Bryostatins : The Asymmetric Synthesis of C1-C9 and C11-C16 Fragments

J. De Brabander, K. Vanhessche¹ and M. Vandewalle*

State University of Gent, Department of Organic Chemistry, Laboratory for Organic Synthesis, Krijgslaan, 281 (S.4), B-9000 GENT (Belgium)

Abstract : The fragments C_1 - C_9 19 and C_{11} - C_{16} 26 of the bryostatins are constructed in an enantioselective and highly diastereoselective fashion from respectively D-pantolactone (2) and L-erythrulose (3) as chiral templates.

The bryostatins² have been isolated from the marine Bryozoan *Bugula neritina* and constitute a family of some 17 related macrocyclic lactones based on a polyacetate-derived backbone. Except for three C₂₀ deoxy analogues (e.g. 1a) they differ in the nature of the ester functions at C₇ and C₂₀. Bryostatin 1 (1b) possesses antineoplastic activity against lymphocytic leukemia and ovarian carcinoma³. Next to the first completed total synthesis of 1c, described by Masamune et al.⁴ other groups have described the synthesis of fragments of the basic 20-membered ring lactone^{5,6}.

Presently we want to report our efforts towards the total synthesis of bryostatin 1 (1b). Retrosynthetic analysis led us to disconnections at the C_{10} - C_{11} and C_{16} - C_{17} bonds. We decided to concentrate our initial studies on the construction of the eastern-northern part (C_1 - C_{16}) via fragments C_1 - C_9 and C_{11} - C_{16} which we planned to connect via a keto-phosphonate, thus providing C_{10} . Both fragments are respectively constructed from chiral templates each possessing one stereogenic center; D-pantolactone (2) for the C_1 - C_9 fragment and L-erythrulose (3) for the C_{11} - C_{16} fragment.

For the synthesis of the fragment C₁-C₉, D-pantolactone (2) was selected for the C₆-C₉ fragment by virtue of the correct stereogenic C₇ flanked by a *gem*-dimethyl group (scheme 1). 2 was transformed into epoxide 5 in a 5-step sequence via 4.7 A first attempt for the construction of the C₁-C₉ fragment centered around coupling of epoxides 5 and 6 (C₁-C₄ fragment; available from L-malic acid (7))⁸ via dithiane as C₅.

Subsequent to dithiane cleavage in 9, the resulting ketone could then be a substrate for diastereoselective reduction to the *anti*-3,5-diol 18. Reaction of epoxide 5 with 2-lithiodithiane and protection of the alcohol function led to 8.

(a) LiAlH4, THF, O°C, reflux, 5 h, r.t.; (b) 3-pentanone, PTSA, THF, reflux, 5 h (81 %, two steps); (c) KOt.Bu, THF, then MPMCl, r.t., 12 h (94 %); (d) 10 % HCl-THF, r.t., 5 h 92 %); (e) NaH, DMF-THF, r.t., 4 h, then tosylimidazole, r.t., 2 h (92 %); (f) (CH₂=CH)₂CuCNLi₂, Et₂O, O°C, 30 min (84 %); (g) KOt.Bu, THF, then BnBr, r.t., 12 h (96 %); (h) i) OsO₄, NMMO, H₂O-THF, r.t., 5 h; ii) Pb(OAC)₄, toluene, pyridine, r.t., 10 min (90 %, two steps); (i) TBDPS-Cl, imidazole, DMF, r.t., 2 h (91 %); (j) CrO₃.(Py)₂, CH₂Cl₂, r.t., 30 min (98 %); (k) LDA, THF, -78°C, 5 min, then 14, -78°C, 5 min (77 %); (l) LiAl(Ot.Bu)₃H, LiI, Et₂O, -78°C (90 %); (m) Me₂C(OMe)₂, Amberlyst-15, CH₂Cl₂, r.t., 30 min (94 %); (n) i) TBAF, THF, r.t., 4 h; ii) Dess-Martin periodinane (ref. 18); iii) MeOH, Amberlyst-15, r.t., 15 h; (o) 1,3-dithiane, n.BuLi, THF, -10°C, 3 h (100 %); (p) KOt.Bu, THF, then BnBr, r.t., 2 h (100 %); (s) NaBH4, MeOH, r.t., 10 min (52 % of the two C5-epimers).

Scheme 1

However, the lithiated anion of 8 was virtually unreactive towards epoxide 6. When the anion of 8 (n.BuLi, THF) and epoxide 6 were kept at 0°C for 5 days, 21 % yield of 10 was obtained next to recovered 8 (76 %) and 6 (78 %). This could be explained by the intermediacy of 11, slowly formed in an intramolecular fashion from the anion of 8, followed by base induced cyclopropane ring opening to the more reactive anion 12. Only

when the anion of 8 was formed in the presence of TMEDA and epoxide 6 was added mixed with 3 eq. DMPU, 9 a low yield (13 %) of the desired 9 was obtained next to 10 (4 %) and recovered starting materials.

