Hydride Complexes of Ruthenium and Related Metals: Preparation and Structures of Cp(PMe₃)₂RuH and $[Cp(PMe_3)_2RuH_2]BF_4$

Frederick R. Lemke*

Department of Chemistry, Ohio University, Athens, Ohio 45701-2979

Lee Brammer*

Department of Chemistry, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, Missouri 63121-4499

Received February 23, 1995[®]

The reaction of $Cp(PMe_3)_2RuCl$ with either KOMe in MeOH or LiAlH₄ in Et₂O produces the hydride $Cp(PMe_3)_2RuH$ (1) in high yield. Protonation of 1 with HX quantitatively generates the dihydrides $[Cp(PMe_3)_2RuH_2]X (X = Cl (2), BF_4 (3), B[3,5-(CF_3)_2C_6H_3]_4 (4)).$ The spectroscopic data on 3 indicate a classical dihydride configuration with no evidence for a dihydrogen tautomer. The pK_a of 3 in CH_2Cl_2 is 13.9, and the contribution of the ancillary ligands to the pK_a value is discussed. X-ray crystal structures of hydride 1 and dihydride 3 have been determined. Hydride 1 exhibits a "three-legged piano stool" geometry, while the cation of 3 exhibits a "four-legged piano stool" geometry, consistent with the classical dihydride configuration. A comparison of the structures of 1 and 3 with related d⁶ Cp'L₂-MH, d⁴ Cp'L₂MH₂, and d⁶ Cp'L₂M(η^2 -H₂) complexes (Cp' = η^5 -C₅H₅, η^5 -C₅Me₅, η^5 -C₅H₅Me) reveals several general structural trends. First, the angle between the Cp' plane and the ML₂ plane lies in the range 59-79° (mean 67.6(13)°) for d⁶ Cp'L₂MH complexes but is in the range $86-90^{\circ}$ (mean $87.6(4)^{\circ}$) for d⁴ Cp'L₂MH₂ complexes and has a mean value of $56.1(8)^{\circ}$ for known d⁶ Cp'L₂M(η^2 -H₂) complexes. Second, the angle between the M-H vector and the normal to the ML₂ plane is generally less than 10° (mean 7.9(12)°) for the d⁶ Cp'L₂MH complexes, while in $d^4 Cp'L_2MH_2$ complexes the M-H vector is shifted toward the ML₂ plane, increasing this angle by ca. 20° (mean 30.0(20)°). The corresponding angle in $d^6 Cp' L_2 M$ - (η^2-H_2) complexes has a mean value of 15.5(18)°. Third, the L-M-L' angles in d⁶ Cp'L₂MH complexes (range $84-101^\circ$, mean $93.0(19)^\circ$) are typically smaller that the corresponding angles in d⁴ Cp'L₂MH₂ complexes (range $101-111^\circ$, mean $107.2(10)^\circ$).

Introduction

For many years there has been great interest in transition metal hydrides because of their unusual reactivity and their involvement in many stoichiometric and catalytic processes.¹⁻⁶ Recently, ruthenium(II) hydrides of the type $Cp'L_2RuH$ ($Cp' = C_5H_5$ (Cp), C_5 - $Me_5 (Cp^*); L = CO, PR_3, PAr_3; L_2 = diphosphines)$ have been the focus of considerable interest. The reactivity of Cp'L₂RuH is largely dependent on the ancillary ligands. $Cp(PMe_3)_2RuH$ reacts with electron-deficient chlorosilanes R_3SiCl (Si $R_3 = SiCl_3$, SiHCl₂, SiMeCl₂, SiMeHCl, and SiMe₂Cl) to form the ruthenium silyl complexes Cp(PMe₃)₂RuSiR₃ and the ruthenium dihydride [Cp(PMe₃)₂RuH₂]Cl, while Cp(PPh₃)₂RuH, under similar conditions, shows no reactivity with chlorosilanes.⁷ This difference in reactivity was attributed to

the enhanced electron donor ability of PMe₃ compared to PPh₃. Protonation of Cp'L₂RuH has proven to be a useful route to cationic ruthenium(II) dihydrogen complexes $[Cp'L_2Ru(\eta^2-H_2)]^+$ and/or cationic ruthenium(IV) dihydride complexes [Cp'L₂RuH₂]^{+.8-16} The nature of the ancillary ligands dictates the protonation product. Electron-withdrawing ligands, like CO, favor dihydrogen formation while electron-donating ligands, like C_5 -Me₅ and PMe₃, favor dihydride formation; many protonation reactions lead to equilibrium mixtures of the two tautomers.

In contrast to this great interest in the hydrides of ruthenium, very few have been the subject of a crystallographic investigation. In this paper, we report the synthesis and ¹H NMR spectra of the electron-rich

© 1995 American Chemical Society

^{*} Abstract published in Advance ACS Abstracts, July 1, 1995. (1) Moore, D. S.; Robinson, S. D. Chem. Soc. Rev. 1983, 12, 415-

⁴⁵² (2) Pearson, R. G. Chem. Rev. 1985, 85, 41-49.

⁽³⁾ Transition Metal Hydrides; Dedieu, A., Ed.; VCH Publishers: New York, 1992

⁽⁴⁾ Transition Metal Hydrides; Muetterties, E. L., Ed.; Marcel Dekker: New York, 1971.

⁽⁵⁾ Masters, C. Homogeneous Transition-metal Catalysis-a gentle art; Chapman and Hall: New York, 1981.

⁽⁶⁾ Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis, 2nd ed.; John Wiley & Sons: New York, 1992.

⁽⁷⁾ Lemke, F. R. J. Am. Chem. Soc. 1994, 116, 11183-11184.

⁽⁸⁾ Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1986, 506-507.

⁽⁹⁾ Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1987, 1675-1676.

⁽¹⁰⁾ Wilczewski, T. J. Organomet. Chem. 1989, 361, 219-229. (11) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109,

^{5865-5867.} (12) Chinn, M. S.; Heinekey, D. M.; Payne, N. G.; Sofield, C. D.

Organometallics 1989, 8, 1824-1826

⁽¹³⁾ Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1990, 112, 5166 - 5175

⁽¹⁴⁾ Jia, G.; Morris, R. H. Inorg. Chem. 1990, 29, 581-582.

⁽¹⁶⁾ Jia, G.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 875–883. (16) Jia, G.; Lough, A. J.; Morris, R. H. Organometallics 1992, 11, 161-171.

Hydride Complexes of Ru and Related Metals

hydride $Cp(PMe_3)_2RuH$ and the dihydrides $[Cp(PMe_3)_2]$ RuH_2]X (X = Cl, BF₄, B[3,5-(CF₃)₂C₆H₃]₄) and the crystal structures of Cp(PMe₃)₂RuH and [Cp(PMe₃)₂-RuH₂]BF₄. The availability of these structures provides a unique opportunity to investigate the structural changes that occur upon converting a ruthenium(II) hydride to a ruthenium(IV) dihydride.

Results and Discussion

Synthesis of Cp(PMe₃)₂RuH. The neutral hydride $Cp(PMe_3)_2RuH$ (1) was prepared in high yields by a modification of the reported procedure.¹⁷ Hydride 1 was readily prepared by reacting Cp(PMe₃)₂RuCl with KOMe in refluxing MeOH (eq 1). Due to the extreme solubility

of 1 in common organic solvents, crystallization of 1 from cold solvents results in low yields. However, hydride 1 readily sublimes and can be obtained as a bright yellow microcrystalline solid in high yields (ca. 90%). Similarly, reacting Cp(PMe₃)₂RuCl with KOCD₃ in refluxing CD₃OD yields the deuteride Cp(PMe₃)₂RuD $(1-d_1)$ in good yields with ca. 90% deuterium incorporation at the metal hydride position. Hydride 1 can also be prepared by reacting $Cp(PMe_3)_2RuCl$ with LiAlH₄ in Et_2O followed by an EtOH quench (eq 1). Using LiAlD₄ in Et_2O followed by an EtOD quench also produces $1-d_1$ but with only 70-75% deuterium incorporation at the metal hydride position.

