Biphenomycin B and Derivatives: Total Synthesis and Translation Inhibition

Yu-Peng He,^[a, b] Hao Tan,^[a, b] Lars Arve,^[a, b] Sascha Baumann,^[a, b] Herbert Waldmann,^{*[a, b]} and Hans-Dieter Arndt^{*[a, b]}

Abstract: A full account on the synthesis of the antibiotic natural product biphenomycin B and several derivatives is reported, which employs a Suzuki coupling reaction of a free carboxylic acid and macrolactam formation as key transformations. Liberal exchange of the central amino acid was demonstrated. This procedure gave derivatives to study the influence of the polar side chain of the central amino acids on translation inhibition.

Introduction

In many biologically active natural products, key structural elements often account for a particular biological activity and hence may be regarded as "privileged".^[1] To identify such privileged elements, the screening of compound libraries has proven to be increasingly useful.^[2] The biaryl subunit is found in many biologically active molecules as an important privileged motif.^[3] The structurally related biarylcy-

[a]	Dr. YP. He, H. Tan, Dr. L. Arve, ⁺ Dr. S. Baumann, ⁺⁺
	Prof. Dr. H. Waldmann, Dr. HD. Arndt ⁺⁺⁺
	Max-Planck-Institute of Molecular Physiology
	Department of Chemical Biology
	Otto-Hahn-Straße 11,D-44227 Dortmund (Germany)
	Fax: (+49)231-133-2498
	E-mail: hans-dieter.arndt@mpi-dortmund.mpg.de
	herbert.waldmann@mpi-dortmund.mpg.de
[b]	Dr. YP. He, H. Tan, Dr. L. Arve, ⁺ Dr. S. Baumann, ⁺⁺
	Prof. Dr. H. Waldmann, Dr. HD. Arndt+++
	Technische Universität Dortmund
	Faculty of Chemistry
	Otto-Hahn-Straße 6,D-44221 Dortmund (Germany)
[+]	Current address:
	BayerCropScience GmbH
	Alfred-Nobel-Straße 50, D-40789 Monheim (Germany)
[++]	Current address:
	Stanford University School of Medicine
	Department of Biochemistry
	279 Campus Drive, West Beckman Center, B469
	Stanford, CA 94305-5307 (USA)
[+++]	New address:
	Friedrich-Schiller-Universität Jena
	Lehrstuhl für Organische Chemie I
	Humboldstrasse 10, D-07743 Jena (Germany)
	Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.201000908.
	r

tides • synthesis design

couplings • natural products • pep-

cross

Keywords: antibiotics

clopeptide biphenomycin $(1-3)^{[4]}$ and arylomycin natural products $(4)^{[5]}$ represent interesting case studies for chemical syntheses and integrated biological studies. Both of them display a biaryl amino acid embedded in a small peptide macrocycle. Whilst the 15-membered ring biphenomycins **1** and **2** were reported to inhibit bacterial protein biosynthesis,^[6] the 14-membered ring arylomycins **4** bind to a bacterial signal peptidase.^[7]

The biphenomycin biarylcyclopeptides^[8] **1–3** are peptide alkaloid antibiotics isolated from Streptomyces filipinensis^[9] and S. griseorubiginosus^[10] by Ezaki et al.^[11] The 15-membered ring compounds 1-3 carry two distinct structural features: a biaryl moiety and a cyclic peptide with a hydroxyl ated ornithine side chain.^[12] Within the biphenomycin family, biphenomycin A (1) has been most intensively studied. It shows antibacterial activity against Gram-positive bacteria in vitro and in vivo. However, during in vitro testing biphenomycin A was found to have quite a complex spectrum of activity, which seemed to be dependent on experimental conditions as well. For example, biphenomycin A was found to be highly active against Cornybacterium xerosis, but no activity could be observed with Staphylococcus aureus and Streptococcus pyogenes in agar-diffusion tests at $200 \,\mu g \,m L^{-1}$. This notwithstanding, biphenomycin A was surprisingly effective in vivo in a mouse sepsis model.^[9]

The nonhydroxylated congener biphenomycin B (1) occurs together with biphenomycin A. Both molecules have comparable activity in vitro.^[13] Biphenomycin C (3) carries an elongated peptide tag, which extends the C-terminus of the peptide chain. This compound was shown to be a biosynthetic precursor of biophenomycin A,^[10b] thereby suggesting a common predecessor peptide to be the starting material for all the biphenomycins.

The molecular mode of action of the biphenomycin antibiotics currently remains unclear. In the patent literature it was claimed that protein biosynthesis should be involved.^[14] However, full details were not given, and independent studies on this topic have not appeared. To prepare for investigations of the mode of action of these compounds and to explore the bioactive biaryl scaffold, we developed a flexible synthetic route to biphenomycin B.^[15] For the synthesis, we intended to concentrate on biphenomycin B (1) as a target for the reasons of equal bioactivity, higher chemical stability, and absence of the synthetically inconvenient benzylic hydroxy group.

Total syntheses of biphenomycins were reported previously by Schmidt^[16] and later on by Zhu.^[17] Studies on the syntheses of a considerable number of biphenomycin derivatives which extend the Schmidt precedent were described in patents from the Bayer research laboratories,[14,18] aiming at acquiring SAR information and antibiotics development.^[6] In terms of synthetic strategy, the Schmidt synthesis employed enantioselective hydrogenations to furnish a biaryl diamino diacid building block with homochiral termini, differentiated by protecting groups. The Zhu laboratory has alternatively shown that macrocyclization can be effectively executed by an intramolecular Suzuki coupling of a peptidechain precursor. In our approach, we opted for biaryl formation by the Suzuki coupling, but with ring closure by macrolactam formation,^[15] to enable liberal variation of the scaffold. Here, we give a full account on our biphenomycin B synthesis, detailed syntheses of a first set of derivatives, and report biological tests for translation inhibition by these compounds.

Results

Retrosynthetically, we planned to disconnect biphenomycin B (1) into amino acid 5 and the biaryl amino acid 6 (Scheme 1). Ornithine derivative 5 could be obtained from *trans*-4-hyroxyproline.^[19] The biaryl building block 6 could be assembled from the *o*-tyrosine derivatives 7 and 8 by a transition-metal-mediated coupling reaction. Both coupling partners might be efficiently derived from the same amino acid 9 by divergent protection and functionalization. To obtain 9 in enantiopure form, a chiral amino acid synthesis was planned from benzyl bromide **10**. In the forward sense, building blocks **5**, **7**, and **8** could be individually varied later, if so desired.

To put this planning into synthetic practice, 2-hydroxy-5-iodobenzaldehyde 12^[20] was alkylated to provide methyl ether 13 (92% yield, Scheme 2) and subsequently reduced with diisobutylaluminum hydride (DIBAL-H) to give benzyl alcohol 14 in 98% yield. Next, alcohol 14 was transformed into benzyl bromide 10 by using phosphorus tribromide in quantitative yield. We found bromide 10 to be rather unstable on storage, hence 10 was immediately used for the next transformation. Amino acid

9 was prepared from benzyl bromide **10** by using Corey's asymmetric glycine enolate alkylation method, which utilizes benzophenone imines for temporary protection.^[21]

Scheme 1. Retrosynthetic disconnection of biphenomycin B (1) into amino acid building blocks. Bpin=2,2,4,4-tetramethyl-1,3,2-dioxaboro-lan-2-yl, Boc=*tert*-butoxycarbonyl, Cbz=benzyloxycarbonyl, TBS=*tert*-butyldimethylsilyl.

Scheme 2. Synthesis of amino acid **9** (as its hydrochloride). Reagents and conditions: a) MeI (1.5 equiv), K_2CO_3 (1.5 equiv), acetone, reflux, 16 h, 92%; b) DIBAl-H (1.2 equiv), CH₂Cl₂, 0°C, 2 h, 98%; c) PBr₃ (0.34 equiv), toluene, 100°C, 50 min. quant.; d) Ph₂C=GlyOtBu (**11**), *O*-allyl-*N*-(9-anthracenylmethyl)cinchonidinium bromide (10 mol%), CsOH (10 equiv), CH₂Cl₂, -50°C, 24 h; then 4M HCl in dioxane, RT, 16 h, 88%, >96% *ee* (HPLC).

Chem. Asian J. 2011, 6, 1546-1556

In our first experiments, the reactivity seemed to be quite low at -78 °C, and the enantiomeric excess (*ee*) of product **9** varied from batch to batch. It was speculated that larger amounts of product were only formed upon warming the reaction mixture before workup. Therefore, a temperature screen was conducted (-78 °C to 0 °C), which indicated an optimal reaction temperature of -50 °C. By using these conditions, both the yield and enantiomeric excess for amino acid **9** were excellent, and the transformation could be reliably conducted on a multi-gram scale.

To determine the enantiomeric excess of compound 9, it was converted into its corresponding methyl ester 15 (Scheme 3) and independently derivatized with (R)-(+)- and

Scheme 3. Synthesis of diastereomeric derivatives (*S*,*S*)-**16** and (*S*,*R*)-**16**. Reagents and conditions: a) SOCl₂ (1.1 equiv), MeOH, reflux, 8 h, 93%; b) (*S*)-(-)-1-phenylethyl isocyanate (3.0 equiv), pyridine (5.0 equiv), CH₂Cl₂, RT, 16 h, 78%; c) (*R*)-(+)-1-phenylethyl isocyanate (3.0 equiv), pyridine (5.0 equiv), CH₂Cl₂, RT, 16 h, 81%.

(S)-(-)-1-phenylethylisocyanate on analytical scale, to give the two enantiomeric pairs (S,S)-16/(R,R)-16 and (S,R)-16/(R,S)-16.^[22] These diastereomers could be separated by

HPLC. An *ee* of 96–98% was routinely determined from the baseline separated isomers (see the Supporting Information). All peak assignments were confirmed by HPLC-MS.

