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Summary: Alkyl abstraction from {Me3SiN(CH2CH2-
NSiMe3)2}ZrR2 (N3ZrR2; R ) CH2Ph, Me) using B(C6F5)3
affords cationic alkyl complexes stabilized by a diamide
ligand. The ionic η2-benzyl adduct decomposes slowly
to give a cationic cyclometalation product, which coor-
dinates the [PhCH2B(C6F5)3]- anion; the methyl cation
coordinates the anion [MeB(C6F5)3]- via a Zr‚‚‚Me-B
interaction. The complexes exhibit moderate ethene
polymerization activity.

The search for alternatives to group 4 metallocenes
as electrophilic “uniform site” catalysts for alkene
polymerization is currently of great interest.1,2 Much
attention has focused on nitrogen-containing ligands
([L]- or [L2]2-), such as porphyrins,3 tetraaza[14]-
annulenes,4 tetradentate Schiff base ligands,5 (hydroxy-
phenyl)oxazolines,6 and benzamidinates.7 Unfortu-
nately ethene polymerization activities (for L2MCl2/
methylaluminoxane or [L2MR]+; M ) Ti, Zr, Hf) have
been generally disappointing.4-7 In contrast, and de-
spite the application of dicyclopentadienyl and cyclo-
pentadienylamide catalysts in kiloton-scale industrial
processes, diamide complexes (the next family in this
series) have received little attention in the patent8 or
scientific literature.9-14 This is surprising considering
the facile synthesis of diamide complexes as catalyst

precursors9-14 and the expected increased electrophi-
licity of diamide cations compared to analogues with
polydentate nitrogen ligands. A program to probe the
potential of diamide ligands in polymerization has now
lead to the first alkene polymerization catalysts based
on cationic diamide complexes. Recent reports13,14 of
neutral group 4 adducts of the new tridentate ligand
[Me3SiN(CH2CH2NSiMe3)2]2- lead us to report here our
work involving cationic group 4 alkyl adducts of this
ligand.
New crystalline dialkyl precursors of putative cationic

complexes have been prepared from the readily avail-
able dichlorozirconium complex 115,16 using standard
alkylation methodology (Scheme 1).17,18 The observation
of 1H NMR resonances (C6D5Br) for inequivalent benzyl
(2, -20 °C) or methyl groups (3, 25 °C), as well as four
different backbone dimethylene hydrogens,19 is consis-
tent with coordination of the amino nitrogen to zirco-
nium in a trigonal bipyramidal structure. Fluxional
exchange of the environments of the axial and equato-
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rial benzyls and of the dimethylene hydrogens in 2,
observed at 25 °C, presumably involves dissociation of
the amino nitrogen, inversion at nitrogen, and recoor-
dination.14 The greater lability of the amino nitrogen
in 2 than in dimethyl 3 (two sharp ZrMe 1H NMR
resonances at 25 °C: δ 0.55 and 0.46 ppm) might reflect
stabilization of the 4-coordinate species by η2-benzyl
coordination.19

Abstraction of a benzyl group from 2 with B(C6F5)3
in C6D5Br or C2D2Cl4 solution cleanly affords a soluble
product, 4;17 in toluene 4 is deposited as a yellow
precipitate. The complex has been shown by 1H, 11B,
13C, and 19F NMR spectroscopy20 to consist of a ben-
zylzirconium cation21 and a noncoordinated [PhCH2B-
(C6F5)3]- anion (Scheme 2).22 The pseudotetrahedral
complex is stabilized by η2-coordination of the benzyl
ligand (giving a maximum 14-electron count at Zr), as
shown by the large 1JCH value of 142 Hz for the ZrCH2
group (δ 68.7 ppm) and the upfield ipso carbon (δ 137.5
ppm) and ortho hydrogen resonances (δ 6.38 ppm).23 An
identical cation (in addition to free NMe2Ph or Ph3CCH2-
Ph) is obtained using [PhMe2NH][B(C6F5)4] or [Ph3C]-
[B(C6F5)4].
Solutions of 4 (with [PhCH2B(C6F5)3]- as anion)

decompose slowly (16 h, 25 °C), with elimination of 1

equiv of toluene, to give a single organometallic prod-
uct,17 which may be precipitated with hexane. 1H, 13C,
and 19F NMR spectroscopy20 and elemental analysis
have confirmed that orange solid 5 is the product of
C-H activation of one of the amido SiMe3 groups in 4
(Scheme 2). Ligand activation is reflected in the
observation of four different SiMe resonances (1:1:3:3)
and a diastereotopic SiCH2Zr group (δ 0.70, 0.37, 2JHH
) 13.2 Hz). The zirconium cation is stabilized by
coordination of the benzylborate anion,22 as shown, in
particular, by the downfield ipso carbon resonance (δ
161.0 ppm; free anion, δ 148.6 ppm) and the large value
of ∆δ(m,p-F) of 3.9 ppm (free anion, 2.7 ppm) in the 19F
NMR spectrum.24