The difference between the reactivity of $Cp(PMe_3)_2$ -RuCl and $Cp(PPh_3)_2RuCl$ with LiAlH₄ is noteworthy Hydride 1 can be prepared in high yields (ca. 90%) from $Cp(PMe_3)_2RuCl$ and $LiAlH_4$ (eq 1). On the other hand, the reaction of LiAlH₄ with Cp(PPh₃)₂RuCl generates the hydride Cp(PPh₃)₂RuH in low yields with the major product being the trihydride Cp(PPh₃)RuH₃ (eq 2).¹⁸

This difference in reactivity can be attributed to a difference in phosphine lability. The lability of the PPh₃ ligands in Cp(PPh₃)₂RuCl is well documented, and Cp $(PPh_3)_2RuCl$ is a useful synthon for preparing a variety of other ruthenium(II) complexes,¹⁹ including Cp(PMe₃)₂-RuCl.^{20,21} Furthermore, Nolan and co-workers, using anaerobic solution calorimetry, have recently determined that the Ru-PMe₃ bond is stronger than the Ru- PPh_3 bond by 7–8 kcal/mol.²²

Hydride 1 is extremely air sensitive, turning blue upon exposure to air, and undergoes hydride/chloride metathesis with chlorocarbons. In $CDCl_3$, yellow 1 is completely converted to orange Cp(PMe₃)₂RuCl within minutes, while in CD₂Cl₂ this conversion requires more than a day at room temperature. In the ¹H NMR spectrum (CD_2Cl_2) , the hydride resonance of 1 is observed at -13.99 ppm as a triplet (${}^{2}J_{PH} = 36.8$ Hz). A broad band in the IR spectrum (CH_2Cl_2) at 1892 cm⁻¹ is assignable to $\nu(Ru-H)$ (cf. $\nu(Ru-H) = 1900 \text{ cm}^{-1}$ in KBr^{17}). This assignment is confirmed by the absence of this band in $1-d_1$ and the appearance of a band at 1365 cm⁻¹ assigned to $\nu(Ru-D)$. $\nu(Ru-H)/\nu(Ru-D) =$ 1.39 is observed, close to the calculated ratio of 1.41.

Synthesis of $[Cp(PMe_3)_2RuH_2]X$ (X = Cl, BF₄, B[3,5-(CF₃)₂C₆H₃]₄). Protonation of Cp(PMe₃)₂RuH with HX (X = Cl, BF₄, B[$3,5-(CF_3)_2C_6H_3$]₄) in Et₂O or CH₂Cl₂ (eq 3) produces the cationic dihydrides [Cp-

 $(PMe_3)_2RuH_2$]X [X = Cl (2), BF₄ (3), B[3,5-(CF_3)_2C_6H_3]_4 (4)], respectively, as white or light purple solids in high yields (ca. > 90%). Dihydride 2 was previously reported as a product from the reaction of 1 with chlorosilanes.⁷ The isotopomers $[Cp(PMe_3)_2RuHD]BF_4$ (3 d_1) and $[Cp(PMe_3)_2RuD_2]BF_4$ (3- d_2) were prepared by protonating 1- d_1 with HBF₄·Et₂O and HBF₄·Et₂O in D_2O , respectively. Deuterium incorporation at the metal hydride positions was 45% for $3-d_1$ and >95% for $3-d_2$.

In the ¹H NMR spectra (CD_2Cl_2) , the dihydride resonances for 2-4 are observed around -9.9 ppm (t, $^{2}J_{\rm PH} = 29$ Hz). A small dependence on the counterion is observed for the dihydride resonances [2(-9.87 ppm)]> 3 (-9.90) > 4 (-9.93) which parallels the coordinating ability of the counterions;²³ no affect on ${}^{2}J_{PH}$ is observed. The HD isotopomer $3-d_1$ displayed a triplet at -9.88 ppm ($^{2}J_{PH} = 29$ Hz), corresponding to a downfield isotopic shift of ~ 20 ppb, with no observable HD coupling. T_1 measurements for **3** at 400 MHz in CD₂Cl₂ gave a value of 9.41 s at 293 K which decreased to 1.96 s at 208 K. The broad bands in the IR spectra (CH_2Cl_2) of 2-4 at ~1990 cm⁻¹ are assigned to $\nu(Ru-$

⁽¹⁷⁾ Mayer, J. M.; Calabrese, J. C. Organometallics 1984, 3, 1292-1298.

⁽¹⁸⁾ Davies, S. G.; Moon, S. D.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1983, 1278-1279.

⁽¹⁹⁾ Davies, S. G.; McNally, J. P.; Smallridge, A. J. In Advances in Organometallic Chemistry; Stone, F. G. A., West, R., Eds.; Academic Press: New York, 1990; Vol. 30, pp 1–76. (20) Bruce, M. I.; Wong, F. S.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1981, 1398–1405. (21) Treichel, P. M.; Komar, D. A. Synth. React. Inorg. Met.-Org.

Chem. 1980, 10, 205-218.

⁽²²⁾ Cucullu, M. E.; Luo, L.; Nolan, S. P.; Fagan, P. J.; Jones, N. L.; Calabrese, J. C. Organometallics 1995, 14, 289-296.

⁽²³⁾ Strauss, S. H. Chem. Rev. 1993, 93, 927-942.

Table 1. pK_a Values for Cationic [Cp'L₂RuH₂]⁺ Dihydride Complexes

•	÷	
$complex^a$	$\mathrm{p}K_\mathrm{a}$	ref
$[Cp(PPh_3)_2RuH_2]^+$	8.3, ^b 8.0 ^c	15
$[Cp(dppp)RuH_2]^+ d$	$8.4,^{b}8.6^{c}$	15
$[Cp^*(dppp)RuH_2]^+ d$	10.4°	16
$[Cp^{*}(PPh_{3})_{2}RuH_{2}]^{+}$	11.1^{c}	16
$[Cp^{*}(PMePh_{2})_{2}RuH_{2}]^{+}$	12.2^{c}	15, 16
$[Cp(PMe_3)_2RuH_2]^+$	13.9^{b}	this work
$[Cp^{*}(PMe_{2}Ph)_{2}RuH_{2}]^{+}$	14.3^{c}	16
$[Cp^*(PMe_3)_2RuH_2]^+$	16.3^{c}	16

^a The complexes are listed in order of increasing pK_a value. ^b In CH₂Cl₂. ^c In THF. ^d dppp = Ph₂P(CH₂)₃PPh₂.

H). This band is absent in $3 \cdot d_2$ and has been replaced by a band at 1422 cm^{-1} assigned to $\nu(\text{Ru}-\text{D})$. In the IR spectrum (CH₂Cl₂) of the HD isotopomer $3 \cdot d_1$, a weak broad $\nu(\text{Ru}-\text{H})$ at 1987 cm⁻¹ as well as a strong $\nu(\text{Ru}-\text{D})$ at 1422 cm^{-1} is observed ($\nu(\text{Ru}-\text{H})/\nu(\text{Ru}-\text{D}) = 1.40$). The spectroscopic data described above are consistent with a classical ruthenium(IV) dihydride configuration for complexes 2-4 with no evidence for a dihydrogen tautomer. Conroy-Lewis and Simpson had previously noted that [Cp(PMe_3)_2RuH_2]⁺ was a classical dihydride but without giving any supporting details.⁹ The classical dihydride configuration was also confirmed by a single-crystal X-ray diffraction study on 3 (vide infra).