Three orthogonal protecting groups (Cbz, Boc, methyl ester) were then installed on two building blocks starting from the same compound **9** (Scheme 4). Cbz-protection of amine hydrochloride **9** provided iodide **7**. Boronate **8** was obtained in excellent yield after

Scheme 4. Suzuki coupling with a free carboxylic acid 6. Reagents and conditions: a) CbzCl (1.2 equiv), NaHCO₃ (1.0 equiv), 1,4-dioxane/H₂O (1:1), 16 h, 74%; b) Boc₂O (1.5 equiv), 2M NaOH (2 equiv), dioxane/H₂O (1:1), 16 h, 92%; c) MeI (1.5 equiv), K₂CO₃ (2 equiv), acetone, reflux, 16 h, 97%; d) (Bpin)₂ (1.2 equiv), [PdCl₂(dppf)] (5 mol%), KOAc (3 equiv), DMSO, 80°C, 16 h, 96%; e) **7** (1.0 equiv), **8** (1.2 equiv), Pd-(OAc)₂ (20 mol%), P(o-tolyl)₃ (40 mol%), Cs₂CO₃ (3 equiv), 1,4-dioxane/H₂O (9:1), 80°C, 16 h, 74%. dppf=bis(diphenylphosphino)ferrocene.

introduction of a Boc-group, methylester formation, and Pd⁰-mediated borylation.^[23] Biaryl acid **6** was produced in 74% yield by a Suzuki coupling reaction of iodide **7** with boronate **8** using Pd(OAc)₂ as a catalyst, tri(*o*-tolyl)phosphine as a ligand, and Cs₂CO₃ as a base in dioxane/water 9:1 at 80 °C. This Suzuki coupling with a free carboxylic acid saved not only a protecting group and two reaction steps, but also afforded a simplified and flexible synthesis route.

The central hydroxyornithine amino acid was elaborated from *N*-Boc-*trans*-4-hydroxyproline **19** (Scheme 5). Acid **19** was converted into its *tert*-butyl ester by using *O*-*tert*-butyl isourea^[24] and silylated to provide the *tert*-butyldimethylsilyl (TBS) ether **20** in 64% yield. To enable functionalization, pyrrolidine **20** was subjected to a regioselective α -oxidation with a catalytic amount of RuO₄,^[25] which smoothly provided pyroglutamate **21** in 89% yield.^[26] The activated amide **21** could be regioselectivity reduced with NaBH₄ to give al-

Scheme 5. Synthesis of protected hydroxyornithine 5. Reagents and conditions: a) *O-tert*-butyl *N*,*N*-diisopropylisourea (2 equiv), THF, 60 °C, 16 h, 68 %; b) TBSCl (1.2 equiv), DMAP (0.1 equiv), imidazole (2.6 equiv), 16 h, 94 %; c) RuO₂·*n*H₂O (25 mol %), NaIO₄ (3 equiv), EtOAc/H₂O (1:2), 16 h, 89 %; d) NaBH₄ (5 equiv), MeOH/NaP₁ buffer (1:1, pH 7.0), 0°C \rightarrow RT, 8 h, 62 %; e) PPh₃ (3 equiv), DIAD (3 equiv), HN₃ (5 equiv), 4 h, 87 %; f) TBSOTf (1.5 equiv), 2,6-lutidine (2 equiv), CH₂Cl₂, 15 min, then TBAF (1 equiv), THF/H₂O (10:1), 70 %.

cohol **22** in 62 % yield. The key for success was careful control of temperature and pH. Otherwise, deoxygenation and/ or over reduction led to formation of several side products. Alcohol **22** was converted into the azide **23** by using a Mitsunobu displacement reaction with hydrazoic acid^[27] in 87 % yield. In a last step, amine **5** was liberated by selective Bocgroup cleavage with TBSOTf^[28] in 70 % yield.

Biaryl acid **6** was then coupled with amine **5** using *N*-ethyl-*N*-dimethylaminopropyl carbodiimide (EDC)•HCl, 1-hydroxybenzotriazole (HOBt), and diisopropylethylamine (DIPEA) in 78% yield (Scheme 6), and the resulting dipep-

Scheme 6. Completion of the total synthesis of biphenomycin B (1). Reagents and conditions: a) EDC·HCl (1.5 equiv), HOBt (1.5 equiv), EtN-(*i*Pr)₂ (2.2 equiv), CH₂Cl₂, RT, 16 h, 78%; b) TESOTf (20 equiv), 2,6-lutidine (40 equiv), CH₂Cl₂, RT, 6 h, quant.; c) slow addition to HATU (1.5 equiv), HOAt (1.5 equiv), EtN(*i*Pr)₂ (2.2 equiv), CH₂Cl₂, RT, 30 h, 75%; d) PMe₃ (9 equiv, 1M in toluene), THF/0.1 M NaOH (9:1), RT, 8 h, quant.; e) 1M HCl, RT, 16 h, quant.; f) BBr₃ (1M in CH₂Cl₂, 20 equiv), RT, 24 h, 52% (prep. HPLC). EDC=*N*-Ethyl-*N*-dimethylaminopropyl carbodiimide, HOBt = 1-hydroxybenzotriazole, HATU = 7-aza-1-hydroxybenzotriazole, TESOTf = triethylsilyl trifluoromethanesulfonate.

tide **24** was then simultaneously Boc- and *t*Bu-deprotected with TESOTf^[29] in quantitative yield, which retained the TBS group. Other silyl triflates were either too reactive (TMSOTf) or led to incomplete conversion (TBSOTf). Ring closure was achieved by activation with HATU/HOAt^[30] in dry dichloromethane using a syringe pump to obtain macrocycle **25** in 75% yield. In our initial plan, we intended to keep the azide intact as a potential diversification element until the very last step. However, during deprotection experiments we witnessed that strong Lewis acidic conditions would induce unexpected decomposition reactions of the 2-hydroxy azide side chain.

Therefore, the azide functional group was reduced first to the amine by using PMe₃ and aqueous hydroxide in quantitative yield. These conditions unmasked the carboxy terminus as well. Aqueous HCl was subsequently used for clean removal of the TBS group, because it was found that the secondary TBS ether was prone to S_N2 -type displacement with bromide when treated with BBr₃.^[31] The 2-amino alcohol obtained could be treated with excess BBr₃, which cleanly cleaved the Cbz and OMe groups. Biphenomycin B (1) was finally obtained in 52 % yield after purification and desalting by preparative HPLC. The NMR spectral data, as well as the HRMS, IR, and optical rotation data were fully consistent with those reported for natural biphenomycin B. Additionally, we recorded a CD spectrum of the synthetic material (see the Supporting Information). While no original CD data for biphenomycin B (1) is available in the literature, the features found were similar to the ones reported for biphenomycin A $(2)^{[32]}$ and a derivative of 1.^[33] Notably, the strong positive ellipticity around 220 nm indicated a negative dihedral angle of the biaryl linkage, that is, M- (or R-) configuration. While there is no reason to believe in the existence of separable atropisomers for the biphenomycin scaffold due to the absence of potentially locking o,o-disubstitution, the minimum conformation of the cyclopeptide array still seems to program an M-configured axis for the biaryl motif in solution.^[34] Such a conformation had been independently deduced earlier on for biphephenomycin A by a combination of 2D NMR spectroscopy and molecular modeling experiments.[32]

To study the influence of the side chain on the bioactivity of biphenomycin B in some detail, the successful total synthesis scheme was adapted to prepare three analogs with different side chains (Scheme 7). For this purpose, the biaryl acid **6** was independently extended with *t*Bu-protected L-alanine-, serine-, and ornithine-*t*Bu-ester using HOBt/EDC, to give the biarylpeptides **26–28** in 82–85% yield. To prepare for macrocycle formation, the *t*Bu-based protecting groups were removed by using 4N HCl in 1,4-dioxane. Macrocycli-

Scheme 7. Synthesis of derivatves **32**, **33**, and **34** with different side chains. Reagents and conditions: a) L-H-alanine-OtBu-HCl or L-H-serine-OtBu-HCl or L-H-Orn(Z)-OtBu-HCl (1.2 equiv), EDC·HCl (1.2 equiv), HOBt (1.2 equiv), EtN(*i*Pr)₂ (2.2 equiv), CH₂Cl₂, RT, 16 h; b) 3 M HCl, 1,4-dioxane/water, RT, 4 h, then 4 M HCl, 1,4-dioxane/water, RT, 2 h; c) slow addition to HATU (1.5 equiv), HOAt (1.5 equiv), EtN(*i*Pr)₂ (2.2 equiv), CH₂Cl₂, RT, 30 h; d) I₂ (32 equiv), Al (40 equiv), *n*Bu₄N⁺I⁻ (10 mol%), benzene, 10°C, 1 h, then 60°C, 15 min, then prep. HPLC.

zation was executed as before and delivered the corresponding biaryl cyclopeptides 29-31 in 39-72% yield. Interestingly, the efficiency of ring closure seemed to be affected by the type of side chain present at the central amino acid. Increasing its steric bulk was apparently supporting ring closure, as the yield of derivative 29 was significantly lower than in the case of the bulky side chains 30, 31, and 25. During studies which aimed at the final deprotection of the molecule, we sometimes observed sluggish reactivity of BBr₃. After some screening of stronger Lewis acids, we found that freshly prepared AlI₃^[35] efficiently provided the fully deprotected biphenomycin derivatives. Despite the higher activity of the reagent, no byproducts or epimerization were observed when reaction times were kept short (15 min). In this way, the target compounds 32-34 were obtained in 64-69% yield after preparative HPLC purification.

Biological Tests

Synthetic biphenomycin B (1) and the derivatives **32–34** were then tested for bacterial growth inhibition. In line with previous reports,^[6,8–13] we found it quite difficult to acquire reliable growth inhibition data in liquid cell culture.^[36] Hence, we resorted to testing for bacterial translation inhibition, as the biphenomycins had been reported to inhibit protein biosynthesis.^[14] We employed a coupled in vitro transcription/translation assay, which measures protein biosynthesis from the generation of fluorescence of a green fluorescent protein (GFP)-encoding vector through *E. coli* ribosome translation.^[37] In this target-based assay (Table 1), we

Table 1. Translation inhibition by biphenomycin B and analogs in comparison with ribosomal inhibitors.

Compound	IC ₅₀ value
kirromycin	$0.38~\mu$ м $\pm 0.01~\mu$ м
kanamycin	$0.18~\mu$ м $\pm 0.01~\mu$ м
chloramphenicol	3.0 µм±0.5 µм
biphenomycin B (1)	38μ м $\pm 7.9 \mu$ м
32	>300 µм
33	арргох. 200 µм
34	>300 µм

found synthetic biphenomycin B only moderately active $(38 \ \mu\text{M})$ when compared to typical ribosomal inhibitors of the large subunit (50S: chloramphenicol), the small subunit (30S: kanamycin), or elongation factors (EF-TU: kirromycin). Interestingly, the polar side chain seemed to have some influence on the activity of the compound, although its influence could not be firmly assessed. When the amino group was not present, activity was markedly reduced. Omission of the hydroxy group or all of the functionality rendered the compound completely inactive.