This unexpected result led us to explore another approach which now involves the diastereoselective formation of both C₃ and C₅ stereocenters. The key-template 5 was transformed via olefin 13 into the aldehyde 14 as the C₅-C₉ fragment, while the C₁-C₄ fragment 15 is easily obtainable from (\pm) -1,3-butanetriol 16. Aldol condensation between 15 and 16 led exclusively to one single diastereoisomer 17. On the basis of a Cram-type transition state, involving coordination of the lithium cation with the benzyl ether oxygen atom, the *anti* isomer is expected; this assumption will be proven later (vide infra).¹⁰

Although high diastereoselective reduction of β -hydroxy-ketones is well documented,¹¹ formation of 18 from 17 proved to be problematic. Out of 19 different reaction conditions studied only one gave a 3,5-*anti-syn* ratio above 2:1. For instance, surprisingly, Me₄NB(OAc)₃H, known as a selective reducing agent^{11d}, gave 0 % d.e. Only lithium tri-t.butoxy-aluminum hydride in the presence of lithium iodide,¹² at -78°C, resulted in a 17.6:1 ratio in favour of 18; however when the reaction was allowed to reach r.t. a ratio of 1.85:1 was observed. The *anti*-diol 18 could be separated from the *syn* isomer by preparative reversed phase HPLC.

The relative configuration at C₃ and C₅ in 18 was proved by the transformation of both 19 and the minor C₃-epimer to respectively 20 and 21. The ¹H NMR spectra show for 20 axially oriented H₃ ($\Sigma J = 44$ Hz) and H₅ ($\Sigma J = 29$ Hz) while in 21, H₃ ($\Sigma J = 16$ Hz) is equatorial with H₅ ($\Sigma J = 29$ Hz) axial.¹³ This proves the 3,5-syn relationship in 18. For the proof of the absolute configuration at C₃ and C₅, advantage was taken from compound 9 with the firmly established (from L-malic acid) C₃ stereogenic center. Cleavage of the dithiane group and reduction of the resulting ketone led to two C₅ epimers, one of which was found to be identical to 18 (¹H NMR, rf value on reversed phase HPLC). This fully identified acetonide 19 as a suitable protected C₁-C₉ fragment. The formation of this fragment from 2 in 89 % d.e. and 27 % overall yield compares favourably with described procedures.^{4,6}

(a) NaI, acetone, reflux, 12 h, (90 %); (b) 2-TMS-1,3-dithiane, n.BuLi, THF, -60°C \rightarrow r.t., 24 h (82 %); (c) TBAF, THF, r.t., 2 h (98 %); (d) n.BuLi, BrCH₂CH(OMe)₂, THF-HMPA, -60°C \rightarrow -20°C, 36 h (80 %); (e) HCl (3 %), THF, r.t., 2 h (90 %); (f) n.BuLi, 1,2-DME, 85°C, 12 h (75 %).

Scheme 2

Next we explored the creation of C₉-C₁₆ fragment (scheme 2) with the two stereogenic C_{11} and C_{15} centers and a potential C_{13} -carbonyl group allowing at a later stage the formation of the unsaturated ester via an

asymmetric Horner-Emmons reaction.^{14,15} Our strategy centers around the formation of the stereogenic C₁₁ via a nucleophilic addition reaction of a C₁₅ hydroxyl group as the chiral inductor. Tosylate 22, obtained from L-erythrulose (3),¹⁶ was transformed into the dithiane 24 via 23¹⁷; direct formation of 24 from 22 suffered from low yields. Reaction of the anion of 24 with 2,2-dimethoxy-1-bromo-ethane and subsequent hydrolysis afforded 26 as an anomeric mixture.

As a model for the C_9-C_{16} fragment we selected pivalic acid, in order to study the cyclization conditions. The keto-phosphonate 27 was deprotonated and reaction with 26 yielded 28 as the sole product. The axial orientation of both H_{11} and H_{15} was proven by the ¹H NMR spectrum; H_{11} and H_{15} show trans diaxial coupling with the corresponding proton at respectively C_{12} and C_{14} (J = 11.67 Hz and 11.65 Hz. This establishes that the configuration at C_{11} can be controlled by the C_{15} stereogenic alcohol. With this model study a viable route to the C_1 - C_{16} fragment is at hand. Further studies on the total synthesis of 1b are in progress.

Acknowledgements. We thank the "NFWO" and the "Ministerie voor Wetenschapsbeleid" for financial support to the laboratory. J.D.B. thanks the "IWONL" for a doctorate fellowship. K.V. thanks the "NFWO" for a "aspirant" fellowship.