The pK_a of $[Cp(PMe_3)_2RuH_2]^+$ in CH_2Cl_2 was determined to be 13.9 using Proton Sponge as a reference base (see Experimental Section). Table 1 lists the pK_a values for several other classical ruthenium(IV) dihydrides. The low acidity of $[Cp(PMe_3)_2RuH_2]^+$ is consistent with the electron-rich donor ligands (Cp and PMe_3) present on the ruthenium. From the data in Table 1, several observations on ruthenium(IV) dihydride acidity can be made. First, replacing a Cp group with a Cp* group decreases the acidity by 2–3 pH units. Second, replacing two PPh₃ groups with two PMe₃ groups decreases the acidity by 5–6 pH units. Third, replacing a Ph group on the phosphines with a Me group decreases the acidity by approximately 2 pH units.

The $[Cp(PMe_3)_2RuH_2]^+$ fragment is readily deprotonated by a variety of strong bases such as LiNR₂ (R = Me, Prⁱ, SiMe₃) (the pK_a's for HNR₂ cover the range 30–35²⁴). Complications in this deprotonation reaction have been observed when halides (Cl⁻ in 2 and F⁻ from BF₄⁻ in 3) are present. For example, the deprotonation of 2 with LiN(SiMe₃)₂ produces a mixture of Cp(PMe₃)₂-RuH and Cp(PMe₃)₂RuCl. This complication has been overcome by using excess KOMe as the deprotonating agent (pK_a of MeOH is 15.2²⁵) in refluxing MeOH. Any Cp(PMe₃)₂RuCl which may form will then be converted to Cp(PMe₃)₂RuH as described in eq 1.

Structures of Cp(PMe₃)₂RuH (1), [Cp(PMe₃)₂-RuH₂]BF₄ (3), and Related Metal Hydrides. The

Table 2. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Coefficients $(\mathring{A}^2 \times 10^3)$ for Cp(PMe₃)₂RuH (1)

atom	x	у	z	$U(eq)^a$
Ru	167(1)	2099(1)	2737(1)	26(1)
н	887(90)	2374(56)	3932(83)	60
P (1)	-929(3)	3469(1)	2425(2)	32(1)
P(2)	2211(2)	2520(2)	2235(2)	34(1)
C(1)	-491(10)	877(5)	3662(8)	41 (4)
C(2)	434(10)	586(5)	2930(9)	49 (4)
C(3)	-310(11)	798(5)	1636(9)	47(4)
C(4)	-1683(10)	1202(5)	1569(8)	39 (3)
C(5)	-1759(10)	1244(5)	2824(8)	41 (3)
C(11)	-1046(13)	4155(7)	1036(11)	80(6)
C(12)	-364(13)	4300(7)	3681(12)	96(9)
C(13)	-2887(12)	3444(6)	2271(12)	74(6)
C(21)	2109(13)	2950(8)	640(10)	84(6)
C(22)	3567(12)	1596(7)	2351(11)	69 (5)
C(23)	3434(11)	3374(7)	3218(11)	69 (5)

 a Equivalent isotropic U defined as one-third of the trace of the orthogonalized \mathbf{U}_{ij} tensor.

Table 3. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Coefficients $(\dot{A}^2 \times 10^3)$ for $[Cp(PMe_3)_2RuH_2]BF_4$ (3)

atom	x	у	z	$U(eq)^{lpha}$
Ru	0	1975(1)	0	14(1)
P (1)	1006(1)	218(1)	394(1)	15(1)
P(2)	722(1)	3887(1)	738(1)	15(1)
C(1)	-1040(3)	2222(5)	-1704(4)	27(1)
C(2)	-1315(3)	3071(4)	-843(5)	28(1)
C(3)	-1528(3)	2268(5)	93(5)	30(1)
C(4)	-1377(3)	917(5)	-205(5)	30(1)
C(5)	-1068(3)	909(5)	-1302(4)	28(1)
C(11)	551(3)	-1108(4)	1199(4)	23(1)
C(12)	1264(3)	-647(4)	-886(3)	23(1)
C(13)	2180(3)	520(4)	1210(3)	20(1)
C(21)	-55(3)	4899(4)	1476(4)	25(1)
C(22)	1039(3)	5033(4)	-335(4)	27(1)
C(23)	1805(3)	3793(4)	1793(4)	23(1)
В	-1703(4)	7390(4)	-1394(5)	24(1)
F(1)	-806(3)	7714(4)	-1613(4)	49 (1)
F(2)	-1792(4)	7867(3)	-294(3)	51(1)
F(3)	-2371(4)	7950(4)	-2253(5)	61 (2)
F(4)	-1806(3)	6041(3)	-1410(3)	45(1)

^{*a*} Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized \mathbf{U}_{ij} tensor.

crystal structures of $Cp(PMe_3)_2RuH(1)$ and $[Cp(PMe_3)_2-RuH_2]BF_4(3)$ have been determined by low-temperature X-ray diffraction at 220 and 123 K, respectively. Atomic coordinates are listed in Tables 2 and 3, and pertinent interatomic distances and angles are presented in Table 4. The molecular structures of 1 and the cation of 3 are shown in Figures 1 and 2.

The geometries of 1 and the cation of 3 are best described in terms of "three- and four-legged piano stools", respectively, with the "legs" comprising the phosphine and hydride ligands. Both structures have approximate C_s symmetry. Although the hydride ligands were not located for 3, from the comparison with related structures it can readily be inferred that the hydride ligands occupy a *trans* configuration (*vide infra*). Thus, the crystal structure of 3 confirms the absence of an η^2 -H₂ ligand as is indicated by the ¹H NMR data (*vide supra*).

The geometries of related d⁶ Cp'L₂MH, d⁶ Cp'L₂M(η^2 -H₂), and d⁴ Cp'L₂MH₂ complexes are compared in Table 5 with those of **1** and **3**. Although there is some variation among complexes of each type, certain trends clearly emerge. In both the three-legged and four-legged piano stool geometries the plane of the ring

⁽²⁴⁾ Fraser, R. R.; Mansour, T. S. J. Org. Chem. **1984**, 49, 3442-3443.

⁽²⁵⁾ Reeve, W.; Erikson, C. M.; Aluotto, P. F. Can. J. Chem. **1979**, 57, 2747-2754.

 ⁽²⁶⁾ Glueck, D. S.; Winslow, L. J. N.; Bergman, R. G. Organometallics 1991, 10, 1462-1479.
 (27) Klein, D. P.; Kloster, G. M.; Bergman, R. G. J. Am. Chem. Soc.

 ⁽²⁸⁾ Stoutland, P. O.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110,

^{5732-5744.} (29) Smith, K.-T.; Rømming, C.; Tilset, M. J. Am. Chem. Soc. **1993**,

 <sup>115, 8681-8689.
 (30)</sup> Buchanan, J. M.; Stryker, J. M.; Bergman, R. G. J. Am. Chem.
 Soc. 1986, 108, 1537-1550.