These data support the hypothesis that the biphenomycins do inhibit protein biosynthesis in bacterial cells. The rather modest activity suggests that 1 binds to one of the compo-

nents of the translational machinery in bacteria, but with moderate affinity. In principle, such modest translation inhibition as observed here could correlate with the weak effects that biphenomycin has on the growth of many bacterial strains in rich culture media in vitro. Nonetheless, such a standard mode of action and the weak activity consequently ensuing from it cannot easily account for the documented activity of biphenomycin B in vivo. In fact, all antibiotics tested here or elsewhere^[37] with clearly assigned inhibition activity at the ribosome's key components also gave strong inhibition data in the test system used here. Therefore, it might be hypothesized that biphenomycin could have additional activities, which are not picked up well in this targetfocused assay in vitro. To fully explain the context-dependent activity of the biphenomycins, other regulatory or conditional metabolic factors might contribute to the mode of action. At least, our results cannot exclude that alternative targets beyond the protein biosynthesis machinery could be involved under certain experimental conditions or in vivo.

Conclusions

We have achieved a total synthesis of biphenomycin B from three independent amino acid building blocks. The synthesis is short (14 steps, 15% total yield) and flexible, as demonstrated by the successful synthesis of three derivatives. Initial biological testing suggested that the biphenomycins influence translation, and clarified the influence of the side chain, but a more complex interaction pattern or target is likely. This observation is convergent with the efficacy of the biphenomycins mostly developing in vivo, but much less in vitro. Notably, the synthetic work developed herein will provide tool compounds for clarifying this point in the future.

Experimental Section

All reactions were carried out under an inert atmosphere of argon. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Varian Mercury 400 or a Bruker DRX 400 (400.13 MHz and 100.61 MHz respectively; 500.13 MHz and 125.61 MHz respectively), with chemical shifts (δ) reported in ppm relative to the solvent residual signals and coupling constants reported in Hz. High resolution mass spectra (HRMS) were measured on a Thermo Orbitrap coupled to a Thermo Accela HPLC system, electrospray ionization (ESI), and fast atom bombardment (FAB). Analytical HPLC-MS data were recorded on an Agilent HPLC (1100 series) with a C18 column (CC125/4 NUCLEODUR C18 Gravity 5µ) coupled to a Finnigan LCQ ESI spectrometer, detection: 280 nm; flow rate: 1.0 mLmin⁻¹; time: 15 min; solvents A: 0.1% HCOOH in H₂O, B: 0.1% HCOOH in MeCN, 1 min 10% B, in 10 min to 100% B. Analytical GC MS data were recorded on a HP 6890 GC-MS system based on electron impact detection (EI) using an high resolution gas chromatography column (length: 25 m, I.D.: 0.2 mm, Film: 0.33 µm) and a heating profile of ambient temperature to 100 °C for 1 min, then for 5 min at 300 °C, and then constant at 300 °C for 5 min. Pre parative HPLC was performed on an Agilent HPLC (1100 series) and Waters HPLC 2767 by using a 125/21 NUCLEODUR C18 Gravity 5 µ column (Macherev & Nagel). For IR spectroscopy, a Bruker Tensor 27 FT equipped with an ATR and the OPUS software was used. Chromatographic purification refers to flash chromatography using the indicated solvents and Merck silica gel 60. Thin layer chromatography (TLC) was performed using silica (Merck silica gel 60 F254 on aluminum foil). Compounds on TLC were visualized by UV detection or staining with KMnO₄ solution. Melting points were determined using a Büchi B-540 device and are uncorrected. Anhydrous solvents were purchased from Fluka or Acros except for dichloromethane, which was distilled from calcium hydride. All other solvents were used as supplied (analytical or HPLC grade), without prior purification. Reagents were purchased from Aldrich or Acros and used as supplied.

5-Iodo-2-methoxybenzaldehyde (13)

A mixture of 2-hydroxy-5-iodbenzaldehyde 12 (80.0 g, 0.32 mol, 1.0 equiv), iodomethane (92.9 g, 40.7 mL, 0.48 mol, 1.5 equiv), and potassium carbonate (66.9 g, 0.48 mol, 1.5 equiv) in acetone (500 mL) was heated to reflux for 16 h. After removal of the solvent, water (300 mL) was added and the mixture was extracted with ethyl acetate (3×300 mL). The combined organic layers were washed with brine (200 mL), dried with MgSO₄, and concentrated. The residue was dried in vacuo to furnish 13 (75.9 g, 0.29 mol, 92%) as a colorless solid. $R_{\rm f}$ =0.78 (cyclohexane/ ethyl acetate 2:1); m.p. 136–138°C. GC-MS (DB_50_S): t_R=6.66 min, m/ z (relative intensity [%])=216 (9), 244 (18), 262 (100) [M]⁺. IR: $\tilde{\nu}$ =3231 (m), 2876 (m), 1665 (s), 1604 (s), 1463 (s), 1307 (s), 1271 (s), 1153 (s), 885 (s), 826 (s), 765 (s), 688 (m), 612 cm⁻¹ (s). ¹H NMR (400 MHz, CDCl₃): $\delta = 3.91$ (s, 3H), 6.78 (d, J = 8.8 Hz, 1H), 7.80 (dd, J = 8.8 Hz, 2.32 Hz, 1 H), 8.08 (d, J = 2.4 Hz, 1 H), 9.82 ppm (s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ = 56.5, 83.6, 114.8, 127.2, 137.8, 144.8, 162.1, 188.9 ppm. HR-MS (FAB): calcd for C₈H₈IO₂: 262.9569 [*M*+H]⁺; found: 262.9593.

2-Methoxy-5-iodobenzyl alcohol (14)

Aldehyde 13 (4.0 g, 15.0 mmol, 1.0 equiv) was dissolved in abs. dichloromethane (40 mL) and cooled to 0°C. A solution of diisobutylaluminum hydride (1 m in toluene, 18 mL, 18.0 mmol, 1.2 equiv) in toluene was added dropwise over 1 h and the mixture was stirred for 2 h. Saturated aqueous potassium sodium tartrate was added (30 mL) and the mixture was stirred for 5 h. The reaction mixture was warmed to room temperature and extracted with dichloromethane (3×30 mL). The combined organic layers were washed with brine (40 mL), dried with MgSO₄, and concentrated. The residue was dried in vacuo to furnish alcohol 14 as a colorless solid. Yield: 3.88 g, 14.7 mmol, 98%. R_f=0.34 (cyclohexane/ ethyl acetate 3:1); m.p. 92–93 °C. GC-MS (DB_50_S): t_R=4.52 min; m/z (relative intensity [%])=264 (100), $[M]^+$. IR: $\tilde{\nu}$ =3286 (m), 2957 (m), 2835 (m), 1480 (s), 1439 (s), 1365 (s), 1239 (s), 1171 (s), 1126 (m), 1029 (s), 877 (s), 880 (m), 798 (s), 612 cm⁻¹ (s). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.06$ (s, 1H), 3.83 (s, 3H), 4.62 (s, 2H), 6.65 (d, J = 8.4 Hz, 1H), 7.55 (dd, J = 8.4 Hz, 2.12 Hz, 1 H), 7.59 ppm (d, J = 2.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 55.8$, 61.5, 83.2, 112.9, 132.0, 137.4, 137.8, 157.5 ppm. HR-MS (FAB): calcd for C₈H₉IO₂: 263.9647 [M]⁺; found: 263.9640.

2-Methoxy-5-iodobenzyl bromide (10)

Alcohol 14 (3.36 g, 12.8 mol, 1.0 equiv) was dissolved in toluene (50 mL) and heated to 40°C for 20 min. Phosphorus tribromide (0.41 mL, 4.36 mmol, 0.34 equiv) was added dropwise and the mixture was stirred at 100 °C for 50 min. After cooling to room temperature, the mixture was washed with water (2×20 mL) and brine (20 mL). The organic layer was dried with magnesium sulphate and filtered to obtain 2-methoxy-5-iodobenzyl bromide as a solution in toluene. The product 10 could only be stored in a toluene solution, as it quickly decomposed after concentration. Yield: quantitative (GC-MS). $R_f = 0.76$ (cyclohexane/ethyl acetate 3:1). GC-MS (DB_100_S): $t_R = 4.96 \text{ min}; m/z$ (relative intensity [%]) = 217(27), 247 (100), 326 (12) $[M]^+$. IR: $\tilde{\nu} = 2938$ (w), 2838 (w), 1624 (m), 1484 (s), 1433 (m), 1298 (m), 1249 (s), 1209 (s), 1149 (s), 1121 (s), 882 (m), 862 (m), 802 (s), 737 (m), 611 cm⁻¹ (s). ¹H NMR (400 MHz, CDCl₃): $\delta = 3.87$ (s, 3H), 4.45 (s, 2H), 6.65 (d, J = 8.8 Hz, 1H), 7.57 (dd, J = 8.56, 2.12 Hz, 1 H), 7.61 ppm (d, J=2.16 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ = 27.7, 56.1, 82.7, 113.6, 129.0, 139.1, 139.6, 157.7 ppm.

A mixture of diphenylmethyleneglycine *tert*-butyl ester (200 mg, 0.67 mmol, 1.0 equiv), cesium hydroxide monohydrate (1.2 g, 6.78 mmol, 10 equiv), and Corey's cinchonidine catalyst^[21] (41.1 mg, 0.067 mmol, 0.1 equiv) in dichloromethane (50 mL) was cooled to -50 °C. A solution of benzyl bromide **10** (443 mg, 1.35 mmol, 2.0 equiv) in toluene (30 mL) was added dropwise over 1 h and the mixture was stirred at -50 °C for 16 h. After warming to room temperature, water (30 mL) was added and the mixture was extracted with diethyl ether (3 × 30 mL). The combined organic layers were washed with brine (30 mL), dried with MgSO₄, concentrated, and purified by flash chromatography (silica gel, cyclohexane/ ethyl acetate/tri

ethylamine 95:5:1). The resulting product ($R_{\rm f}$ =0.32 in cyclohexane/ethyl acetate 3:1) was dissolved in 1,4-dioxane (20 mL). A saturated aqueous solution of HCl (10 mL) was added dropwise. After stirring at room temperature for 16 h, ethyl acetate (30 mL) was added and the mixture was extracted with water (3×25 mL). The aqueous extracts were concentrated and dried in vacuo to furnish the product 9 as a colorless solid. Yield: 314 mg, 0.59 mol, 88%; m.p. > 228 °C (decomp.); ee > 96%; $[a]_D^{20} = +8.9$ (MeOH, C = 0.5). HPLC-ESI: $t_R = 6.68 \text{ min}; m/z = 322.01 [M - Cl^{-}]^+$. IR: $\tilde{\nu} = 3596$ (m), 3276 (m), 2889 (s), 2640 (w), 1735 (s), 1569 (m), 1521 (s), 1484 (s), 1251 (s), 1204 (s), 1120 (s), 1027 (s), 880 (m), 806 (s), 614 cm⁻¹ (m). ¹H NMR (400 MHz, CD₃OD): $\delta = 3.07$ (dd, J = 3.8, 7.12 Hz, 1 H), 3.35 (dd, J=2.74, 6.5 Hz, 1 H), 3.89 (s, 3 H), 4.25 (dd, J=7.64, 7.60 Hz, 1H), 6.87 (d, J=8.60 Hz, 1H), 7.55 (d, J=2.32 Hz, 1H), 7.65 ppm (dd, J = 2.00 Hz, 1 H). ¹³C NMR (100 MHz, CD₃OD): $\delta = 32.9$, 54.6, 56.7, 83.9, 115.1, 127.2, 140.1, 141.5, 159.9, 171.8 ppm. HR-MS (FAB): calcd for C₁₀H₁₃INO₃⁺: 321.9935 [M-Cl⁻]⁺; found: 321.9927.

