Die Reaktion von Singulett-Sauerstoff mit 4-Amino-3-pyrazolin-5-onen⁺

Hans-Jürgen Duchstein^{a)}, Gabriela Ruch-Zaske^{a)}, Gerhard Holzmann^{b)}, Eva Wollenberg^{c)} und Horst Weber^{c)*}

- a) Pharmazeutisches Institut der Freien Universität Berlin, Königin-Luise-Str. 2+4, 1000 Berlin 33
- ^{b)} Institut für Organische Chemie der Freien Universität Berlin, Takustr.
 3, 1000 Berlin 33
- Institut f
 ür Pharmazeutische Chemie der Universit
 ät D
 üsseldorf, Universit
 ätsstra
 ße 1, 4000 D
 üsseldorf

Eingegangen am 12. Mai 1987

Die Titelverbindungen **1a-d** setzen sich in wäßriger Lösung bei pH 7.4 mit Singulett-Sauerstoff praktisch quantitativ zu den Hydraziden **3a-d** um. Die ¹H- und ¹³C-Spektren von **3** zeigen das Vorliegen rotationsisomerer Formen bei Raumtemp. Die Produkte **3** werden unter Elektronenstoßionisation massenspektrometrisch untersucht.

Reaction of ¹O₂ with 4-Amino-3-pyrazolin-5-ones

The title compounds **1a-d** react with ${}^{1}O_{2}$ in aqueous buffer (pH = 7.4) to form the hydrazides **3a-d** in nearly quantitative yields. The ${}^{1}H$ - and ${}^{13}C$ -nmr spectra of **3** indicate the presence of rotameric isomers at room temperature. Products **3** are investigated by means of mass spectrometry.

Aktiver Sauerstoff spielt in der Arachidonsäurekaskade eine wichtige Rolle, wobei außer einer Beteiligung von Sauerstoffradikalen¹⁻³⁾ auch die Mitwirkung von Singulett-Sauerstoff diskutiert wird^{4, 5)}. Aus der Reihe antiinflammatorisch wirksamer Substanzen mit Hemmung der Prostaglandinsynthese wurden bereits Indometacin⁶⁾ sowie Dihydro-1H-pyrrolizine⁷⁾ auf ihre Reaktivität gegenüber Singulett-Sauerstoff untersucht. Es ist bekannt, daß auch Isopropylaminophenazon **1c** die Prostaglandinsynthese beeinflussen kann⁸⁾. Deshalb schien es notwendig, die Reaktion der 4-Aminopyrazolinone **1** mit ¹O₂ zu untersuchen.

Wäßrige Lösungen von 1a-d wurden bei pH 7.4 und Raumtemp. mit photochemisch erzeugtem Singulett-Sauerstoff behandelt, und der Reaktionsverlauf wurde dc kontrolliert. In allen Fällen entstehen die analogen Endprodukte **3a-d.** Unterschiede bestehen nur in der Dauer bis zur praktisch quantitativen Umsetzung. Es ist anzunehmen, daß sich intermediär Dioxetane 2 bilden, die jedoch thermisch so instabil sind⁹, daß sie nicht nachzuweisen waren, auch wenn die Photooxidation bei -60° in MeOH durchgeführt wurde.

3d ist als Oxidationsprodukt von Aminophenazon bekannt¹⁰⁻¹², bei dessen cerimetrischer Bestimmung auch **3b** als Nebenprodukt identifiziert werden konnte¹³). Dagegen wurde **3c** erst kürzlich durch Photolyse von kristallinem **1c** in 0.6 % Ausbeute erhalten¹⁴). Dabei fällt auf, daß für das ¹H- NMR-Spektrum von **3c** einheitliche Resonanzsignale angegeben werden, obwohl für **3d** ein komplexes Protonenspektrum bekannt ist, was auf die Existenz rotationsisomerer Formen zurückgeführt wird¹⁵. Wir haben diesen Effekt in den ¹H-NMR-Spektren aller dargestellten Hydrazide beobachtet. Bei einer Meßtemp. 26° kommt es in Abhängigkeit vom Lösungsmittel zu einer unterschiedlich starken Aufspaltung der Resonanzsignale im Verhältnis von ca. 1:1, wobei die chemische Verschiebung der Teilsignale für die Singuletts der Acetyl- bzw. Hydrazid-Methylgruppen in [D₆] Benzol besonders stark voneinander abweicht (Tab. 1).

Auch in den breitbandentkoppelten ¹³C-NMR-Spektren lassen sich die Rotationsisomere differenzieren. So findet man bei -30° in CDCl₃ für die drei Carbonyl-C-Atome von **3c** insgesamt 12 Signale⁸, was auf die Beteiligung von wenigstens vier Rotameren schließen läßt. Die Effekte auf die übrigen C-Signale sind z. T. weniger stark ausgeprägt, so daß nicht immer ein Satz von 4 Resonanzlinien beobachtet wird. Die Koaleszenztemperaturen liegen für alle Hydrazide **3** im Bereich zwischen 95 und 105° ([D_c]DMSO).