Hydride Complexes of Ru and Related Metals

Table 4.	Selected Interatomic Distances (Å),
Angles	(deg), and Torsion Angles (deg) for
$Cp(PMe_3)$	$_{2}$ RuH (1) and [Cp(PMe_{3})_{2}RuH_{2}]BF_{4} (3)

	1	3
	Interatomic Distances ^a	
Ru-H	1.36(8)	
Ru-P(1)	2.248(2)	2.283(1)
Ru-P(2)	2.238(3)	2.288(1)
Ru-X	1.899	1.889
Ru-C(ring)	2.239(9) - 2.271(8)	2.219(4) - 2.274(5)
C-C	1.385(11) - 1.430(12)	1.409(7) - 1.433(7)
P(1)-C	1.806(11) - 1.808(12)	1.809(4) - 1.816(5)
P(2)-C	1.835(10) - 1.845(11)	1.807(4) - 1.826(5)
	$Angles^a$	
H-Ru-P(1)	88(4)	
H-Ru-P(2)	86(4)	
P(1) - Ru - P(2)	96.0(1)	110.6(1)
X-Ru-H	118.0	
X-Ru-P(1)	127.6	125.3
X-Ru-P(2)	128.2	124.1
	Torsion Angles ^a	
X-Ru-P(1)-C(11)	-103.2	-55.5
X-Ru-P(1)-C(12)	13.3	61.5
X - Ru - P(1) - C(13)	128.8	-177.9
X-Ru-P(2)-C(21)	88.1	42.7
X-Ru-P(2)-C(22)	-30.6	-73.5
X - Ru - P(2) - C(23)	-147.0	163.8

^{α} X refers to the Cp(centroid).

Figure 1. Molecular structure of Cp(PMe₃)₂RuH (1) at 220 K shown with 50% probability ellipsoids for non-hydrogen atoms.

Figure 2. Molecular structure of the cation of 3, [Cp- $(PMe_3)_2RuH_2]^+$, at 123 K shown with 50% probability ellipsoids for non-hydrogen atoms.

centroid/metal atom/hydride ligand(s) lies perpendicular to the ML_2 plane. It is also evident that the two ligands, L and L' (in 1 and 3, $L = L' = PMe_3$), must move away from the Cp' ring in order to accommodate the second hydride ligand. This is clearly demonstrated by considering the angle between the C_5 plane and the ML_2 plane. For the d^6 Cp'L₂MH complexes this angle has a mean value of 67.6(13)° but has a mean value of 87.6-(4)° for the d⁴ Cp'L₂MH₂ complexes. The larger esd for the former reflects the larger distribution of observed angles. The geometries of $d^6 Cp' L_2 M(\eta^2 - H_2)$ complexes (mean value $56.1(8)^{\circ}$) can also be distinguished from those of the mono- and dihydride complexes on the basis of this interplanar angle. The corresponding interplanar angles for complexes 1 (67.1°) and 3 (87.3°) lie close to the means for the mono- and dihydride complexes, respectively (Figure 3). This observation confirms the formulation of 3 as a dihydride complex with a fourlegged piano stool geometry, even in the absence of locating the hydride ligands crystallographically.

There is little evidence that in general the position of the first hydride ligand changes substantially relative to the cyclopentadienyl ring upon protonation to yield the dihydride species. However, repositioning of the L and L' ligands is quite evident from examination of the angle between the M-H vector(s) and the normal to the ML_2 plane. While the mean value of this angle is 7.9- $(12)^{\circ}$ for the d⁶ Cp'L₂MH complexes, the ML₂ plane moves toward the M-H vector by ca. 20° upon protonation to yield the corresponding d⁴ Cp'L₂MH₂ complexes with a mean angle of $30.0(20)^\circ$. The change in this angle is less dramatic when protonation yields the dihydrogen complexes d⁶ Cp'L₂M(η^2 -H₂) (mean angle $15.5(18)^{\circ}$). Protonation of 1 to yield 3 also results in a reorientation of the methyl groups on phosphorus by a rotation of ca. 40-50° about the Ru-P bonds (Figure 3, Table 4).

Another identifiable structural trend is the increase in the L-M-L' angle in the course of the protonation reaction. Such angles for d⁶ Cp'L₂MH complexes are in the range $84-101^{\circ}$ (mean $93.0(19)^{\circ}$), with the exception of a few complexes for which the angle is strongly constrained, as in the dppm ligand. The corresponding angle is enlarged to $101-111^{\circ}$ (mean $107.2(10)^{\circ}$) in the d^4 Cp'L₂MH₂ complexes, presumably to accommodate the *trans* hydride ligands.

Some complexes listed in Table 5 have geometries that deviate somewhat from the general trends described here. In some cases there appear to be chemical reasons for these deviations; in others these are probably ascribable to erroneous structures. Most notable are the structures of Cp(CO)(PPhFc)FeH(PPhFc = PhP- ${Fe[(\eta^5-C_5H_4)_2]}^{31}$ and $[Cp^*(dppe)FeD]PF_6CH_2Cl_2$ (dppe = $Ph_2P(CH_2)_2PPh_2$).³⁸ In the former, the direction of

- (31) Butler, I. R.; Cullen, W. R.; Rettig, S. J. Organometallics 1987, 6,872-880.
- (32) Lister, S. A.; Redhouse, A. D.; Simpson, S. J. J. Acta Crystallogr. 1992, C48, 1661.
 - (33) Lister, S. Ph.D. Thesis, University of Salford, 1992.
 (34) Bruce, M. I.; Butler, I. R.; Cullen, W. R.; Koutsantonis, G. A.;
- Snow, M. R.; Tiekink, E. R. T. Aust. J. Chem. 1988, 41, 963-969.
- (35) Cotrait, M.; Bideau, J. P.; Gallois, B.; Ruiz, J.; Astruc, D. Bull. Soc. Chim. Fr. 1992, 129, 329.
- (36) Hitchcock, P. B.; Matos, R. M.; Nixon, J. F. J. Organomet. Chem. 1993, 462, 319-329
- (37) Mingos, D. M. P.; Minshall, P. C.; Hursthouse, M. B.; Malik, K. M. A.; Willoughby, S. D. J. Organomet. Chem. 1979, 181, 169-182.
 (38) Hamon, P.; Toupet, L.; Hamon, J.-R.; Lapinte, C. Organome-
- tallics 1992, 11, 1429-1431.
- (39) Klooster, W. T.; Koetzle, T. F.; Jia, G.; Fong, T. P.; Morris, R. H.; Albinati, A. J. Am. Chem. Soc. **1994**, *116*, 7677-7681.
- (40) Herrmann, W. A.; Theiler, H. G.; Herdtweck, E.; Kiprof, P. J. Organomet. Chem. 1989, 367, 291-311.
- (41) Fernandez, M.-J.; Balley, P. M.; Bentz, P. O.; Ricci, J. S.; Koetzle, T. F.; Maitlis, P. M. J. Am. Chem. Soc. **1984**, 106, 5458-5463.

