 3. Physical and analytical data on compounds 3, 4a and b and 5-8

	М.р.	Yield		Mol.	Analys	is: required/found	(%)
Compound	(°C)	(%)	Formula	weight	с	H	N
3	261–263°	33	C21H20N2O	316.40	79.72/79.64	6.37/6.33	8.85/8.68
4a	259–261 ^ь	28	C ₂₃ H ₂₄ N ₂ O	344.46	80.20/80.05	7.02/7.10	8.13/7.99
4b	184–187ª	30	323H24N20	344.46	80.20/80.11	7.02/7.20	8.13/8.02
5	200–202 ^ь	38	C24H28N20	358.49	80.41/80.20	7.31/7.50	7.81/7.77
6	268–269°	43	C ₂₇ H ₂₄ N ₂ O	392.51	82.62/82.43	6.16/6.29	7.14/7.03
7	192–194°	37	C27H23NO2	393.49	82.42/82.49	5.89/6.03	3.56/3.59
8	209–211ª	45	C27H23NOS	409.55	79.18/79.02	5.66/5.85	3.42/3.28
^a From EtO	Ac.						
^b From EtO	H.						
° From diox	kane-EtOH.						

For the purification of 5, the product was chromatographed on an Al_2O_3 column (Al_2O_3 basic, 50–200 µm) with EtOAc as eluent.

Preparation of 6,9-methano- 5a,8-diphenyl-5a,5b,6,7,8,9,9a,10octahydroisoindolo [2,1-*a*] benzimidazol- 10-one (6), 1,4-methano-2,4b-diphenyl- 1,2,3,4,4a,4b,11,11aoctahydroisoindolo [1,2-*b*] benzoxazol-11-one (7) and -isoindolo [1,2-*b*] benzthiazol-11-one (8)

Compound 2 (8.0 g, 0.025 mol) and *o*-phenylenediamine (2.70 g, 0.025 mol) or *o*-aminophenol (2.73 g, 0.025 mol) or *o*-aminothiophenol (3.13 g, 0.025 mol) were reacted as above for 3. For purification of the pro-

 G. Stájer, F. Csende, G. Bernáth, P. Sohár and J. Szúnyog, Monatsh. Chem. 125, 933 (1994).

- G. Stájer, F. Csende, G. Bernáth and P. Sohár, *Heterocycles* 37, 983 (1994).
- G. Stájer, A. E. Szabó, G. Bernáth and P. Sohár, *Heterocycles* 38, 1061 (1994).
- K. Sugita and S. Tamura, Bull. Chem. Soc. Jpn. 44, 2866 (1971); 44, 2866 (1971); 44, 3383 (1971).
- 5. C. J. Wharton and R. Wrigglesworth, J. Chem. Soc., Perkin Trans. 1 809 (1985).
- A. C. Desai and C. M. Desai, J. Indian Chem. Soc. 57, 759 (1980).
- 7. W. Metlesics, J. Org. Chem. 32, 2185 (1967).
- G. Stájer, A. E. Szabó, F. Fülöp, G. Bernáth and P. Sohár, J. Heterocycl. Chem. 20, 1181 (1983).
- 9. G. Stájer, A. E. Szabó, F. Fülöp, G. Bernáth and P. Sohár, J. Heterocycl. Chem. 21, 1373 (1984).
- 10. D. Craig, J. Am. Chem. Soc. 23, 4889 (1951).
- 11. P. Sohár, I. Pelczer, G. Stájer and G. Bernáth, Magn. Reson. Chem. 25, 584 (1987).
- P. Sohár, *Nuclear Magnetic Resonance Spectroscopy*, (a) Vol. 1, pp. 196, 197; (b) Vol. 2, pp. 152, 153, 159; (c) Vol. 1, pp. 35–38; (d) Vol. 1, p. 33 and Vol. 2, pp. 30, 61; (e) Vol. 2, p. 89. CRC Press, Boca Raton, FL (1983).

ducts, column chromatography was used (6, Al_2O_3 basic Woelm, eluents EtOAc then EtOH, the latter eluate being used; 7, Al_2O_3 neutr., Woelm, EtOAc; 8, Kieselgel, Merck, EtOAc).

Acknowledgements

Thanks are due to Mrs A. Sólyom, Mr A. Fürjes and Mr V. Bege for skilled technical assistance and to Miss M. Mörtl and Mrs. E. Csiszár-Makra for typing the manuscript. Grants OTKA 2693 and ETT T-121 are acknowledged.

REFERENCES

- J. K. M. Sanders and J. D. Mersch, Prog. Nucl. Magn. Reson. 15, 353 (1982), and references cited therein.
- R. R. Ernst, G. Bodenhausen and A. Wokaun, *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*, pp. 471–479. Clarendon Press, Oxford (1987).
- E. Pretsch, T. Clerc, J. Seibl and N. Simon, *Tabellen zur* Strukturaufklärung Organischer Verbindungen mit Spektroskopischen Methoden, p. H-190. Springer, Berlin (1976).
- P. Sohár, G. Stájer and G. Bernáth, Org. Magn. Reson. 21, 512 (1983).
- 17. D. M. Grant and B. V. Cheney, J. Am. Chem. Soc. 89, 5315 (1967).
- 18. A. Bax and G. Morris, J. Magn. Reson. 42, 501 (1982).
- H. Kessler, C. Griesinger, J. Zarbock and H. Loosli, J. Magn. Reson. 57, 331 (1984).
- Reson. 57, 331 (1984). 20. K. Pihlaja, R. Sillanpää, G. Stájer and S. Frimpong-Manso,
- Acta Chem. Scand. 46, 1021 (1992). 21. D. T. Pegg, D. M. Doddrel and M. R. Bendall, J. Chem. Phys. 77, 2745 (1982).
- M. R. Bendall, D. M. Doddrell, D. T. Pegg and W. E. Hull, High Resolution Multipulse NMR Spectrum Editing and DEPT. Bruker, Karlsruhe (1982).