Tab. 1: ¹H-NMR-Daten von 3a-d in CDCl₃^{a)} und in [D₆] Benzol^{b)} bei 26°; δ (ppm)

-	-CO-CH ₃	-N-N-CH ₃	
3a ^{a)}	2.13/2.18	3.18/3.33	
3a ^{b)}	1.61/1.96	2.79/3.06	
3b ^{a)}	2.13/2.18	3.18/3.36	
3b ^{b)}	1.63/2.02	2.85/3.12	
3c ^{a)}	2.15/2.20	3.20/3.35	
3c ^{b)}	1.64/2.05	2.86/3.15	
3d ^{a)}	2.18/2.25	3.25/3.31	
3d ^{b)}	1.60/2.10	2.86/3.05	

+) Auszugsweise vorgetragen auf der Jahrestagung der ÖPhG und DPhG in Innsbruck, September 1986.

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988 0365-6233/88/0101-0025 \$ 02.50/0

Massenspektren von 3

Massen, Intensitäten und elementare Zusammensetzung der Molekül- und Fragmentionen von **3a-d** sind in Tab. 2 zusammengefaßt.

Die Analyse metastabiler Übergangssignale¹⁶⁻¹⁸⁾ ergibt charakteristische Fragmentierungsmuster (Schema 1). Typisch ist die Beteiligung von R-CO-Einheiten bei der Bildung der Ionen **b**-**e** und **i**, die konkurrierend oder in Kombination zur Keteneliminierung auftritt, wobei die Ionen **a**, **d** und **e** entstehen. Bemerkenswert ist, daß das Ion **i** beim Dimethylaminderivat **3d** die höchste Intensität aufweist. Hier sind die Fragmentierungswege über **a**-**c** nur schwach ausgeprägt, dominieren aber bei den sekundären Aminen **3a**-**c**, so daß in diesen Fällen **f** als Basispeak nachgewiesen wird.

Dem Fonds der Chemischen Industrie danken wir für Sachbeihilfen.

Tab. 2: Massenspektren von 3. Relative Intensitäten (% B). Bezeichnung d	der Ionen ents	prechend Schema 1
--	----------------	-------------------

Ion	m/z	Elementare Zusammensetzung	3a	3b	3c	3d
M ^{+.}	<u></u>		235(2.6) C _{1 1} H ₁₃ N ₃ O ₃	249(2.9) C ₁₂ H ₁₅ N ₃ O ₃	277(2.5) C ₁₄ H ₁₉ N ₃ O ₃	263(2.6) C ₁₃ H ₁₇ N ₃ O ₃
(a)	[M-C	2H ₂ O]	193(10)	207(25)	235(11.3)	221(12.8)
(b)	191	$C_{10}H_{11}N_2O_2$	(39.5)	(60.3)	(81.3)	(14.5)
(c)	164	$C_9H_{12}N_2O$	(44.7)	(42.6)	(71.3)	(2.6)
(d)	149	$C_8H_9N_2O$	(3.2)	(5.9)	(8.0)	(2.1)
(e)	122	$C_7H_{10}N_2$	(52.6)	(64.7)	(85.0)	(2.5)
(f)	121	$C_7H_9N_2$	(100)	(100)	(100)	(33.3)
(g)	107	$C_6H_7N_2$	(28.9)	(17.7)	(16.3)	(0.8)
(h)	92	C ₆ H ₆ N	(52.6)	(19.1)	(18.8)	(2.6)
	77	C ₆ H ₅	(23.7)	(16.2)	(16.3)	(4.3)
(i)	RCO ⁺	0.0	44(5)	58(20.6)	86 (3.0)	72 (100)
(k)	43	C ₂ H ₃ O	(28.9)	(19.1)	(48.8)	(7.7)
Zusätzliche Ionen:			134 (2.2)	207 (8.8)	235 (3.0)	
				119 (8.8)	180 (8.8)	193 (3.0)
					138(10.5)	164 (2.6)
•				·	137 (9.8)	
					119(15.0)	

Arch. Pharm. (Weinheim) 321, 25-27 (1988)

Experimenteller Teil

IR: Perkin Elmer 177. – ¹H und ¹³C-NMR: Varian CFT 20 (80 bzw. 20 MHz). – *MS*: Massenspektrometer MAT 711; Elektronenstoßionisation 80 eV; Emission 0.7 μ A; Direktverdampfung bei 40°; Temp. der Ionenquelle 120°; Auflösung 2000 (rel. Tal Def.); Hochauflösungen (15000) nach dem peak-match-Verfahren. – *SC*: Kieselgel 60 (0.062–0.2). – *DC*: Kieselgel-Fertigplatten Merck Nr. 5554; Fließmittel Ethylacetat. Pufferlösung pH 7.4: 1.179 g KH₂PO₄ und 4.30 g Na₂HPO₄ werden zu 1 l Wasser gelöst.