Table 5.	Geometries of	d ⁶ Cv′l	_ MH. d ^e	'Co'L	$_{0}M(n^{2}-H_{2})$.	and d ⁴	Cp'L ₂ MH	Complexes (d	$deg)^a$
----------	---------------	---------------------	-----------------------------	-------	------------------------	--------------------	----------------------	--------------	----------

		<u> </u>		_ ,	<u> </u>	1	
compd	$Cp'-ML_2^b$	L-M-L'	X-M-H ^c	$MH-ML_2^d$	$XMH-ML_2^{c,e}$	CSD REFCODE/	ref
			d ⁶ Cp'L ₂ MH				
Cp*(PPh ₃)(OPr ⁱ)IrH	59.1	84.0	124.8	4.2	87.0	KIVPIO	26
$Cp^{*}(PMe_{3})(SBu^{t})IrH$	60.5	87.4	129.5	10.7	84.0	KELDIO	27
$Cp^{*}(PMe_{3})(CH=CH_{2})IrH$	61.3	85.8	127.5	8.0	88.5	DAMLOS10	28
Cp(PPh ₃) ₂ RuH	65.5	100.7	124.8	16.4	76.5	PEYDUS	29
$Cp^*(PMe_3)(C_6H_{11})IrH^g$	66.8	89.2	122.8	9.0	85.2	DOPWAG	30
-	67.1	88.6	118.6	5.2	86.1		
$Cp(PMe_3)_2RuH$	67.1	96.0	118.0	4.9	88.8		this work
Cp(CO)(PPhFc)FeH	67.8	91.3	99.4	-13.3	89.9	FOHGEO	31
Cp(dppp)RuH	67.9	91.8	120.0	7.9	87.4	VUBXUL	32, 33
Cp(dppFc)RuH ^g	68.9	9 9.1				GIGCAA	34
	71.7	95.5					
$Cp(PPh_3)_2FeH$	69.4	100.9	116.5	6.9	85.7	JUNYUM	35
$Cp^{*}(PPh_{3})LRhH^{h}$	69.8	94.5				WEHCAN	36
Cp(dppm)FeH	72.3	75.2	121.1	12.8	89.4	JUNYOG	35
$[Cp^{*}(PPh_{3})_{2}RhH]PF_{6}$	79.2	99.9				MCTPRH	37
$[Cp^{*}(dppe)FeD]PF_{6}CH_{2}Cl_{2}^{i}$	89.6	88.4	120.4	28.4	83.2	KUCFET	38
mean dimensions [/]	$67.6(13)^k$	$93.0(19)^{t}$	$122.4(15)^{k,m}$	$7.9(12)^{k,m}$	$85.9(12)^{k,m}$		
			$d^6 Cp' L_2 M(\eta^2 - H_2)$)			
$[Cp^{\ddagger}(dppm)Ru(\eta^2-H_2)]PF_6^{g}$	55.6	71.5	120.6, 128.9	9.2, 15.7	74.5, 81.9		33
	55.1	71.5	119.4, 124.2	14.3, 31.9	60.0, 75.7		
$[Cp^{*}(dppm)Ru(\eta^{2}-H_{2})]BF_{4}^{n}$	57.7	71.3	118.6, 119.4	18.8, 19.3	71.5, 71.8		39
mean dimensions'	56.1 (8)		121.9(16)	$15.5(18)^{o}$	72.6(29)		
			d ⁴ Cn'L ₂ MH ₂				
[Cp [‡] (dppe)RuH ₂]PF ₆	85.7	87.0	116.6. 117.2	22.6.31.4	87.3. 88.4		33
Cp*(PPhMe ₂) ₂ ReH ₂	86.5	101.6	114.0. 115.1	23.8, 25.8	85.7.88.0	SAWNUZ	40
$Cp^*(SiEt_3)_2RhH_2^n$	86.7	107.9	131.8. 133.4	37.7.47.5	90.0. 90.0	CONFEQ01	41
$Cp^*(SiEt_3)_2IrH_2^n$	87.2	109.5	129.8, 130.7	35.8, 44.7	90.0, 90.0	CIWJAT10	42
$[Cp(PMe_3)_2RuH_2]BF_4$	87.3	110.7	,,	,	,		this work
[Cp(PPh ₃) ₂ OsH ₂]CF ₃ SO ₃ ·CH ₂ Cl ₂	87.5	105.7	118.1, 119.7	27.3, 31.7	82.7, 85.6	PESGEZ	43
[Cp*(dippe)FeH ₂]BPh ₄	87.8	90.6	114.0, 115.1	21.1, 28.2	87.6, 88.2		44
$[Cp^{\dagger}(PPh_3)_2RuH_2]PF_6CH_2Cl_2$	88.9	105.6	111.8, 116.1	22.7, 25.4	85.9, 90.0		33
$Cp(PPh_3)_2ReH_2 C_6H_6$	89.2	108.6	107.4, 114.6	16.0, 26.2	88.3, 87.5	FIZLUV	45
$Cp^{*}(SiHClMes)(PPr^{i}_{3})RuH_{2}$	89.6	107.7	121.9, 125.3	33.8, 38.6	73.5, 77.8	YAGKAS	46
mean dimensions ⁱ	87.6(4)	$107.2(10)^{l}$	119.6(18)	30.0(20)	87.8(6) ^p		

^a $Cp' = Cp (C_5H_5), Cp^* (C_5Me_5), Cp^* (C_5H_4Me); L = CO, PR_3, PAr_3, PR_2^-, R^-, OR^-, SR^-, SiR_3^-; L_2 = diphosphines. PPhFc = PhP{Fe[(<math>\eta^5$ - C_5H_4)_2]}, dppm = Ph_2PCH_2PPh_2, dppe = Ph_2P(CH_2)_2PPh_2, dippe = Pri_2P(CH_2)_2PPri_2, dppFc = Fe(η^5 - $C_5H_4PPh_2$)_2. ^b Angle between mean planes of the C₅ ring and the ML₂ fragment. ^c Centroid(Cp')-M-H angle. X refers to the centroid. ^d Angle between the M-H vector and the normal to the ML_2 plane. A negative value indicates that the M-H vector points toward the Cp' ring when viewed from the ML₂ plane. ^e Angle between the XMH plane and the ML₂ plane. ^f Reference code for the Cambridge Structural Database (see: Allen, F. H.;

Kennard, O.; Taylor, R. Acc. Chem. Res. **1983**, *16*, 146). ^g Two crystallograpically independent molecules. ^h L = (PPC(Bu^t)PC(Bu^t)). ⁱ Reported as d⁵ Fe(III), may actually be d⁴ [Cp*(dppe)FeXD]⁺ (see text). ^j Sample esd's, reported in the last significant digit, are calculated according to $[\sum_i (d_i - \langle d \rangle)^2/n(n-1)]^{1/2}$. ^k The value for [Cp*(dppe)FeD]PF₆CH₂Cl₂ was excluded as this is believed to be incorrect (see text). ^l Compounds for which L₂ = diphosphine are excluded from the calculation of the mean. ^m The value for Cp(CO)(PPhFc)FeH was excluded as this is believed to be incorrect (see text). ⁿ Neutron diffraction studies. ^o The angle 31.9° was excluded on the basis that it is a statistical outlier. ^p The values for Cp*(SiHClMes)(PPrⁱ₃)RuH₂ were excluded on the basis that these are statistical outliers.

the M-H bond deviates by ca. 20° toward the Cp ring from that observed in all the other d⁶ Cp'L₂MH complexes, even though the relative positions of the other ligands fit the general trend very well. The authors report that the hydride was included in a calculated position. It appears that this calculated position is in error. Perhaps more interesting is the structure of the 17-electron d⁵ [Cp*(dppe)FeD]⁺ cation. The unusual feature of the structure is that the FeP₂ plane is orthogonal (89.6°) to the plane of the C₅ ring, *i.e.* the geometry strongly resembles that of the d⁴ Cp'L₂MH₂ complexes rather than the d⁶ Cp'L₂MH complexes, even though only one hydride ligand is reported as present. The structure is also inconsistent with the structure of the related d⁵ [Cp*(dppe)Fe(CH₂OMe)]⁺ cation, in which the Cp^*-FeP_2 interplanar angle is only $62.1^{\circ}.^{47}$ This suggests that the structure reported as $[Cp^*(dppe)FeD]$ - $PF_6^{\circ}CH_2Cl_2$ may in fact be $[Cp^*(dppe)Fe(D)(X)]PF_6^{\circ}CH_2$ - Cl_2 , where X = H or D, and was not observed crystallographically.