(S)-2-(tert-Butyloxycarbonylamino)-3-(5'-iodo-2'-methoxyphenyl)propionic acid (17)

A mixture of amino acid hydrochloride 9 (2.00 g, 5.59 mmol, 1.0 equiv) and aqueous sodium hydroxide (2 M, 5.6 mL, 11.2 mmol, 2.0 equiv) in 1,4dioxane/water 1:1 (50 mL, v/v) was cooled to 0 °C. A solution of di-tertbutyl dicarbonate (1.83 g, 8.39 mmol, 1.5 equiv) in dioxane (2 mL) was added dropwise over 10 min. After the addition, the reaction mixture was stirred for 16 h at room temperature. Subsequently, the pH of the reaction mixture was adjusted to pH 2 with 1N hydrochloric acid. The mixture was extracted with ethyl acetate (3×25 mL). The combined organic layers were washed with brine (30 mL), dried with MgSO4, and concentrated. The crude product was purified by flash chromatography (silica gel, dichloromethane/MeOH 7:1) to give Boc-protected amine 17 as a colorless solid. Yield: 2.16 g, 5.13 mmol, 92%. R_f=0.46 (dichloromethane/MeOH 7:1); m.p. 121–124 °C. $[\alpha]_{\rm D}^{20} = +13.3$ (MeOH, c = 1.0). HPLC-ESI: $t_R = 10.21$ min. IR: $\tilde{v} = 3277$ (m), 2921 (m), 1734 (s), 1568 (m), 1521 (s), 1484 (s), 1250 (s), 1203 (s), 1120 (s), 1027 (s), 880 (m), 805 cm⁻¹ (s). ¹H NMR (400 MHz, CD₃OD): $\delta = 1.39$ (s. 9H, 3×CH₃), 2.76 (dd, J=3.72, 6.41 Hz, 1 H), 3.16-3.21 (dd, J=4.88 6.74 Hz, 1 H), 3.86 (s, 3H), 4.42 (dd, J=4.88, 4.78 Hz, 1H), 6.77 (dd, J=8.60 Hz, 1H), 7.46 (d, J = 2.16 Hz, 1 H), 7.53 ppm (dd, J = 8.56, 2.12 Hz, 1 H). ¹³C NMR (100 MHz, CD₃OD): $\delta = 29.6$, 34.6, 56.8, 81.3, 83.5, 138.9, 138.9, 141.6, 160.1, 166.8 ppm. HR-MS (FAB): calcd for C₁₅H₂₀INO₅: 421.0386 [M]; found: 421.0416.

(S)-2-tert-Butyloxycarbonylamino-3-(2'-methoxy-5'-iodphenly)propionic acid methyl ester (18)

Tyrosine derivative **17** (2.11 g, 5.0 mmol, 1.0 equiv), potassium carbonate (1.38 g, 10.0 mmol, 2.0 equiv), and iodomethane (0.47 mL, 7.5 mmol, 1.5 equiv) were suspended in acetone (40 mL) and heated to reflux for 20 h. After cooling to room temperature, the solvent was removed, the residue was treated with water (30 mL), and extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with brine (30 mL), dried with MgSO₄, and concentrated. The crude product was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate 3:1) to give methyl ester **18** as a yellow solid. Yield: 2.1 g, 4.8 mmol, 97%. $R_{\rm f}$ =0.49 (cyclohexane/ethyl acetate 3:1). HPLC-ESI: t_R = 10.21 min; m.p. 174–176°C. $[a]_{\rm D}^{20}$ =+12.9 (MeOH, *c*=1.5). IR: $\tilde{\nu}$ =3367

H.-D. Arndt and H. Waldmann et al.

(w), 2975 (w), 1708 (s), 1489 (s), 1364 (m), 1251 (s), 1159 (s), 1048 (s), 1016 (s), 861 (w), 811 cm⁻¹ (m). ¹H NMR (400 MHz, CD₃OD): δ =1.39 (s, 9H), 2.77 (dd, *J*=4.68, 6.64 Hz, 1H), 3.17–3.21 (dd, *J*=6.64, 2.74 Hz, 1H), 3.71 (s, 3H), 3.86 (s, 3H), 4.44 (dd, *J*=5.68, 5.44 Hz, 1H), 6.77 (dd, *J*=8.60 Hz, 1H), 7.43 (s, 1H), 7.53 ppm (dd, *J*=8.6, 2.16 Hz, 1H). ¹³C NMR (100 MHz, CD₃OD): δ =29.5, 34.6, 53.4, 55.3, 56.9, 81.4, 83.8, 114.8, 130.2, 139.1, 141.6, 158.5, 160.0, 175.1 ppm. HR-MS (FAB): calcd for C₁₆H₂₂INO₅⁺: 435.0543 [*M*]⁺; found: 435.0513.

(S)-2-tert-Butyloxycarbonylamino-3-[2'methoxy-5'-(4",4",5",5"-

tetramethyl 1",3",2"-dioxaborolane-2"-yl)phenyl]-propionic acid methyl ester (88)

Iodide 18 (1.00 g, 2.3 mmol, 1.0 equiv) was dissolved in abs. DMSO (20 mL). After addition of potassium acetate (0.68 g, 6.9 mmol, 3.0 equiv), the suspension was purged with argon for 30 min. Bis(pinacolato)diboron (0.70 g, 2.76 mmol, 1.2 equiv) and [PdCl₂(dppf)]·CH₂Cl₂ (84.1 mg, 0.12 mmol, 0.05 equiv) was added and the reaction mixture was heated to 80 °C for 4 h. After cooling to room temperature, water was added (20 mL) and the mixture was extracted with ethyl acetate (3 \times 30 mL). The combined organic layers were washed with brine (30 mL), dried with MgSO₄, and concentrated. The crude product was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate 1:1) to give boronate 8 as a yellow liqiud. Yield: 961 mg, 2.21 mmol, 96%. HPLC-ESI: $t_R = 10.49 \text{ min}; m/z = 336.00 [M+H-Boc]^+$. $[\alpha]_D^{20} = +1.8 \text{ (CHCl}_3, c = -1.8 \text{ CHCl}_3, c = -1$ 1.0). IR: $\tilde{v} = 2964$ (w), 2874 (w), 1665 (s), 1585 (s), 1473 (s), 1389 (m), 1266 (s), 1243 (s), 1176 (s), 1121 (s), 1018 (s), 881 (s), 817 (s), 643 (s), 610 cm⁻¹ (s). ¹H NMR (400 MHz, CD₃OD): $\delta = 1.35$ (s, 12 H), 1.37 (s. 9H), 2.88 (dd, J=6.54, 8.76 Hz, 1H), 3.18 (dd, J=6.74, 6.64 Hz, 1H), 3.69 (s, 3H), 3.90 (s, 3H), 4.44 (dd, J=5.88, 5.76 Hz, 1H), 6.96 (d, J= 8.20 Hz, 1H), 7.51 (s, 1H), 7.66 ppm (dd, J=8.20 Hz, 1H). ¹³C NMR (100 MHz, CD₃OD): $\delta = 25.8$, 29.3, 34.6, 53.2, 55.5, 56.5, 81.1, 111.5, 126.3, 137.4, 139.6, 162.5, 175.1 ppm. HR-MS: calcd for C₂₂H₃₄BNO₇+: 435.2428 [M]+; found: 435.2413.

(S)-2-(Benzyloxycarbonylamino)-3-(5-iodo-2-methoxyphenyl)-propionic acid (7)

Amino acid hydrochloride 9.HCl (2.0 g, 5.59 mmol, 1.0 equiv) and sodium bicarbonate (0.59 g, 5.59 mmol, 1.0 equiv) were dissolved in water/1,4-dioxane 1:1 (50 mL) and cooled to 0 °C. A solution of benzyl chloroformate (0.94 mL, 6.70 mmol, 1.2 equiv) in dioxane (3 mL) was added dropwise over 10 min. The reaction mixture was warmed to room temperature and stirred for 16 h. Subsequently, the pH of the reaction mixture was adjusted to pH 1 with 1N HCl and the mixture was extracted with ethyl acetate (3×25 mL). The combined organic layers were washed with brine (30 mL), dried with MgSO₄, and concentrated. The crude product was purified by flash chromatography (silica gel, dichloromethane/MeOH 7:1) to give acid 7 as a yellow liquid. Yield: 1.88 g, 4.14 mol, 74%. $[\alpha]_{D}^{20} = +8.3$ (MeOH, c = 0.73). HPLC-ESI: $t_{R} = 9.21$ min. IR: $\tilde{\nu} = 3304$ (s), 3032 (m), 2940 (m), 1688 (s), 1587 (s), 1537 (s), 1430 (s), 1343 (m), 1246 (s), 1125 (s), 1055 (s), 1026 (s), 880 (m), 738 (m), 695 cm⁻¹ (s). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.93 - 2.97$ (dd, ³J = 6.74, 6.84 Hz, 1 H), 3.27 (dd, ${}^{3}J=6.64$, 6.94 Hz, 1 H), 3.83 (s, 3 H) 4.52 (dd, J=5.08 Hz, 1H), 5.03 (m, 2H), 6.67 (d, J = 8.60 Hz, 1H), 7.33 (m, 5H), 7.48 (d, J =2.16 Hz, 1-H), 7.55 ppm (dd, J=8.60, 2.16 Hz, 1H). ¹³C NMR (100 MHz, $(CD_3)_2OD$): $\delta = 34.4$, 56.8, 66.1, 68.3, 83.8, 114.8, 128.8, 129.1, 129.4, 129.7, 130.2, 130.3, 139.0, 141.6, 143.6, 159.2, 160.9, 181.0 ppm. HR-MS: calcd for C₁₈H₁₈INO₅: 455.0229 [M+H]⁺; found: 455.0260.

