PHYSICAL CHEMISTRY OF SOLUTIONS

Effect of Methanol on the Dissolution of Neodymium Oxide in Hydrochloric Acid Solutions¹

İ. Girgin^{*a*} and A. Yörükoğ lu^{*b*}

^a Hacettepe University, Mining Engineering Department, 06800 Beytepe, Ankara, Turkey ^b Mineral Research and Exploration General Directorate, 06520 Ankara, Turkey e-mail: girgin@hacettepe.edu.tr

Received July 29, 2008

Abstract—The effect of methanol on the solubility of Nd₂O₃ in HCl medium in the temperature range of 25– 55°C were studied. HCl–CH₃OH was observed to be a better solvent than HCl–CH₃OH–H₂O and hydrochloric acid for the dissolution of Nd₂O₃ mainly due to prevention of neodymium hydroxide and dissolution increased with increase of HCl concentration even at high HCl concentrations. Presence of methanol in the medium was determined to cause corresponding decreases in conductivity, E_{SCE} , pH values with corresponding increase in E_R values. Neodymium compounds formed in HCl–CH₃OH medium at 25°C were isolated and identified using X-ray diffraction, thermal and chemical analysis methods and their thermal behaviour were investigated between 25–1100°C. NdCl₃·x₁CH₃OH and NdCl₃·x₂CH₃OH · 4.14H₂O (x₁ + x₂ = 2.8) were formed in non-aqueous medium and these compounds were converted into NdCl₃, NdCl_{2.37} and NdCl₃·0.47CH₃OH with complete and partial loss of water and methanol around 240°C respectively. Methanol was completely removed around 390°C with formation of NdCl_{2.37} (77.5%) and NdOCl (22.5%) and NdOCl was detected as the major stable phase above 700°C.

DOI: 10.1134/S003602361004025X

A continuous decrease in the solubilities of rareearth chlorides in aqueous hydrochloric acid solutions are observed with increase of HCl concentration [1]. Solubility of rare-earth chlorides in alcohols and aqueous alcohols were studied and it was observed that the solubility increased markedly with temperature [2–4]. Also, complex formation of rare-earth elements with chloride ions in alcohols were investigated [2, 5, 6], alcoholates with the general formula MCl₃. 3ROH and $MCl_3 \cdot 2ROH \cdot H_2O$ were isolated and some physico-chemical properties of the alcoholate derivatives were studied. The precipitation of lanthanum hydroxide at high HCl concentrations was prevented by use of mixed-aqueous (HCl-CH₃OH-H₂O) and preferably non-aqueous (HCl-CH₃OH) solvents, the solubility of La₂O₃ was improved, the composition of the crystal solvates were determined as LaCl₃. x_1 CH₃OH and LaCl₃ · x_2 CH₃OH · 3H₂O ($x_1 + x_2 = 2.35$) and their thermal behaviours were investigated [7].

This study is a complementary of an earlier investigation on the dissolution behaviour of La_2O_3 in HCl– H₂O, HCl–CH₃OH–H₂O and HCl–CH₃OH [7]. It was aimed to obtain comparative data for determining the effect of methanol on the solubility of Nd₂O₃ in HCl medium in the temperature range 25–55°C so as to be able to point out the differences with that of La_2O_3 that might be used in rare-earth technology.

EXPERIMENTAL

 Nd_2O_3 and $HCl-CH_3OH$ solution were prepared as described [7] by dissolving $Nd(NO_3)_3 \cdot 6H_2O$ (BDH, 99.9% pure) in Merck grade HNO_3 and by saturating methanol with HCl gas respectively. For the preparation of the $HCl-CH_3OH-H_2O$ solutions, the saturated $HCl-CH_3OH$ solution was diluted with water. Hydrochloric acid, sulphuric acid and absolute methanol were Merck reagents and absolute methanol was dried before use.

The leaching experiments were carried out in a 200 mL three—necked Pyrex reactor using the same experimental procedure, measurements and analyses as described in the previous work [7].

ICP and XRF techniques were used for Nd analysis at low concentrations and gravimetric analysis based on oxalate precipitation [8, 9] at high concentrations. The chloride content of the HCl–CH₃OH solutions was analyzed by the Volhard method [10]. The products were identified using Rigaku Model 2-22E2 thermal and Leco Model 1000 elemental analyzers. Conductivity, H⁺ potential and medium potential measurements were done using Tacusell CD6N Model conductivity meter with CM02/55 type electrode,

¹ The article is published in the original.