In all but two of the mono- and dihydride structures listed in Table 5, the M-H vector lies in a plane that is essentially perpendicular to both the C_5 ring plane and the ML_2 plane. In addition, little variation arises in the direction of the M-H vector within that plane, as is indicated by the relatively small esds calculated for the means of the X-M-H angle. This is consistent with the fact that, in general, X-ray diffraction has been successful in indicating the *direction* of the M-H bond, even though the M-H bond lengths may be subject to considerable inaccuracy. For the two structures in which the M-H vector lies out of the aforementioned plane, Cp(PPh₃)₂RuH²⁹ and Cp*(PPrⁱ₃)RuH₂(SiHClMes),⁴⁶ it appears reasonable to suggest that the steric requirements of the ligands, L and L', give rise to the deviation of the hydride position from that in related structures.

⁽⁴²⁾ Ricci, J. S.; Koetzle, T. F.; Fernandez, M.-J.; Maitlis, P. M.; Green, J. J. Organomet. Chem. 1986, 299, 383-389.

⁽⁴³⁾ Rottnik, M.; Angelici, R. J. J. Am. Chem. Soc. **1993**, 115, 7267–7274.

⁽⁴⁴⁾ Jiménez-Tenorio, M.; Puerta, M. C.; Valerga, P. Organometallics
1994, 13, 3330-3337.
(45) Jones, W. D.; Maguire, J. A. Organometallics 1987, 6, 1301-

⁽⁴⁵⁾ Jones, W. D.; Maguire, J. A. Organometallics 1987, 6, 1301– 1311.

⁽⁴⁶⁾ Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Chem. Soc., Chem. Commun. **1992**, 1201–1203.

⁽⁴⁷⁾ Roger, C.; Toupet, L.; Lapinte, C. J. Chem. Soc., Chem. Commun. 1988, 713-715.

Figure 3. (a) Schematic representation of the change in geometry that occurs at the metal center during the protonation of a d⁶ Cp'L₂MH complex. (b) Corresponding change in geometry that occurs in the protonation of 1 to give 3. The Cp'-ML₂ interplanar angle is indicated; the corresponding mean angle in related dihydrogen complexes $[Cp'(dppm)Ru(\eta^2-H_2)]^+$ is 56.1(8)°.

Conclusions

The protonation of the electron-rich hydride Cp- $(PMe_3)_2RuH(1)$ cleanly generates the cationic dihydride $[Cp(PMe_3)_2RuH_2]^+$ in high yields. The classical dihydride configuration of [Cp(PMe₃)₂RuH₂]⁺ was confirmed spectroscopically and crystallographically. A quantitative relationship between the pK_a of classical dihydrides $[Cp'(PMe_xPh_{3-x})_2RuH_2]^+$ (Cp' = C₅H₅, C₅Me₅; x = 0-3) and the ancillary ligands $(Cp' \text{ and } PMe_xPh_{3-x})$ on ruthenium has been investigated. The structural changes that occur upon converting a "three-legged piano stool" d⁶ Cp'L₂MH to either a "four-legged piano stool" d⁴ Cp'L₂MH₂ complex or a d⁶ Cp'L₂M(η^2 -H₂) complex have been investigated. Several geometric trends have been established for these complexes. This study also confirms that X-ray diffraction is often useful for indicating the direction of the M-H bond, even though the M-H bond lengths may be subject to considerable systematic error.

Experimental Section

General Procedures. All manipulations of oxygen- or water-sensitive compounds were carried out either under an atmosphere of argon by using Schlenk or vacuum-line techniques or under a helium/argon atmosphere in a Vacuum Atmospheres drybox.⁴⁸ ¹H NMR (400 and 250 MHz) spectra were recorded on a Varian VXR 400S and a Bruker AC-250 spectrometer, respectively. The PMe₃ resonances in these compounds do not appear as a simple first-order pattern in the ¹H NMR spectra. The PMe₃ resonances appear as a A₉-XX'A'₉ pattern; the appearance of which is a "filled-in-doublet" with the separation of the outer lines being equal to ²J_{PH} + ⁴J_{PH}.^{49,50} The ¹H chemical shifts were referenced to the residual proton peak of the solvent: C₆D₅H, δ 7.15, and CDHCl₂, δ 5.32. IR spectra were recorded on a Mattson Polaris FT-IR spectrometer or a Perkin-Elmer 1600 Series FT- IR spectrometer. Elemental analyses were carried out by Oneida Research Services or Galbraith Laboratories.

Materials. $Cp(PMe_3)_2RuCl$ was prepared by a modification of previously reported procedures.^{20,21} Severe face rashes have been reported to result from exposure to Cp(PMe₃)₂RuCl, so adequate precautions should be taken.⁵¹ $[H(Et_2O)_2][B(3,5 (CF_3)_2C_6H_3)_4$] was prepared according to a literature procedure.⁵² Anhydrous diethyl ether was stored over [Cp₂-TiCl]₂ZnCl_{2⁵³} and vacuum transferred immediately prior to use. Dichloromethane was distilled from and stored over CaH₂ and vacuum transferred immediately prior to use. Methanol and methanol- d_4 were dried over Mg and vacuum transferred immediately prior to use. Benzene- d_6 was dried over NaK and stored over $[Cp_2TiCl]_2ZnCl_2$. Dichloromethane- d_2 was dried over P_2O_5 and stored over CaH_2 . Acetonitrile- d_3 was dried over CaH_2 , stored over $Cp_2Zr(Me)Cl$,⁵⁴ and vacuum transferred prior to use. Anhydrous HCl(g) was prepared by slowly adding H_2 - $SO_4(l)$ to NaCl(s) and stored over anhydrous $CaSO_4(s)$ prior to use. KOMe was prepared by reacting solid K with excess MeOH in Et_2O , collecting the solid by filtration, and drying the white solid under vacuum. $KOCD_3$ was prepared in situ by reacting solid K with excess CD₃OD. PMe₃ (Strem), LiAlH₄ (1 M in Et₂O; Aldrich), LiAlD₄ (Aldrich), EtOD (Aldrich), HBF₄·Et₂O (85%, Aldrich), D₂O (Cambridge Isotope Laboratories), and Proton Sponge (Aldrich) were used as received.

 $Cp(PMe_3)_2RuH$ (1). Method A. From $Cp(PMe_3)_2RuCl$ and KOMe. This method involves a modification of the literature procedure.¹⁷ MeOH (25 mL) was added by vacuum transfer to a flask charged with $Cp(PMe_3)_2RuCl$ (840 mg, 2.38 mmol) and KOMe (675 mg, 9.63 mmol). The reaction mixture was heated to reflux 2–3 h, after which time the reaction mixture was evaporated to dryness under vacuum. The reaction residue was extracted with hexanes until the extracts were colorless. The combined hexane extracts were filtered through Celite and evaporated to dryness under vacuum. The yellow residue was sublimed at 60 °C (<0.03 mmHg) to give 1 as a bright yellow solid (675 mg, 88% yield). Typical yields were 85–95%.

⁽⁴⁸⁾ Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley-Interscience: New York, 1986.
(49) Harris, R. K. Can. J. Chem. 1964, 42, 2275-2281.