In contrast to ionic 4, the methyl complex 6, obtained
from the reaction of dimethyl 3 with B(C6F5)3 in C6D5-
Br,17 exhibits a covalent bonding interaction between
the cation, [N3ZrMe]+, and the [MeB(C6F5)3]- anion
(Scheme 3).25 Anion cordination is reflected in the
downfield location of the BMe resonance (δ 1.38 ppm;
free anion δ 1.13 ppm) and the large value of ∆δ(m,p-
F) of 4.4 ppm.24 The ZrMe group resonates at δ 0.65
ppm (1H NMR) and at δ 55.1 ppm (13C NMR), slightly
upfield of dimethyl 3.
Analogous methyl cations may be obtained by proto-

nolysis (7) or reaction with the trityl reagent (8) in C6D5-
Br solution (Scheme 3).17,20 Cation 7 is stabilized by
NMe2Ph coordination (downfield ortho and para hydro-
gen resonances).17,26 For complex 8, it is not possible
to distinguish between possible weak solvent and anion
coordination to the zirconium cation. The location of
the ZrMe resonance in the complexes (7, δ 0.77 ppm; 8,
δ 0.75 ppm), slightly downfield from 6, may reflect
increased metal electrophilicity (compared to the THF
adduct of 6: δ 0.48 ppm).
Formation of methyl cations 7 and 8 proceeds via an

intermediate species, 9, cleanly obtained using 0.5 equiv
of [Ph3C][B(C6F5)4] (Scheme 3).17,20 Further reaction of
9 with another 0.5 equiv of the reagent affords 8 (20
min, 25 °C). Complex 9 exhibits two ZrMe resonances
(δ 0.51, 2 Me; δ 0.48 ppm, 1 Me), as well as resonances
for two equivalent and symmetric {N3Zr} fragments (2:1
ratio of SiMe3 groups, four backbone methylene hydro-
gens). These data are consistent with a structure in
which a methyl group bridges two [N3ZrMe]+ fragments,
similar to recently reported metallocene complexes,
[{Cp′2ZrMe}2(µ-Me)]+.27 Again, it is clear that a methyl
group of a group 4 dimethyl complex can act as an
effective donor for an electrophilic metal center.
Preliminary reactivity studies of the cationic com-

plexes have revealed moderate ethene polymerization
activity but very low propene activity. A 20-fold excess
of ethene is rapidly polymerized (<5 min, 25 °C) by
C6D5Br solutions of 4 or 6-8 in an NMR tube; the
conversion of 20 equiv of propene (to propene oligomers)
is incomplete after 15 min. In all cases only a small
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amount of the cation reacts (giving unidentified prod-
ucts), reflecting slower initiation than propagation in
polymerization. In an autoclave experiment, benzyl
cation 4 (0.2 mmol, 7.1 bar ethene, 200 mL toluene, 25
°C, 1 L autoclave) afforded 11.0 g of polyethene in 10
min (rate 3600 g/g of Zr‚h; GPC analysis,Mw ) 230 000,
Mn ) 52 200). The deviation of the polydispersivity (Mw/
Mn ) 4.4) from the ideal uniform site value of 2 is partly
ascribed to the nonisothermal nature of the polymeri-
zation (exotherm of +55 °C within 90 s). A similar
reaction with propene (6.6 bar, 60 min) gave 0.45 g of

atactic propene oligomers (1H NMR: CH2dC(R)Me end
groups, Mn ) 5600), corresponding to a rate of 20 g/g
Zr‚h.
The new tridentate diamide ligand affords a relatively

robust framework for cationic group 4 alkyl complexes.
Although the ligand is subject to degradation by C-H
activation of a SiMe3 group adjacent to zirconium, the
reaction is much slower than that found by us for other
amide ligands.28 Similar to the situation for cationic
alkylmetallocenes, the cationic η2-benzyl adduct of the
tridentate ligand is a rather weak electrophile,23b whereas
the methyl cation coordinates the [MeB(C6F5)3]- anion,
NMe2Ph, or even N3ZrMe2. This work has shown that
cationic diamide systems can function as effective
ethene polymerization catalysts. The low propene
reactivity may reflect a general inertness of four-
coordinate diamide cations toward coordination and
insertion of alkenes larger than ethene. In other
studies, we have found that three-coordinate analogues
exhibit higher activity toward propene.28

Supporting Information Available: Text and a table
providing full details of the preparation, characterization, and
alkene reactivity of the compounds (11 pages). Ordering
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