Fig. 1. Solubility of Nd₂O₃ in HCl–H₂O.

glass electrode and Calomel reference electrode against platinum electrode, respectively.

RESULTS AND DISCUSSION

The dissolution behaviour of Nd_2O_3 in $HCl-H_2O$, $HCl-CH_3OH-H_2O$ and $HCl-CH_3OH$ solutions at different HCl concentrations between 25–55°C for 6 h reaction time are given in Figs. 1–5. Dissolution of Nd_2O_3 is increased with increase of HCl concentration and temperature for all the experiments. Although a decrease in solubility in HCl-H₂O system is observed at increasing reaction times, this tendency is gradually eliminated with decrease of water in the solvent systems and maximum dissolution values are reached in HCl-CH₃OH solvent system.

Change of conductance, E_{SCE} , pH and E_R with HCl concentration and temperature for the HCl– H₂O solvent system for a reaction time of 6 hours are given in Figs. 6 and 7. The conductance and E_{SCE} values of pure HCl–H₂O solvent increase with HCl concentration. Similarly, the conductance and E_{SCE} values of the leach solutions are also observed to increase with HCl concentration and temperature. But, for all temperatures and HCl concentrations, the values obtained for leach solutions are lower than that of pure solvents. This tendency can be explained by lowering of H⁺ ion concentration in the medium due to basic property of neodymium and formation of higher valency neodymium complexes. The pH values of the

Fig. 2. Solubility of Nd_2O_3 in HCl–CH₃OH–H₂O (25% CH₃OH).

leach solutions are very high compared to pure solvent and all decrease with increase of HCl concentration. E_R values for leach solutions are much lower than that of pure solvent, all increase with HCl concentration and the most significant change for the leach solutions is observed at 25°C. Decrease in pH values and increase in E_R values can be related to decrease in solubilities at higher HCl concentrations due to formation of NdCl₃ · 6H₂O as a solid phase [1] and possible hydroxide precipitation above pH 6.

Figures 8 to 13 show the change of conductance, E_{SCE} , pH and E_R of HCl–CH₃OH–H₂O solvent system for a reaction time of 6 hours. The conductance and E_{SCE} values decrease (Figs. 8, 10, 12) in accordance with the decrease of water contents of the solvent systems. More pronounced decreases in pH and corresponding increases in E_R (Figs. 9, 11, 13) can be related to the lowering of conductance of the medium due to increase of methanol in the solvents and the formation of NdCl₃·xH₂O·yCH₃OH type compounds.

Experimental data related with the non-aqueous solvent system and the leach solutions are given in Figs. 14 and 15. Change of conductance and E_{SCE} with HCl concentration in non-aqueous medium is completely different than those of mixed-aqueous and aqueous mediums. Due to low conductance value of methanol, HCl–CH₃OH solvent system has the lowest conductance values for all HCl concentrations. The conductance values of the leach solutions are lower than that of the pure solvent which can be explained by

Fig. 3. Solubility of Nd₂O₃ in HCl–CH₃OH–H₂O (50% CH₃OH).

formation of neutral neodymium–methanol compounds. HCl–CH₃OH solvent system has the lowest E_{SCE} value due to low ionization of methanol but the E_{SCE} values of the leach solutions are higher than those of aqueous and mixed-aqueous leach solutions and even that of the HCl–CH₃OH solvent system because of the higher H⁺ ion concentration of the medium. The conductance values of the leach solutions in non-

Table 1. TGA-DTA analysis results for neodymium compounds

Temperature range, °C	Weight loss, %		
68.5-126.1	15.9		
126.1–140			
140.0-201.6	3.9		
201.6-250	4.4		
348.7-505	10.0		

Fig. 4. Solubility of Nd₂O₃ in HCl–CH₃OH–H₂O (75% CH₃OH).

aqueous medium are much lower than those of aqueous and mixed-aqueous mediums due to low conductance of methanol and due to formation of neutral neodymium—methanol compounds. Low pH values of the leach solutions prevent neodymium hydroxide precipitation and provide better dissolution.

25 g of Nd_2O_3 was reacted with 50 mL of HCl–CH₃OH solvent at 7 M HCl concentration for 60 minutes and a highly hygroscopic jelly product was obtained. Reaction products were dried at 75°C for 2 h, kept in vacuum desiccator and were identified by TGA, DTA, XRD and chemical analyses.