⁽⁵⁰⁾ Harris, R. K.; Hayter, R. G. Can. J. Chem. 1964, 42, 2282-2291.

⁽⁵¹⁾ Selegue, J. P.; Koutantonis, G. A.; Lomprey, J. R. Chem. Eng. News **1991**, 69, 2.

⁽⁵²⁾ Brookhart, M.; Grant, B.; Volpe, A. F., Jr. Organometallics 1992, 11, 3920-3922.

⁽⁵³⁾ Sekutowski, D. G.; Stucky, G. D. Inorg. Chem. 1975, 14, 2192-2199.

⁽⁵⁴⁾ Wailes, P. C.; Weigold, H.; Bell, A. P. J. Organomet. Chem. 1971, 33, 181-188.

Method B. From Cp(PMe₃)₂RuCl and LiAlH₄. Et₂O (30 mL) was added by vacuum transfer to a Schlenk flask charged with Cp(PMe₃)₂RuCl (1.531 g, 4.33 mmol) and cooled to -78 °C. LiAlH₄ (6.5 mL, 1.0 M in Et_2O) was added dropwise by syringe under argon. The orange reaction mixture was allowed to warm to room temperature, during which time it became a yellow solution with a white solid. After 2 h, the yellow slurry was cooled in an ice-water bath, and EtOH (5 mL, 95%, degassed) was added slowly to decompose unreacted LiAlH₄. Reaction volatiles were removed under vacuum. The yellowish residue was extracted with hexanes until the extracts were colorless. The hexane extracts were filtered through Celite and evaporated to dryness under vacuum. The yellow residue was sublimed at 60 °C (<0.03 mmHg) to give 1 as a bright yellow solid (1.245 g, 90% yield). Typical yields were 80-90%. ¹H NMR (400 MHz, CD₂Cl₂): δ 4.54 (s, 5H, Cp), 1.37 (filled-in-doublet, ${}^{2}J_{PH} + {}^{4}J_{PH} = 8.0$ Hz, 18H, PMe₃), -13.99 (t, ${}^{2}J_{\rm PH}$ = 36.8 Hz, 1H, RuH). IR (CH₂Cl₂): ν (Ru-H) 1892 (br) cm⁻¹. IR (KBr): ν (Ru-H) 1906 (br) cm⁻¹. Anal. Calcd for C₁₁H₂₄P₂Ru: C, 41.37; H, 7.58. Found: C, 41.57; H, 7.15. Crystals of 1 suitable for X-ray diffraction analysis were grown by slow sublimation at 50 °C under vacuum in a sealed tube.

 $Cp(PMe_3)_2RuD$ (1- d_1). Method A. The reaction of Cp-(PMe₃)₂RuCl (202 mg, 0.57 mmol) and KOCD₃ (190 mg, 2.6 mmol) in refluxing CD₃OD (5 mL), as described in Method A for 1, gave 1- d_1 as a yellow sublimable solid (160 mg, 87% yield, >90% D by ¹H NMR).

Method B. The reaction of Cp(PMe₃)₂RuCl (200 mg, 0.57 mmol) and LiAlD₄ (35 mg, 0.83 mmol) in Et₂O (20 mL) followed by an EtOD (2 mL, degassed) quench, as described in Method B for 1, gave 1- d_1 as a yellow sublimable solid (148 mg, 81% yield, 72% D by ¹H NMR). ¹H NMR (250 MHz, CD₂Cl₂): δ 4.55 (s, 5H, Cp), 1.37 (filled-in-doublet, ² J_{PH} + $4J_{PH}$ = 8.4 Hz, 18H, PMe₃). IR (CH₂Cl₂): ν (Ru–D) 1365 (br) cm⁻¹.

[Cp(PMe₃)₂RuH₂]Cl (2). An excess of anhydrous HCl(g) was added to an ethereal solution (10 mL) of Cp(PMe₃)₂RuH (84 mg, 0.26 mmol) at -78 °C. A white precipitate formed immediately. After 1 h, the reaction mixture was evaporated to dryness and the residue washed with hexanes. Filtration of the solid followed by vacuum drying gave 2 (91 mg, 97% yield) as a white solid. ¹H NMR (400 MHz, CD₂Cl₂): δ 5.38 (s, 5H, Cp), 1.69 (filled-in-doublet, ²J_{PH} + ⁴J_{PH} = 10.9 Hz, 18H, PMe₃), -9.87 (t, ²J_{PH} = 29.1 Hz, 2H, RuH). IR (CH₂Cl₂): ν -(Ru-H) 1989 (br) cm⁻¹. Anal. Calcd for C₁₁H₂₅ClP₂Ru: C, 37.13; H, 7.08. Found: C, 36.11; H, 7.31. We were not successful at getting a good elemental analysis for this complex, even though the spectra indicated complete purity of the product.

[Cp(PMe₃)₂RuH₂]BF₄ (3). Et₂O (15 mL) was added by vacuum transfer to a flask charged with 1 (192 mg, 0.60 mmol). HBF₄·Et₂O (100 μ L, 0.58 mmol) was added to this solution dropwise using a microliter syringe. The resulting precipitate was isolated by filtration, washed with Et₂O, and dried under vacuum to give a light purple solid (232 mg, 99% yield). ¹H NMR (400 MHz, CD₂Cl₂): δ 5.31 (s, 5H, Cp), 1.64 (filled-indoublet, ²J_{PH} + ⁴J_{PH} = 10.9 Hz, 18H, PMe₃), -9.90 (t, ²J_{PH} = 29.3 Hz, 2H, RuH). IR (CH₂Cl₂): ν (Ru-H) 1989 (br) cm⁻¹. Anal. Calcd for C₁₁H₂₅BF₄P₂Ru: C, 32.45; H, 6.19. Found: C, 32.25; H, 6.52. Crystals of **3** suitable for X-ray diffraction analysis were grown by vapor diffusion of Et₂O into a CH₂Cl₂ solution at room temperature.

[**Cp**(**PMe**₃)₂**RuHD**]**BF**₄ (3-*d*₁). [Cp(PMe₃)₂RuHD]**B**F₄ was prepared from 1-*d*₁ (49 mg, 0.15 mmol) and HBF₄·Et₂O (26 μ L, 0.15 mmol) in Et₂O as described for **3**. This gave a light purple solid (57 mg, 92% yield, 45% D by ¹H NMR). ¹H NMR (250 MHz, CD₂Cl₂): δ 5.31 (s, 5H, Cp), 1.65 (filled-in-doublet, ²J_{PH} + ⁴J_{PH} = 10.9 Hz, 18H, PMe₃), -9.88 (t, ²J_{PH} = 29.2 Hz, 1H, RuH). IR (CH₂Cl₂): ν (Ru-H) 1987 (br w) cm⁻¹, ν (Ru-D) 1422 (br s) cm⁻¹.

 $[Cp(PMe_3)_2RuD_2]BF_4$ (3-d₂). DBF₄ (100 μ L, prepared by mixing HBF₄·Et₂O and D₂O in a 1:3 ratio by volume¹⁵) was

added dropwise to a solution of $1-d_1$ (56 mg, 0.17 mmol) in Et₂O. The reaction mixture was evaporated to dryness. The reaction residue was dissolved in CH₂Cl₂, and then Et₂O was added dropwise to initiate precipitation. The resulting solid was filtered out, washed with Et₂O, and dried under vacuum. This gave $3-d_2$ as a light purple solid (54 mg, 77% yield, >95% D by ¹H NMR). ¹H NMR (250 MHz, CD₂Cl₂): δ 5.31 (s, 5H, Cp), 1.64 (filled-in-doublet, ${}^{2}J_{PH} + {}^{4}J_{PH} = 10.9$ Hz, 18H, PMe₃). IR (CH₂Cl₂): ν (Ru-D) 1422 (br s) cm⁻¹.