(2S,2"'S)-2-(Benzyloxcarbonylamino)-3-(4',4"-bis-methoxy-3"-[tertbutyloxy-carbonylamino-2""-methoxycarbonylethyl]-biphenyl-3'-yl)propionic acid (6)

Iodide 7 (218 mg, 0.48 mmol, 1.0 equiv) and boronate 8 (250 mg, 0.57 mmol, 1.2 equiv) were dissolved in 1,4-dioxane/water (10 mL, 9:1). Cesium carbonate (469 mg, 1.44 mmol, 3.0 equiv) was added and the solution was purged with argon for 30 min. Palladium(II) acetate (21.6 mg, 0.10 mmol, 0.2 equiv) and tri(o-tolyl) phosphine (57.8 mg, 0.19 mmol, 0.4 equiv) were added and the reaction mixture was heated to 80 °C for 8 h. After cooling to room temperature, the mixture was diluted with

water (10 mL), and extracted with ethyl acetate (3×10 mL). The combined organic layers were washed with brine (30 mL), dried with MgSO₄, and concentrated. The crude product was purified by flash chromatography (silica gel, dichloromethane/MeOH 7:1) to give biaryl acid **3** as a colorless solid. Yield: 226 mg, 0.36 mmol, 74%. $R_{\rm I}$ =0.56 (dichloromethane/MeOH 7:1); m.p. 113–115 °C. $[a]_{\rm D}^{20}$ =+20.1 (MeOH, *c*=1.2). HPLC-ESI: t_R =9.79 min; m/z=659.15 $[M+{\rm Na}]^+$. IR: $\bar{\nu}$ =3340 (w), 2939 (w), 1709 (s), 1069 (m), 1492 (s), 1437 (m), 1243 (s), 1162 (m), 1024 (s), 853 (m), 738 (m), 697 cm⁻¹ (m). ¹H NMR (400 MHz, CD₃OD): δ =1.35 (s, 9H), 2.87–3.36 (m, 4H), 3.68 (s, 3H), 3.87 (s, 3H), 3.89 (s, 3H), 4.48 (m, 1H), 4.54 (m, 1H), 5.02 (m, 2H), 6.98 (m, 2H), 7.24 (m, 4H), 7.44 ppm (m, 5H). ¹³C NMR (100 MHz, CD₃OD): δ =25.9, 29.3, 56.8, 56.9, 68.3, 76.7, 112.6, 129.4, 129.6, 129.7, 130.3, 131.4, 138.9, 162.5, 168.9, 175.1 ppm. HR-MS (FAB): calcd for C₃₄H₄₀N₂O₁₀Na⁺: 659.2575 [*M*+Na]⁺; found: 659.2550.

(2S,4R)-N-tert-butoxycarbonyl-4-(tert-butyldimethylsilyloxy)pyrrolidine-2carboxylic acid tert-butylester (20)

trans-N-Boc-4-hydroxyproline 19 (10.6 g, 46 mmol, 1.0 equiv) was dissolved in THF (20 mL), and O-tert-butyl isourea^[24] (9.2 g, 46 mmol, 1.0 equiv) was added dropwise. The mixture was heated to 60 °C for 4 h. A second equivalent of O-tert-butyl isourea (9.2 g, 46 mmol, 1.0 equiv) was added at 60 °C and stirring was continued for 16 h. After cooling to room temperature, the mixture was filtered and the solvent was removed in vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate 9:1 \rightarrow 5:1). The *tert*-butylester was dissolved in dimethylformamide (85 mL), and 4-dimethylaminopyridine (DMAP; 0.54 g, 4.6 mmol, 0.1 equiv), imidazole (8.2 g, 120 mmol, 2.6 equiv), and TBSCl (8.4 g, 55 mmol, 1.2 equiv) were added at 0 °C. The mixture was stirred at room temperature for 16 h, diluted with water (250 mL), and extracted with ethyl acetate (3×500 mL). The combined organic layers were washed with brine (200 mL), dried with MgSO₄, and concentrated. After removal of the solvent, the crude product was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate 7:1) to give the TBS-protected proline derivative 20 as a colorless liquid. Yield: 11.9 g, 29.4 mmol, 64%. $R_f = 0.40$ (cyclohexane/ethyl acetate 5:1); m.p. 51.2-52.1 °C. $[\alpha]_{D}^{20} = -51.6$ (MeOH, c = 1). IR: $\tilde{\nu} = 2976$ (m), 2930 (m), 1719 (s), 1684 (m), 1472 (w), 1410 (s), 1366 (s), 1309 (s), 1157 (s), 1088 (s), 833 (s), 807 (s), 774 cm⁻¹ (s). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.04$ (s, 6H), 0.85 (s, 9H), 1.42 (s. 9H), 1.44 (s. 9H), 1.94-2.00 (m, 1H), 2.07-2.19 (m, 1H), 2.23-3.36 (m, 1H), 3.52-3.60 (m, 1H), 4.16-4.27 (m, 1H), 4.38 ppm (t, J = 9.4 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = -4.9$, 17.9, 25.7, 27.9, $28.3, \ 38.8, \ 39.7, \ 54.2, \ 54.6, \ 58.5, \ 58.7, \ 69.5, \ 70.3, \ 79.8, \ 80.9, \ 154.0,$ 172.2 ppm. HR-MS (FAB): calcd for C₂₀H₄₀NO₅Si⁺: 402.2670 [M+H]⁺; found: 402.2645.

(2S,4R)-N-tert-butoxycarbonyl-4-(tert-butyldimethylsilyloxy)-5oxopyrrolidine-2-carboxylic acid tert-butylester (21)

RuO2•xH2O (40 mg, 0.3 mmol, 0.27 equiv) was added to a solution of NaIO₄ (836 mg, 3.9 mmol, 3.5 equiv) in distilled water (12 mL). The yellow solution was stirred under an argon atmosphere at room temperature for 5 min and a solution of pyrrolidine 20 (451 mg, 1.12 mmol, 1.0 equiv) in ethyl acetate (9 mL) was added. Stirring was continued for 20 h at room temperature. The mixture was diluted with ethyl acetate (30 mL) and filtered through a pad of celite. The organic layer was washed with saturated aqueous NaHSO3 solution (10 mL), brine (10 mL), and dried with MgSO₄. After removal of the solvent, the crude product was purified by flash chromatography (silica gel, cyclohexane/ ethyl acetate $9:1\rightarrow7:1$) to give pyrrolidine **21** as a colorless solid. Yield: 413 mg, 1.00 mmol, 89%; m.p. 65.0-65.5 °C. R_f=0.39 (cyclohexane/ethyl acetate 5:1). $[\alpha]_{D}^{20} = +13.1$ (MeOH, c=1). IR: $\tilde{\nu} = 2929$ (w), 2856 (w), 1797 (m), 1759 (s), 1723 (s), 1461 (m), 1392 (s), 1368 (s), 1308 (s), 1228 (s), 1138 (s), 970 (s), 882 (s), 777 cm⁻¹ (s). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.12$ (s, 3H), 0.16 (s, 3H), 0.89 (s, 9H), 1.47 (s, 9H), 1.50 (s, 9H), 2.11–2.19 (m, 1H), 2.27–2.33 (m, 1H), 4.38–4.43 ppm (m, 2H). $^{\rm 13}{\rm C}$ NMR $(100 \text{ MHz}, \text{ CDCl}_3): \delta = -5.35, -4.49, 18.2, 25.7, 27.9, 32.1, 55.8, 69.7,$ 82.4, 83.5, 149.4, 170.3, 172.1 ppm. HR-MS (FAB): calcd for $C_{20}H_{38}NO_6Si^+: 416.2463 [M+H]^+; found: 416.2461.$

(2S,4R)-2-(tert-butoxycarbonylamino)-4-(tert-butyldimethylsilyloxy)-5hydroxy-pentanoic acid (22)

A solution of pyrrolidine 21 (3.5 g, 8.42 mmol, 1 equiv) in ethanol (250 mL) was cooled to 0°C. A buffer solution (NaHPO4/NaH2PO4, 80 mL, pH 7) and NaBH₄ (1.6 g, 42.1 mmol, 5.0 equiv) were added and the mixture was stirred at 0°C for 2 h. More buffer was added (160 mL) and stirring was continued at room temperature for 4 h. Subsequently, the pH value was adjusted to pH 7 with NaH₂PO₄ and the mixture was stirred for 16 h. Ethanol was removed in vacuo at room temperature, and the aqueous layer was extracted with ethyl acetate (3×250 mL). The combined organic layers were washed with brine (100 mL), dried with MgSO4, and concentrated. The crude product was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate 9:1-5:1) to give alcohol 22 as a colorless solid. Yield: 2.19 g, 5.22 mmol, 62 %. $R_{\rm f}$ = 0.33 (cyclohexane/ethyl acetate 4:1); m.p. 65.5–68.2 °C. $[\alpha]_{\rm D}^{20} = +13.1$ (MeOH, c = 1). IR: $\tilde{\nu} = 3433$ (m), 2977 (w), 2930 (m), 2858 (m), 1714 (m), 1500 (m), 1391 (s), 1366 (s), 1252 (s), 1152 (s), 1060 (s), 835 (s), 776 (s), 668 cm^{-1} (s). ¹H NMR (500 MHz, CDCl₃): $\delta = 0.07$ (s, 6H), 0.90 (s, 9H), 1.43 (s, 9H), 1.46 (s, 9H), 1.45 (s, 9H), 1.80 (m, 1H), 1.95-1.98 (m, 1H), 3.47-3.50 (m, 1H), 3.59-3.62 (m, 1H), 3.78-3.79 (m, 1H), 4.21 (d, J=5.4 Hz, 1H), 5.39 ppm (d, J = 5.45 Hz, 1 H). ¹³C NMR (125 MHz, CDCl₃): $\delta = -5.2$, 18.5, 26.1, 28.3, 28.6, 33.9, 52.1, 61.0, 66.9, 80.2, 82.4, 155.7, 171.8 ppm. HR-MS (FAB): calcd for C₂₀H₄₂NO₆Si⁺: 420.2776 [M+H]⁺; found: 420.2769.