References

- Aspirant of the Nationaal Fonds voor Wetenschappelijk Onderzoek.
 Pettit, G.R.; Leet, J.E.; Herald, C.L.; Kamano, Y.; Roettner, F.;
- Pettit, G.R.; Leet, J.E.; Herald, C.L.; Kamano, Y.; Boettner, F.E.; Baczynskyj, L.; Nieman, R.A. J. Org. Chem. 1987, 52, 2854 and references cited therein.
- For the physiological activity of byostatins, see : Wender, P.A.; Cribbs, C.M.; Koehler, K.F.; Sharkey, N.A.; Herald, C.L.; Kamano, Y.; Pettit, G.R.; Blumberg, P.M. Proc. Natl. Acad. Sci. U.S.A. 1988. 85, 7197.
- (a) Blanchette, M.A.; Malamas, M.S.; Nantz, M.H.; Roberts, J.C.; Somfai, P.; Whritenour, D.C.; Masamune, S.; Kageyama, M.; Tamura, T. J. Org. Chem. 1989, 54, 2817; (b) Masamune, S. Pure Appl. Chem. 1988, 60, 1587; (c) Kageyama, M.; Tamura, T.; Nantz, M.H.; Roberts, J.C.; Somfai, P.; Whritenour, D.C.; Masamune, S. J. Am. Chem. Soc. 1990, 112, 7407.
- 5. Evans, D.A.; Carreira, E.M. Tetrahedron Lett. 1990, 31, 4703.
- 6. (a) Roy, R.; Rey, A.W.; Charron, M.; Molino, R. J. Chem. Soc. Chem. Commun. 1989, 1308;
 (b) Roy, R.; Rey, A.W. Synlett. 1990, 448.
- 7. See also Lavalée, P., Ruel, R.; Grenier, L.; Bissonnette, M. Tetrahedron Lett. 1986, 27, 679.
- See also Lavalee, P., Ruei, R.; Greiner, L.; Bissonnette, M. *Vetrahedron Lett.* 1986, 27, 679.
 (a) Hungerbühler, E.; Seebach, D.; Wasmuth, D. *Helv. Chim. Acta* 1981, 64, 1467; (b) Mori, Y.; Takeuchi, A.; Kageyama, H.; Suzuki, M. *Tetrahedron Lett.* 1988, 29, 5423.
 Lipshutz, B.H.; Moretti, R.; Crow, R. *Tetrahedron Lett.* 1989, 30, 15.
 See also, Masamune, S.; Choy, W. Aldrichim. Acta 1982, 15, 47.
 For example : (a) Bernardi, R.; Ghiringhelli, D. J. Org. Chem. 1987, 52, 5021; (b) Saksena, A.K.; Marginergine, P. *Statehedron Lett.* 1992, 272 (c) Invehi S. Vilkei, H.; Hauschi, M.; Vamamete, M.; Vamamete, S.; Nikei, P. S.; Nikei, M.; Vamamete, M.; Vamamete, S.; Nikei, S.; Nikei, M.; Vamamete, M.; Vamamete, S.; Nikei, M.; Vamamete, S.; Nikei, M.; Vamamete, M.; Vamamete, S.; Nikei, M.; Vamamete, S.; Nikei, M.; Vamamete, S.; Nikei, M.; Vamamete, M.; Vamamete, S.; Nikei, M.; Vamamete, S.; Nikei, M.; Vamamete, S.; Nikei, M.; Vamamete, M.; Vamamete, S.; Nikei, M.; Ni

- Mangiaracina, P. Tetrahedron Lett. 1983, 24, 273; (c) Iguchi, S.; Nakai, H.; Hayashi, M.; Yamamoto, H. J. Org. Chem. 1979, 44, 1363; (d) Evans, D.A.; Chapman, K.T. Tetrahedron Lett. 1986, 27, 5939.
- 12. Mori, Y.; Suzuki, M. Tetrahedron Lett. 1989, 30, 4383.
- 13. For an analoguous example see ref. 12.
- (a) Gais, H.-J.; Schmiedl, G.; Ball, W.A.; Bund, J.; Hellmann, G.; Erdelmeier, I. Tetrahedron Lett. 1988, 29, 1773; (b) Rehwinkel, H.; Skupsch, J.; Vorbrüggen, H. Tetrahedron Lett. 1988, 29, 1775. 14.
- 15. For a recent elegant solution of this problem see ref. 5.
- 16. De Wilde, H.; De Clercq, P.; Vandewalle, M. Tetrahedron Lett. 1987, 28, 4757.
- 17. Salzmann, T.N.; Ratcliffe, R.W.; Christensen, B.G.; Bouffard, F.A. J. Am. Chem. Soc., 1980, 102, 6161.
- 18. Dess, D.B.; Martin, J.C. J. Org. Chem. 1983, 48, 4155.

(Received in UK 15 March 1991)