[**Cp**(**PMe**₃)₂**RuH**₂][**B**(3,5-(**CF**₃)₂**C**₆**H**₃)₄] (4). Methylene chloride (15 mL) was added by vacuum transfer to a flask charged with 1 (75 mg, 0.23 mmol) and [H(Et₂O)₂][B(3,5-(**CF**₃)₂**C**₆**H**₃)₄] (238 mg, 0.24 mmol) at -78 °C. The reaction solution was allowed to warm to room temperature. After 30 min, the solution was concentrated, and hexane was added to initiate precipitation. The precipitate was isolated, washed with hexane, and dried under vacuum to give a white solid (246 mg, 90% yield). ¹H NMR (250 MHz, CD₂Cl₂): δ 7.72 (br, 8H, (CF₃)₂C₆H₃), 7.57 (br, 4H, (CF₃)₂C₆H₃), 5.24 (s, 5H, Cp), 1.60 (filled-in-doublet, ²J_{PH} + ⁴J_{PH} = 10.9 Hz, 18H, PMe₃), -9.93 (t, ²J_{PH} = 29.4 Hz, 2H, RuH). IR (CH₂Cl₂): ν (Ru-H) 1992 (br) cm⁻¹. Anal. Calcd for C₄₃H₃₇BF₂₄P₂Ru: C, 43.64; H, 3.15. Found: C, 43.58; H, 3.04.

 T_1 Measurements on [Cp(PMe_3)₂RuH₂]BF₄ (3). T_1 values for the hydride protons of 3 (34 mM in CD₂Cl₂, 400 MHz) were determined by using a 180- τ -90 pulse sequence. The T_1 value of 9.41 s at 293 K for the hydride resonance decreases to 6.33 s at 263 K and 1.96 s at 208 K.

 pK_a of $[Cp(PMe_3)_2RuH_2]^+$. For the equilibrium described in eq 4, where $K_{eq} = [Cp(PMe_3)_2RuH][BH^+]/[Cp(PMe_3)_2RuH_2^+]$.

$$Cp(PMe_3)_2RuH_2^+ + B \longrightarrow Cp(PMe_3)_2RuH + BH^+$$
 (4)

[B], the acidity of $[Cp(PMe_3)_2RuH_2]^+$ (pK_a) can be expressed by the equation

$$pK_{a} = pK_{eq} + pK_{BH}^{+}$$

For BH⁺, where B = Proton Sponge (1,8-bis(dimethylamino)naphthalene), a pK_{BH}^+ = 12.34 in H₂O was determined by Alder *et al.*⁵⁵ Kristjánsdóttir and Norton observed the following relationship between acidities in aqueous and acetonitrile media: $pK_a(CH_3CN) = pK_a(H_2O) + 7.5.^{56}$ Dissolving equimolar quantities of **3** and Proton Sponge ($pK_a(CH_3CN) = 19.8$) in CD₃-CN gave a $pK_{eq} = 1.6$, as determined by ¹H NMR spectroscopy using Si(SiMe₃)₄ as an internal standard, and thus a $pK_a(CH_3-CN) = 21.4$ for [Cp(PMe₃)₂RuH₂]⁺. This corresponds to a $pK_a(CH_2Cl_2) = 13.9$ for [Cp(PMe₃)₂RuH₂]⁺ assuming that $pK_a(H_2O)$ approximately equals $pK_a(CH_2Cl_2).^{15}$

Converting Dihydrides 2–4 to Hydride 1. The dihydrides **2-4** may be deprotonated by a variety of strong bases, like LiNR_2 ($\mathbf{R} = \mathbf{Me}$, \Pr^i , SiMe_3), but KOMe in MeOH worked the best. For example, MeOH (20 mL) was added by vacuum transfer to a flask charged with **2** (600 mg, 1.69 mmol) and KOMe (500 mg, 7.13 mmol) and equipped with a reflux condenser. The reaction mixture was heated to reflux for 1 h, after which time the reaction was evaporated to dryness under vacuum. The reaction residue was worked-up as described above for **1** in Method A. This gave **1** (496 mg, 92% yield) as a bright yellow solid.

X-ray Crystal Structure Determinations of Cp-(PMe₃)₂RuH (1) and [Cp(PMe₃)₂RuH₂]BF₄ (3). Both crystal structures were solved by direct methods and refined to convergence by full-matrix least-squares using the SHELXTL suite of programs.⁵⁷ Data for 3 were corrected for absorption

⁽⁵⁵⁾ Alder, R. W.; Bowman, P. S.; Steele, W. R. S.; Winterman, D.
R. Chem. Commun. 1968, 723-724.
(56) Kristjánsdóttir, S. S.; Norton, J. R. In Transition Metal Hy-

⁽⁵⁶⁾ Kristjánsdóttir, S. S.; Norton, J. R. In *Transition Metal Hydrides*; Dedieu, A., Ed.; VCH Publishers: New York, 1992; pp 309-359.

⁽⁵⁷⁾ Sheldrick, G. SHELXTL 4.2. Siemens Analytical X-ray Instruments Inc., Madison, WI, 1991.

Hydride Complexes of Ru and Related Metals

Table 6. Data Collection, Structure Solution, and Refinement Parameters for Cp(PMe₃)₂RuH (1) and [Cp(PMe₃)₂RuH₂]BF₄ (3)

- - - -	-0/2	·
	1	3
cryst system	monoclinic	monoclinic
space group, Z	$P2_1/n, Z = 4$	Cc, Z = 4
a (Å)	9.429(4)	14.310(3)
b (Å)	14.719(7)	10.105(3)
<i>c</i> (Å)	11.002(5)	11.584(4)
β (deg)	106.62(3)	99.73(2)
$V(Å^{3)}$	1463.2(11)	1651.1(9)
density (g cm ^{-3})	1.450	1.638
temp (K)	220(5)	123(5)
X-ray wavelength (Å)	0.710 73	0.710 73
$\mu(Mo K\alpha) (mm^{-1})$	1.258	1.166
2θ range (deg)	4.0 - 45.0	4.0 - 70.0
reflens colled	1935	3948
indepdt reflcns (R_{int})	1712(0.072)	3769 (0.062)
$obsd(F > 3.0\sigma(F))$	1478	3563
L. S. params	130	178
$R(F), R_{w}(F)$	0.046, 0.058	0.034, 0.040
S(F)	1.26	1.04

by semi-empirical methods.⁵⁷ All non-hydrogen atoms were refined anisotropically; methyl and cyclopentadienyl hydrogens were included in calculated positions and refined using a riding model with fixed isotropic displacement parameters. The hydride ligand for **1** was located from the difference map and refined with no positional constraints but with a fixed isotropic displacement parameter. Experimental data pertinent to both structure determinations are given in Table 6.

Acknowledgment. F.R.L. acknowledges the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. F.R.L. also thanks Dr. Cathy Sultany of the Ohio University Instrument Center for help in obtaining ¹H (400 MHz) spectra and T_1 measurements. L.B. is grateful for funding from the Donors of the Petroleum Research Fund, administered by the American Chemical Society, and from the University of Missouri Research Board.

Supporting Information Available: Tables of X-ray crystallographic data, hydrogen positional and displacement parameters, anisotropic displacement parameters, and interatomic distances and angles (10 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

OM950146K