The thermal decomposition curve of the neodymium compounds in HCl–CH₃OH solvent system showed five endothermic peaks of which the temperature ranges and the weight losses are given in Table 1.

For the determination of the decomposition products, the neodymium compound formed in non-aqueous medium was heated separately considering the temperature ranges given in Table 1 and compounds formed were identified by XRD and chemical analyses. The chemical analysis results and the XRD patterns are given in Table 2 and Fig. 16, respectively.

Evaluation of the XRD results together with chemical analysis and weight loss values show the presence of the neodymium compounds given in Table 3 and that of lanthanum (Table 4) for comparison purposes.

Fig. 5. Solubility of Nd₂O₃ in HCl-CH₃OH.

CONCLUSIONS

 $HCl-CH_3OH$ is a better solvent than $HCl-CH_3OH-H_2O$ and hydrochloric acid for the dissolution of Nd_2O_3 . The main advantages of this non-aqueous solvent system is that neodymium hydroxide is not precipitated and dissolution increases with increase of HCl concentration even at high HCl concentrations. The dissolution behaviour of Nd_2O_3 in the solvent systems tested is similar to that of La_2O_3 but the solubility of Nd_2O_3 is lower. A solubility difference of 1.22 times between lanthanum and neodymium in aqueous medium was observed to increase to 1.40 times in non-aqueous medium.

Although NdCl₃ · nH₂O type compounds are formed in aqueous media at 25°C, NdCl₃ · x_1 CH₃OH and NdCl₃ · x_2 CH₃OH · 4.14H₂O ($x_1 + x_2 = 2.8$) are formed in non-aqueous media. Water and methanol losses are observed up to 165°C and NdCl₃ is formed as a new phase. With increase of temperature to 240°C, water is completely removed and besides NdCl₃ as the major phase, NdCl_{2.37} and NdCl₃ · 0.47CH₃OH are formed. Further increase of temperature to 390°C leads to decomposition of NdCl₃ and NdOCl starts to be formed besides the major phase NdCl_{2.37}. At 700°C, NdOCl becomes the stable phase (96%) with 4% of NdCl_{2.37}.

The thermal behaviours of the neodymium and lanthanum compounds formed in HCl–CH₃OH solvent system are slightly different. For example, complete loss of water in neodymium and lanthanum compounds are at 240 and 165°C, respectively. Similarly,

Fig. 6. Change of conductance and E_{SCE} in Nd–HCl– H_2O system with HCl concentration and temperature.

complete removal of methanol from neodymium compounds at 390°C takes place at 200°C for lanthanum compounds.

As can be seen, there are differences in the temperatures of water and methanol losses, in the types of chloride compound formations (LaCl₃, NdCl₃,

 Table 2. Chemical analysis results of the thermal decomposition products

Temperature, °C	Nd, %	Cl, %	C, %	Н, %	Weight loss, %	
25	34.20	28.94	8.12	4.77	_	
125	38.26	27.20	6.24	3.57	12.00	
150	43.80	30.74	5.85	3.14	6.00	
165	46.86	32.27	3.98	1.72	2.00	
240	56.26	35.47	2.20	0.91	4.50	
390	64.46	32.14	_	_	5.00	
700	72.29	17.13	—	—	6.00	

Fig. 7. Change of pH and E_R in Nd–HCl–H₂O system with HCl concentration and temperature.

Fig. 8. Change of conductance and E_{SCE} of Nd–HCl–CH₃OH–H₂O system (25% CH₃OH) with HCl concentration and temperature.

- 800

ī olvent 5°C 700 1 40°C 55°C 150 600 Potential(E_{SCE}), mV Conductance, mS 500 100 400 1 × 300 1 50 200 100 ٦ 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 HCl Concentration, mol/L

Fig. 9. Change of pH and E_R of Nd–HCl–CH₃OH–H₂O system (25% CH₃OH) with HCl concentration and temperature.

Fig. 10. Change of conductance and E_{SCE} of Nd–HCl– CH₃OH–H₂O system (50% CH₃OH) with HCl concentration and temperature.

200

Fig. 11. Change of pH and E_R of Nd–HCl–CH₃OH–H₂O system (50% CH₃OH) with HCl concentration and temperature.

Fig. 13. Change of pH and E_R of Nd–HCl–CH₃OH–H₂O system (75% CH₃OH) with HCl concentration and temperature.

RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 55

Fig. 14. Change of conductance and E_{SCE} of Nd–HCl– CH₃OH system with HCl concentration and temperature.

No. 4

2010

Fig. 15. Change of pH and E_R of Nd–HCl–CH₃OH system with HCl concentration and temperature.

Table 3. Neodymium compounds formed in HCl–CH₃OH solvent system and the decomposition products between $25-1100^{\circ}C$

Table 4. Lanthanum compounds formed in HCl–CH₃OH solvent system and the decomposition products between $25-1100^{\circ}C$ [7]

Tempera- ture, °C	Chemical Composition		Tempera- ture, °C	Chemical Composition	
25	$NdCl_3 \cdot x_1CH_3OH$	$x_1 + x_2 = 2.8$			
	$NdCl_3 \cdot x_2CH_3OH \cdot 4.14H_2O$		25	$LaCl_3 \cdot x_1CH_3OH$	$x_1 + x_2 = 2.35$
125	NdCl ₃ · x_1 CH ₃ OH NdCl ₃ · x_2 CH ₃ OH · 2.8H ₂ O	$x_1 + x_2 = 1.96$		$LaCl_3 \cdot x_2CH_3OH \cdot 3H_2O$	
			120	$LaCl_3 \cdot x_1CH_3OH$	$x_1 + x_2 = 1.90$
150	$NdCl_3 \cdot x_1CH_3OH$ $NdCl_3 \cdot x_2CH_3OH \cdot 1.96H_2O$	$x_1 + x_2 = 1.6$		$LaCl_3 \cdot x_2CH_3OH \cdot 0.5H_2O$	
165	NdCl ₃	$x_1 + x_2 = 1.02$	165	LaCl ₃ · 1.14CH ₃ OH	
	$NdCl_3 \cdot x_1CH_3OH$	1 2		5 5	
	$NdCl_3 \cdot x_2CH_3OH \cdot 0.6H_2O$		200	77.3% LaCl ₃ + 22.7% LaOCl	
240	94.2% NdCl ₃ + 6.8% NdCl _{2.37}				
	$NdCl_3 \cdot 0.4/CH_3OH$		560	33.14% LaCl ₃ + 66.86% LaOCl	
390	77.5% NdCl _{2.37} + 22.5% NdOCl				
700	4.34% NdCl _{2.37} + 94.36% NdOCl		700	5.52% LaCl ₃ + 94.47% LaOCl	

Fig. 16. Comparative XRD patterns of the decomposition products.

 $NdCl_{2.37}$) and in the oxychloride conversion temperatures for La₂O₃ and Nd₂O₃. All these differences seem to have potential use areas for the processing (separation) of rare-earth elements that show very similar chemical properties.

REFERENCES

- 1. Z. N. Shevtsova, L. S. Nam, and B. G. Korshunov, Russ. J. Inorg. Chem. **13** (6), 877(1968).
- Z. I. Grigorovich, Russ. J. Inorg. Chem. 8 (4), 507 (1963).

- N. N. Sakharova, Yu. G. Sakharova, T. A. Ezhova, et al., Russ. J. Inorg. Chem. 20 (6), 830 (1975).
- L. S. Smith, D. C. McCain, and D. L. Wertz, J. Am. Chem. Soc., 98 (17), 5125 (1976).
- S. N. Misra and T. N. Misra, R.C. Mehrotra, J. Inorg. Nucl. Chem, No. (1965), 27, 105.
- N. N. Kozachenko and I. M. Batyaev, Russ. J. Inorg. Chem, 16 (7), 978 (1971).
- 7. A. Yörükoğlu and İ. Girgin, Hydrometallurgy. **61** (3), 185 (2001).
- 8. D. I. Ryabchikov and V. A. Ryabchikov, *Soviet Research* on Analytical Chemistry of the Rare Earths. Israel Program of Scientific Translations (Nauka, Moscow 1960).
- 9. M. M. Woyski and R. E. Harris, *Analytical Chemistry of the Element Section A*, Part II: *The Rare Earths and Rare-Earth Compounds. Treatise on Analytical Chemistry*, Ed. by I. M. Kolthoff and P. J. Elving (Interscience, 1963).
- 10. N. H. Furman, (ed.), *Scott's Standard Methods of Chemical Analysis*, Ed. by N. H. Furman (Van Nostrand, 1938), Vol. 1.