(2S,4R)-5-azido-2-(tert-butoxycarbonylamino)-4-(tertbutyldimethylsilyloxy)pentanoic acid tert-butyl ester (23)

Preparation of a HN₃ solution: NaN₃ (6.5 g, 100 mmol), H₂O (6.5 mL), and toluene (40 mL) were combined in a flask under an argon atmosphere. The mixture was cooled to 0°C and stirred vigorously, then concentrated H₂SO₄ (98%, 2.7 mL) was added dropwise. The mixture was stirred at 0°C for 15 min and dried by adding excess MgSO₄. The concentration of the supernatant HN₃ solution in toluene was determined by titration of an aliquot against phenolphtaleine, with typical results between 1.2 and 1.6 m. **Caution**: HN₃ is a highly toxic, volatile, and an explosive reagent, which should be freshly prepared and handled with extreme care! To avoid potential hazards, the concentration of HN₃ in toluene should be kept lower than 2m, and excess HN₃ should be immediately destroyed by neutralizing with NaOH. **Storing HN₃ solutions for longer than the duration of the experiment is strongly discouraged!**

Mitsunobu Displacement

Alcohol 22 (2.11 g, 5.0 mmol, 1.0 equiv) and triphenylphosphine (3.93 g, 15.0 mmol, 3.0 equiv) were dissolved in toluene (80 mL). A solution of HN₃ in toluene (1.3 M, 19.0 mL, 25.0 mmol, 4.0 equiv) and diisopropylazodicarboxylate (DIAD; 3.19 g, 15.0 mmol, 3.0 equiv) was added dropwise with protection under an argon atmosphere and stirred for 4 h. NaOH solution was added (1 m, 30 mL) and the aqueous layer was extracted with ethyl acetate (3 \times 50 mL). The combined organic layers were washed with brine (30 mL), dried with MgSO₄, and concentrated. The crude product was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate $9:1\rightarrow5:1$ (v/v)) to give azide 23 as a colorless oil. Yield: 1.93 g, 4.35 mmol, 87%. $R_{\rm f} = 0.50$ (cyclohexane/ethyl acetate 4:1). $[\alpha]_{\rm D}^{20} = -31.8$ (MeOH, c=1). IR: $\tilde{\nu}=3347$ (m), 2978 (w), 2931 (w), 2859 (w), 2120 (s), 1714 (s), 1501 (s), 1366 (s), 1251 (s), 1150 (s), 1119 (s), 836 (s), 776 (s), 667 cm⁻¹ (w). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.07$ (s, 6H), 0.90 (s, 9H), 1.44 (s, 9H), 1.45 (s, 9H), 1.64-1.72 (m, 1H), 1.75-1.82 (m, 1H), 3.45-3.52 (m, 1H), 3.61-3.65 (m, 1H), 3.69-3.73 (m, 1H), 4.31 (m, 1H), 5.13 ppm (dd, J = 6.88 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.6$, 18.2, 25.7, 27.9, 28.3, 33.6, 51.8, 60.6, 66.5, 79.8, 82.1, 155.4, 171.4 ppm. HR-MS (FAB): calcd for $C_{20}H_{41}N_4O_5^+$: 445.2841 [*M*+H]⁺; found: 445.2832.

(2S,4R)-tert-butyl-2-amino-5-azido-4-(tertbutyldimethylsilyloxy)pentanoate (5)

Azide **23** (1.66 g, 3.7 mmol, 1.0 equiv) and 2.6-lutidine (0.8 g, 7.5 mmol, 2.0 equiv) were dissolved in dichloromethane (10 mL). TBSOTF (1.47 g, 5.5 mmol, 1.4 equiv) was added dropwise at room temperature and the

CHEMISTRY AN ASIAN JOURNAL

mixture was stirred for 15 min. After addition of a saturated NH₄Cl solution, the reaction mixture was extracted with dichloromethane (2× 10 mL). After removal of the solvent, the residue was redissolved in THF/H₂O (10 mL/10:1). tetra-n-butylammonium fluoride (TBAF; 1 M, 3.7 mL, 3.7 mmol, 1.0 equiv) was added to the solution and the mixture was stirred for 1 h. Saturated NH₄Cl solution was added (5 mL) and the aqueous layer was extracted with diethylether (3×10 mL). The combined organic extracts were washed with brine (10 mL), dried over MgSO4, and concentrated. The crude product was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate $9:1\rightarrow 5:1$) to give amine 23 as a colorless oil. Yield: 0.89 g, 2.6 mmol, 70%. $R_{\rm f}$ =0.40 (cyclohexane/ethyl acetate 1:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.08$ (s, 6 H), 0.90 (m, 9 H), 1.39-1.45 (m, 12 H), 1.62 (s, 2 H), 1.78 (m, 1 H), 3.46 (q, J=4.69 Hz, 1 H), 3.62–3.77 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.1$, 18.5, 26.1, 28.3, 35.7, 42.3, 52.5, 60.1, 67.1, 81.6, 175.5. GC-MS: $t_R = 5.30 \text{ min}, m/z =$ 345. $[\alpha]_{\rm D}^{20} = -73$ (CHCl₃, c = 1.0). IR: $\tilde{\nu} = 1158$, 1254, 1741, 2121, 2859, 2931 cm⁻¹. HR-MS (FAB): calcd for $C_{15}H_{33}N_4O_3Si^+$: 345.2316 [*M*+H]⁺; found 345.2316.

(2S,5R,2'S,2'''S)-2'-(Benzyloxcarbonylamino)-3'-{4'',4'''-bis-methoxy-3'''-[2''''-tert-butyloxy-carbonylamino-2'''-methoxycarbonylethyl]-biphenyl-3''yl]-propanoylamino)-5-azido-4-(tert-butyldimethylsilyloxy) pentanoic acid tert-butyl ester (24)

Biaryl acid 6 (162 mg, 0.25 mmol, 1.0 equiv), amine 5 (93.9 mg, 0.37 mol, 1.5 equiv), and HOBt (50.0 mg, 0.37 mmol, 1.5 equiv) were dissolved in abs. dichloromethane (15 mL). N,N-Diisopropylethylamine (90.9 µL, 0.55 mmol, 2.2 equiv) was added, the mixture was cooled to 0°C and EDC·HCl (70.9 mg, 0.37 mmol, 1.5 equiv) was added. After stirring at room temperature for 16 h, 0.5 N aqueous H2SO4 (10 mL) was added and the reaction mixture was extracted with dichloromethane $(3 \times 10 \text{ mL})$. The combined organic layers were washed with brine (10 mL), dried with MgSO₄, and concentrated. The crude product was purified by flash chromatography (silica gel, cyclohexane/ethyl acetate 1:1) to give dipeptide 24 as a colorless solid. Yield: 191 mg, 0.2 mmol, 78%. $R_{\rm f}$ =0.63 (cyclohexane/ethyl acetate 1:1); m.p. 134–138 °C. $[\alpha]_D^{20} = +12.6$ (MeOH, c = 0.5). HPLC-ESI: $t_R = 12.89 \text{ min}; m/z = 985.25 [M+Na]^+$. IR: $\tilde{\nu} = 3344$ (m), 2978 (w), 2123 (s), 1732 (m), 1688 (m), 1652 (s), 1523 (s), 1495 (s), 1439 (s), 1245 (s), 1167 (s), 1167 (s), 1136 (s), 1025 (w), 805 (s), 742 cm⁻¹ (s). ¹H NMR (400 MHz, CD₃OD): $\delta = 0.12$ (s, 6H), 0.94 (s, 9H), 1.35 (s, 9H), 1.35 (s, 9H), 1.45 (s, 9H), 1.70-1.89 (m, 2H), 2.89-3.00 (m, 2H), 3.19-3.25 (m, 2H), 3.44-3.47 (m, 1H), 3.60 (dd, J=5.18, 5.28 Hz, 1H), 3.69 (s, 3H), 3.78 (dd, J=5.26 Hz, 1H), 3.92 (s, 6H), 4.46-4.53 (m, 1H), 5.01 (q, J=10.68 Hz, 2H), 7.01 (d, J=8.36 Hz, 2H), 7.26 (m, 5H), 7.36–7.47 ppm (m, 4H). ¹³C NMR (100 MHz, CD₃OD): $\delta = -4.8$, 19.7, 26.9, 28.3, 28.8, 29.3, 33.9, 34.9, 52.6, 53.2, 56.7, 62.5, 68.3, 81.8, 83.7, 112.4, 112.5, 127.5, 129.4, 129.6, 130.1, 131.1, 138.7, 158.4, 158.9, 172.7, 175.1 ppm. HR-MS (ESI): calcd for $C_{49}H_{70}N_6O_{12}Si^+$: 963.4894 [*M*+H]⁺; found: 963.4894.

(4S,7S,10S,2'R)-10-Benzyoxycarbonylamino-1¹,2¹-bis-methoxy-7-[3'-azido-2'-(tert-butyldimethyl-silyloxy)propyl]-5,8-diaza-6,9-dioxo-1,2(4,2)dibenzenacycloundecaphane-4-methyl carboxylate (**25**).

Compound 24 (107.4 mg, 0.11 mmol, 1.0 equiv) and 2,6-lutidine (202.0 µL, 471.6 mg, 4.4 mol, 40 equiv) were dissolved in abs. dichloromethane (20 mL) and cooled to 0°C. Triethylsilyl trifluoromethanesulfonate (501 µL, 582 mg, 2.20 mol, 20 equiv) was added dropwise and the mixture was stirred at room temperature for 16 h. Subsequently, a saturated NH₄Cl solution (15 mL) was added and the mixture was stirred vigorously for 4 h. The mixture was extracted with dichloromethane $(3 \times 5 \text{ mL})$. The combined organic layers were washed with brine (5 mL), dried with MgSO₄, and concentrated. The residue was purified by flash chromatography (silica gel, $R_f = 0.54$ in dichloromethane/MeOH 10:1). The amino acid obtained was dissolved in abs. dichloromethane (5 mL) and the solution was added dropwise at room temperature under vigorous stirring over a period of 30 h by a syringe pump (flow rate 0.8 mL/h) to a solution of HATU (62.7 mg, 0.16 mmol, 1.5 equiv), HOAt (22.4 mg, 0.16 mmol, 1.5 equiv), and EtN(iPr)2 (37.8 µL, 29.6 mg, 0.24 mmol, 2.2 equiv) in abs. dichloromethane (500 mL). After the addition was complete, the reaction mixture was stirred for 8 h. The volatiles were removed and the residue was dissolved in dichloromethane (40 mL),

Chem. Asian J. 2011, 6, 1546-1556

washed with aqueous 0.5 N H₂SO₄ (10 mL), aqueous 1 N NaHCO₃ (10 mL), brine (10 mL), dried with MgSO₄, and concentrated. The crude product was purified by flash chromatography (silica gel, dichloromethane/MeOH 13:1) to give cyclopeptide 25 as a colorless solid. Yield: 65.1 mg, 0.83 mmol, 75%. R_f=0.58 (dichloromethane/MeOH 13:1); m.p. >210 °C. (decomp.). $[\alpha]_{\rm D}^{20} = +20.1$ (DMSO, c = 1.0). HPLC-ESI: $t_R =$ 10.69 min; $m/z = 767.1 [M+H]^+$. IR: $\tilde{\nu} = 3266$ (m), 2929 (m), 2857 (w), 2121 (s), 1643 (s), 1495 (s), 1244 (s), 1026 (w), 827 cm⁻¹ (s). ¹H NMR (400 MHz, $[D_6]DMSO$): $\delta = 0.11$ (s, 6H), 0.91 (s, 9H), 1.27 (m, 2H), 1.65-1.72 (m, 2H), 2.81-2.88 (m, 2H), 3.55-3.66 (m, 2H), 3.73 (s, 3H), 3.75 (s, 3H), 3.85 (s, 3H), 4.51 (t, J=5.96 Hz, 1H), 4.76-4.85 (m, 2H), 5.04–5.11 (q, J=10.08 Hz, 2 H), 6.47 (d, J=7.24 Hz, 1 H), 6.98–7.08 (m, 3H), 7.35–7.38 (m, 5H), 8.68 (d, J = 9.04 Hz, 1H), 9.19 ppm (d, J =9.04 Hz, 1 H). ¹³C NMR (100 MHz, [D₆]DMSO): $\delta = -4.7, 18.7, 26.5, 34.3,$ 50.1, 51.8, 53.2, 55.0, 56.4, 61.1, 66.3, 67.1, 111.5, 122.4, 125.3, 127.0, 128.5, 128.6, 129.2, 130.5, 132.4, 132.6, 137.8, 156.5, 157.4, 170.8, 172.2, 172.7 ppm. HR-MS (ESI): calcd for C₄₀H₅₃N₆O₉Si⁺: 789.3638 [M+H]⁺; found: 789.3640.