Allgemeine Arbeitsvorschrift für die Reaktion von 1 mit ¹O₂

Die Lösung von 1 g 1 und 100 mg Methylenblau in 300 ml Pufferlösung pH 7.4 wird in einer Bestrahlungsapparatur¹⁹⁾ 15 min mit O_2 vorgesättigt und im O_2 -Strom bei 20° bis zur Beendigung der Reaktion bestrahlt. Die Lösung wird mit CHCl₃ extrahiert und der Extrakt sc durch Elution mit CHCl₃ gereinigt.

Aminooxoessigsäure-2-acetyl-2-methyl-1-phenylhydrazid (3a)

Aus 1a nach 2 h Ausb. 95 %. Farblose Kristalle, Schmp. 114–115° (Petrolether 60–80°). – Rf = 0.26. – IR (KBr): 3320, 3160, 1680 (br), 1495, 1300, 750 cm⁻¹. – $C_{11}H_{13}N_3O_3$ (235.2) Ber. C 56.2 H 5.57 N 17.9 Gef. C 56.1 H 5.52 N 17.8.

Methylaminooxoessigsäure-2-acetyl-2-methyl-1-phenylhydrazid (3b)

Aus 1b nach 4 h Ausb. 94 %. Fast farbloses Öl mit Kristallisationsneigung. – Rf = 0.23. – IR (KBr): 3430, 3000, 1680 (br.), 1490, 1380 cm⁻¹. – $C_{12}H_{15}N_3O_3$ (249.3) Ber. C 57.8 H 6.07 N 16.9 Gef. C 57.6 H 6.42 N 16.8.

Isopropylaminooxoessigsäure-2-acetyl-2-methyl-1-phenylhydrazid (3c)

Aus 1c nach 3 h Ausb. 96 %. Farblose Kristalle, Schmp. $121-122^{\circ}$ (Ether). – Rf = 0.39. – IR (KBr): 3280, 3070, 2980, 1680, 1660 (br.), 1370, 1260, 770 cm⁻¹. – C₁₄H₁₉N₃O₃ (277.3) Ber. C 60.6 H 6.91 N 15.2 Gef. C 60.6 H 6.93 N 15.2.

Dimethylaminooxoessigsäure-2-acetyl-2-methyl-1-phenylhydrazid (3d)

Aus **1d** nach 6 h Ausb. 90 %. Farblose Kristalle, Schmp. 92–93° (Ether). – Rf = 0.21. – IR (KBr): 3000, 1675 (br), 1495, 1350 cm⁻¹. $C_{13}H_{17}N_3O_3$ (263.3) Ber. C 59.3 H 6.51 N 16.0 Gef. 59.3 H 6.54 N 15.9.

Literatur

- 1 R. W. Egan, J. Paxton und F. A. Kuehl, J. Biol. Chem. 251, 7329 (1976).
- 2 F. A. Kuehl, J. L. Humes, R. W. Egan, E. A. Ham, G. C. Beverigde und G. C. van Arman, Nature (London) 265, 170 (1977).
- 3 F. A. Kuehl, Acta Rhumatol. Belg. 1, 179 (1977); C. A. 90, 37158 s (1979).
- 4 P. J. O'Brien und A. Rahimtula, Biochem. Biophys. Res. Commun. 70, 893 (1976).
- 5 E. Cadenas, H. Sies, W. Nastainczyk und V. Ullrich, Hoppe-Seyler's Z. Physiol. Chem. 364, 519 (1983).
- 6 H.-J. Duchstein, Arch. Pharm. (Weinheim) 318, 127 (1985).
- 7 G. Dannhardt und L. Steindl, Arch. Pharm. (Weinheim) 318, 663 (1985).
- 8 Dissertation G. Ruch-Zaske, FU Berlin 1985.
- 9 W. Adam, H. Platsch und E. Schmidt, Chem. Ber. 118, 4358 (1985).
- 10 R. Charonnat und R. Delaby, C. R. Acad. Sci. 189, 850 (1929).
- 11 E. Schulek und P. Menyhart, Z. Anal. Chem. 89, 426 (1932).
- 12 H. Tomankowa und J. Zyka, Microchem. J. 20, 132 und 367 (1975).
- 13 I. P. Koka, Farmatsiya (Moscow) 33, 37 (1984); C. A. 101, 177620 g (1984).
- 14 J. Reisch, N. Ekiz und T. Güneri, Arch. Pharm. (Weinheim) 319, 973 (1986).
- 15 G. Szasz, A. Kovacs und L. Ladanyi, Acta Pharm. Hung. 48, 221 (1978); C. A. 90, 29074 w (1979).
- 16 R. K. Boyd und J. H. Beynon, Org. Mass Spectrom. 12, 163 (1977).
- 17 A. F. Weston, K. R. Jennings, S. Evans und R. M. Elliott, Int. J. Mass Spectrom. Ion Phys. 20, 317 (1976).
- 18 G. Holzmann und G. Koßmehl, Org. Mass Spectrom. 15, 336 (1980).
- G. Wurm und U. Geres, Arch. Pharm. (Weinheim) 318, 931 (1985).
 [Ph 338]