Biphenomycin B (1)

Azide 25 (75 mg, 0.095 mmol, 1.0 equiv) was dissolved in THF/water (10 mL, 9:1). A solution of trimethylphosphine in THF (380 µL, 1 м in THF, 0.38 mmol, 4.0 equiv) and 0.1 N sodium hydroxide (2.8 mL, 0.28 mmol, 3 equiv) was added and the mixture was stirred for 6 h. The volatiles were removed under reduced pressure and the residue was suspended in 1M aqueous HCl. After stirring for 8 h, the mixture was concentrated and dried in vacuo. The residue was suspended in abs. dichloromethane (20 mL) and cooled to 0 °C. A solution of boron tribromide (1 м in dichoromethane, 1.9 mL, 1.9 mmol, 20 equiv) was added dropwise over 10 min and the reaction mixture was stirred at room temperature for 6 h. Subsequently, the reaction mixture was cooled to 0°C and abs. MeOH (1 mL) and 0.1 M aqueous lithium hydroxide (0.5 mL) were added. The mixture was stirred for 5 min. After removal of the solvent, the crude product was purified by preparative HPLC to give biphenomycin B as a colorless solid. Yield: 23.4 mg, 0.05 mmol, 52 %; m.p. > 215 °C. (decomp.). $[a]_{D}^{20} = +4.45$ (1 M HCl, c = 0.375). HPLC-ESI: $t_{R} = 2.25$ min; $m/z = 473.1 [M+H]^+$. IR: $\tilde{\nu} = 3270$ (m), 3078 (m), 2928 (w), 1637 (s), 1390 (s), 1242 (s), 848 cm⁻¹ (s). ¹H NMR (500 MHz, $[D_6]DMSO$): $\delta = 1.78-1.79$ (m, 1H), 1.95-1.98 (m, 1H), 2.73-2.78 (m, 1H), 2.94 (m, 1H), 3.03 (m, 1H), 3.31 (m, 1H), 3.57 (m, 3H), 3.88 (d, J=6.5 Hz, 1H), 4.13-4.35 (m, 1H), 4.79–4.80 (m, 1H), 6.80 (d, J=8.0 Hz, 2H), 6.95 (s, 1H), 7.21 (s, 3H), 8.72 ppm (s, 2H). ¹³C NMR (125 MHz, $[D_6]$ DMSO): $\delta = 29.5$, 33.1, 35.3, 51.3, 51.6, 54.5, 55.0, 63.2, 116.2, 116.4, 124.4, 125.0, 125.1, 127.2, 128.0, 128.7, 131.7, 132.0, 154.8, 155.3, 170.6, 172.3, 176.7 ppm. ¹H NMR (400 MHz, D_2O): $\delta = 2.17-2.22$ (m, 2H), 2.92 (dd, J = 5.60, 8.32 Hz, 1H), 3.05 (dd, J=7.62, 3.12 Hz, 1H), 3.42-3.46 (m, 1H), 3.58-3.60 (m, 1H), 3.74-3.79 (m, 1H), 3.90-3.93 (m, 1H), 4.54 (m, 1H), 4.75 (m, 1H), 4.85 (m, 1H), 6.91 (s, 1H), 6.95 6.98-6.99 (m, 2H), 7.16 (s, 1H), 7.44 (d, J= 8.40 Hz, 1H), 7.52 ppm (m, J=8.40 Hz, 1H). HR-MS (ESI): calcd for $C_{23}H_{29}N_4O_7^+$: 473.2031 [*M*+H]⁺; found: 473.2026.

General Procedure 1: Biaryl Peptide Extension

Carboxylic acid (1.0 equiv), amino acid-*tert*-butylester hydrochloride (1.2 equiv), and HOBt (1.2 equiv) were dissolved in abs. dichloromethane (20 mM, 1×vol). After addition of *N*,*N*-diisopropylethylamine (2.2 equiv), the mixture was cooled to 0°C and EDC-HCl (1.2 equiv) was added. After stirring at room temperature for 16 h, 1M aqueous HCl (1×vol) was added and the reaction mixture was extracted with CH₂Cl₂ (3×vol). The combined organic layers were washed with brine (1×vol), dried with MgSO₄, and concentrated.

(2S,2'S,2'''S)-tert-Butyl-2'-(benzyloxcarbonylamino)-3'-{4",4'''-bismethoxy-3'''-[2''''-tert-butyloxycarbonylamino-2''''-methoxycarbonylethyl]biphenyl-3''-yl]-propanoylamino)-2-methylpropanoate (**26**)

Dipeptide **26** was prepared from biaryl acid **6** (105 mg, 0.16 mmol) and Lalanine-*tert*-butylester hydrochloride (35.9 mg, 0.19 mol) according to general procedure 1, and obtained as a colorless solid after flash chromatography (silica gel, cyclohexane/ethyl acetate 1:1). Yield: 105 mg, 0.14 mmol, 84%. $R_{\rm f}$ =0.49 (cyclohexane/ethyl acetate 1:1); m.p. 122–125°C. $[a]_{\rm D}^{20}$ =+6.4 (MeOH, c=0.5). HPLC-ESI: t_R =11.21 min; m/z= 786.2 $[M+{\rm Na}]^+$. IR: $\bar{\nu}$ =3307 (w), 2926 (w), 1709 (m), 1656 (m), 1493 (s), 1452 (m), 1243 (s), 1130 (m), 1026 (s), 808 (s), 772 (w), 738 (m), 697 (m), 637 cm⁻¹ (m). ¹H NMR (400 MHz, CDCl₃): δ =1.24 (d, J=6.40 Hz), 1.34 (s. 9H), 1.40 (s. 9H), 3.06–3.17 (m, 4H), 3.68 (s, 3H), 3.82 (s, 6H), 4.35 (t, J=7.0 Hz, 1H), 4.51 (m, 1H), 4.53 (m, 1H), 5.01 (m, 2H), 5.26 (d, J= 7.60 Hz, 1H), 5.81 (m, 1H), 6.70 (m, 1H), 6.84 (t, J=7.4 Hz), 7.23–7.25 (m, 6H), 7.31–7.35 ppm (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =18.8, 27.1, 28.2, 28.5, 33.3, 48.9, 52.3, 54.4, 55.7, 55.8, 56.5, 67.0, 79.8, 82.1, 110.7, 111.1, 125.3, 125.7, 126.7, 126.8, 128.1, 128.2, 128.7, 129.7, 129.9, 133.2, 133.6, 136.6, 155.5, 156.5, 156.7, 157.1, 170.9, 172.0, 173.1 ppm. HR-MS (ESI): calcd for C₄₁H₅₄N₃O₁₁+: 764.3753 [M+H]+; found: 764.3753.

(2S,2'S,2'''S)-tert-Butyl-2'-(Benzyloxcarbonylamino)-3'-{4",4"'-bismethoxy-3'''-[2'''-tert-butoxycarbonylamino-2'''-methoxycarbonylethyl]biphenyl-3''-yl}-propanoylamino)-butyloxy-propanoate (27)

Dipeptide **27** was prepared from biaryl acid **6** (100 mg, 0.16 mmol) and L-serine-*tert*-butylester hydrochloride (47.8 mg, 0.19 mol) according to general procedure 1, and was obtained as a colorless solid after flash chromatography (silica gel, cyclohexane/ethyl acetate 1:1). Yield: 114 mg, 0.14 mmol, 85%. $R_{\rm f}$ =0.48 (cyclohexane/ethyl acetate 1:1); m.p. >125-127°C (decomp.). $[a]_D^{20}$ =+27.9 (MeOH, *c*=0.5). HPLC-ESI: t_R = 11.86 min; m/z=858.32 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃): δ =1.06 (s, 9H), 1.31 (s, 9H), 1.40 (s, 9H), 2.95–3.08 (m, 3H), 3.17–3.22 (m, 1H), 3.45 (d, *J*=6.4 Hz, 1H), 3.64 (s, 3H), 3.68–3.71 (m, 1H), 3.79 (s, 6H), 4.50–4.52 (m, 3H), 4.96 (s, 2H), 5.28 (d, *J*=7.6 Hz), 5.76 (m, 1H), 6.79–6.84 (m, 3H), 7.20–7.22 (m, 5H), 7.31–7.33 ppm (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =27.4, 28.1, 28.4, 33.2, 33.9, 52.1, 53.4, 54.2, 55.6, 55.7, 56.1, 62.3, 66.7, 73.1, 77.4, 79.6, 81.9, 110.8, 110.9, 125.1, 125.8, 126.5, 126.7, 127.9, 128.0, 128.5, 129.6, 133.2, 133.3, 136.5, 155.4, 156.2, 156.7, 156.9, 169.2, 171.3, 172.9 ppm. HR-MS (ESI): calcd for C₄₅H₆₂N₃O₁₂+: 836.4328 [M+H]⁺; found: 836.4328.

(2S,2'S,2'''S)-tert-Butyl-2'-(Benzyloxcarbonylamino)-3'-{4'',4'''-bismethoxy-3'''-[2''''-tert-butyloxycarbonylamino-2'''-methoxycarbonylethyl]biphenyl-3''-yl]-propanoylamino)-2-benzyloxycarbonylamino-pentanoate (28)

Dipeptide 28 was prepared from biaryl acid 6 (200 mg, 0.32 mmol) and L-H-Orn(Z)-OtBu·HCl (135 mg, 0.38 mol) according to general procedure 1, and obtained as a colorless solid after flash chromatography (silica gel, cyclohexane/ethyl acetate 1:1). Yield: 242 mg, 0.26 mmol, 82 %; m.p. 141-143 °C. $R_{\rm f} = 0.53$ (cyclohexane/ethyl acetate 1:1). $[\alpha]_{\rm D}^{20} = +13.6$ (MeOH, c=0.5). HPLC-ESI: $t_R=11.01 \text{ min}$; $m/z=940.7 [M+H]^+$. IR: $\tilde{\nu}=3330$ (w), 2936 (w), 1735 (m), 1692 (s), 1650 (s), 1520 (s), 1494 (m), 1390 (w), 1244 (s), 1160 (m), 1023 (s), 820 cm⁻¹ (w). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.29$ (s, 11 H), 1.35 (s, 9 H), 1.55 (m, 1 H), 1.70 (m, 1 H), 2.98–3.07 (m, 6H), 3.64 (s, 3H), 3.78 (s, 3H), 3.80 (s, 3H), 4.33-4.36 (m, 2H), 4.47 (d, J=6.0 Hz, 1 H), 4.96 (s, 2 H), 5.00 (m, 2 H), 5.20 (d, J=7.2 Hz, 1 H), 5.77 (d, J=4.4 Hz, 1H), 6.60 (d, J=6.8 Hz, 1H), 6.79-6.83 (m, 2H), 7.19-7.32 ppm (m, 11 H). ¹³C NMR (100 MHz, CDCl₃): δ =25.5, 28.3, 28.6, 30.1, 33.4, 40.8, 52.4, 52.6, 54.5, 54.5, 55.9, 55.9, 56.9, 66.9, 67.2, 79.9, 82.6, 111.1, 125.5, 126.8, 126.8, 128.2, 128.4, 128.4, 128.8, 128.8, 129.8, 130.2, 133.7, 136.7, 137.0, 155.6, 156.9, 157.3, 171.2, 171.3, 173.2 ppm. HR-MS (ESI): calcd for $C_{51}H_{65}N_4O_{13}^+$: 941.4543 [*M*+H]⁺; found: 941.4545.

General Procedure 2: Deprotection and Macrolactam Formation

The protected precursor was dissolved in 1,4-dioxane/conc. HCl (3:1, 20 mM) and stirred for 3 h. More concentrated hydrochloric acid was added (12.5 vol $\% \rightarrow 4$ M) and the mixture was stirred for 1 h. The solvent was removed and the residue was dissolved in anhydrous dichloromethane (5 mM=1 vol). This solution was added dropwise to a previously prepared solution of HATU (1.5 equiv), HOAt (1.5 equiv), and EtN(*i*Pr)₂ (2.2 equiv) in anhydrous dichloromethane (0.2 mM) with vigorous stirring during 24 h by a syringe pump (flow rate 0.8 mL/h). After the addition was complete, the mixture was stirred for 4 h and concentrated. The residue was taken up in dichloromethane (1×vol), washed with 1 m HCl (1×

vol), aqueous sodium bicarbonate (5 wt %, $1 \times vol$), brine ($1 \times vol$), dried with MgSO₄, and concentrated.

$(4S,7S,10S)-10-Benzyloxycarbonylamino-1^1,2^l\mbox{-}bis\mbox{-}methyl\mbox{-}5,8-diaza-6,9-dioxo-1,2(4,2)\mbox{-}dibenzenaycloundecaphane-4-methyl carboxylate}\ ({\bf 29})$

Cyclopeptide 29 was prepared from peptide 26 (76.3 mg, 0.10 mmol) according to general procedure 2, and obtained as a colorless solid after flash chromatography (silica gel, dichloromethane/MeOH 10:1). Yield: 22.9 mg, 0.04 mmol, 39%. $R_{\rm f}$ =0.37 (dichloromethane/MeOH 19:1); m.p. >241 °C (decomp.). $[\alpha]_{D}^{20} = +21.7$ (DMSO, c = 0.33). HPLC-ESI: $t_{R} =$ 9.93 min; $m/z = 590.15 [M+H]^+$. IR: $\tilde{\nu} = 3269$ (s), 2925 (m), 2851 (w), 1745 (s), 1688 (s), 1634 (s), 1539 (s), 1494 (s), 1280 (m), 1246 (s), 1143 (m), 1028 (m), 800 (m), 697 cm⁻¹ (s). ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 1.28$ (d, J = 6.44 Hz, 3H), 2.83 (m, 2H), 3.35 (s, 3H), 3.42 (m, 2H), 3.75 (s, 3H), 3.84 (s, 3H), 4.51 (q, J=4.62 Hz, 1H), 4.72 (t, J=4.5 Hz, 1H), 4.85 (t, J=8.98 Hz, 1H), 5.08 (d, J=2.36 Hz, 2H), 6.23 (t, J=7.6 Hz, 1 H), 6.96-7.11 (m, 3 H), 7.38 (m, 5 H), 7.47-7.50 (m, 2 H), 8.73 (d, J = 8.96 Hz, 1H), 8.95 ppm (d, J = 8.80 Hz, 1H). ¹³C NMR (100 MHz, $[D_6]DMSO$): $\delta = 19.7, 27.5, 29.6, 53.3, 56.4, 66.3, 111.5, 128.5, 128.7, 129.2,$ 132.1, 132.4, 156.6, 157.4, 169.9 ppm. HR-MS (ESI): calcd for C₃₂H₃₆N₃O₈+: 590.2497 [M+H]+; found: 590.2495.

(4S,7S,10S)-10-Benzyloxycarbonylamino- 1^1 , 2^1 -bis-methoxy-7hydroxymethyl-5,8-diaza-6,9-dioxo-1,2(4,2)-dibenzenaycloundecaphan-4methyl carboxylate (**30**)

Cyclopeptide 30 was prepared from peptide 27 (80.1 mg, 0.10 mmol) according to general procedure 2 and obtained as a colorless solid after flash chromatography (silica gel, dichloromethane/MeOH 10:1). Yield: 45.7 mg, 0.076 mmol, 59%. $R_{\rm f}$ =0.43 (dichloromethane/MeOH 10:1). m.p. >221 °C (decomp.). $[a]_{D}^{20} = +28.4$ (DMSO, c = 0.5). HPLC-ESI: $t_{R} =$ 9.35 min; $m/z = 606.13 [M+H]^+$. IR: $\tilde{\nu} = 3418$ (m), 2914 (m), 2360 (s), 1731 (s), 1639 (s), 1496 (m), 1241 (s), 1171 (m), 1020 (s), 801 (m), 696 (m), 668 cm $^{-1}$ (m). $^1\!\mathrm{H}$ NMR (400 MHz, [D_6]DMSO): $\delta\!=\!2.89$ (m, 2H), 3.29-3.41 (m, 2H), 3.55 (q, J=5.27 Hz, 1H), 3.62 (q, J=5.40 Hz, 1H), 3.73 (s, 6H), 3.84 (s, 3H), 4.56 (t, J=4.81, 2.76 Hz, 1H), 4.70 (t, J= 7.35 Hz, 1 H), 4.82 (t, J=6.19 Hz, 1 H), 4.91 (t, J=3.64 Hz, 1 H), 5.10 (d, J=2.38 Hz, 2 H), 6.35 (d, J=7.44 Hz, 1 H), 6.97-7.13 (m, 3 H), 7.34-7.48 (m, 8H), 8.45 (d, J = 8.96 Hz, 1H), 8.98 ppm (d, J = 8.60 Hz, 1H). ¹³C NMR (100 MHz, [D₆]DMSO): δ =29.1, 31.3, 51.8, 53.2, 54.9, 55.5, 56.5, 62.9, 66.3, 111.6, 125.4, 125.8, 126.8, 126.9, 128.5, 128.7, 129.3, 132.2, 132.5, 137.9, 155.8, 156.6, 157.4, 170.7, 171.9 ppm. HR-MS (ESI): calcd for C₃₂H₃₆N₃O₉⁺: 606.2446 [*M*+H]⁺; found: 606.2444.

(45,75,10S)-10-Benzyolxycarbonylamino- $1^{1},2^{1}$ -bis-methoxy-7- $(3^{\prime}-(benzyloxy-carbonylamino)$ -propyl)-5,8-diaza-6,9-dioxo-1,2(4,2)-dibenzenaycloundecaphan-4-methyl carboxylate (31)

Carboxylate 31 was prepared from peptide 28 (103 mg, 0.13 mmol) according to general procedure 2 and obtained as a colorless solid after flash chromatography (silica gel, dichloromethane/MeOH 10:1 v/v). Yield: 72.3 mg, 0.09 mmol, 72 %. $R_{\rm f}$ = 0.48 (dichloromethane/MeOH 9:1). m.p. >220 °C (decomp.). $[\alpha]_{D}^{20} = +20.1$ (DMSO, c=1). HPLC-ESI: $t_{R} =$ 10.69 min; $m/z = 767.1 \ [M+H]^+$. IR: $\tilde{\nu} = 3273$ (m), 2928 (w), 1740 (w), 1689 (s), 1638 (s), 1537 (s), 1494 (s), 1242 (s), 1131 (m), 1026 (m), 802 (m), 695 cm⁻¹ (s). ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 1.44$ (m, 2H), 1.62 (m, 1H), 1.94-2.01 (m, 1H), 2.75-2.81 (m, 2H), 2.97-2.99 (m, 2H), 3.35-3.40 (m, 1H), 3.66 (s, 6H), 3.78 (s, 3H), 4.48 (t, J=5.6 Hz, 1H), 4.57 (t, J=7.7 Hz, 1H), 4.78 (t, J=9.4 Hz, 1H), 4.98 (s, 2H), 5.02 (s, 2H) 6.18 (d, J=7.6 Hz, 1 H), 6.90–6.96 (m, 2 H), 7.04 (s, 1 H), 7.23–7.42 (m, 13 H), 8.61 (d, J=9.2 Hz, 1H), 8.93 ppm (d, J=8.8 Hz, 1H). ¹³C NMR (100 MHz, $[D_6]$ DMSO): $\delta = 26.8$, 28.9, 29.6, 31.3, 36.0, 51.5, 52.4, 53.2, 54.9, 56.4, 56.5, 66.1, 66.3, 111.6, 111.9, 125.2, 125.2, 125.3, 125.3, 125.7, 126.5, 126.5, 126.9, 128.6, 129.2, 129.6, 130.6, 132.1, 132.4, 137.9, 138.2, 155.8, 156.6, 157.0, 157.5, 170.3, 172.7, 172.8 ppm. HR-MS (ESI): calcd for C₄₂H₄₇N₄O₁₀⁺: 767.3287 [*M*+H]⁺; found: 767.3287.

General Procedure 3: Global Deprotection

The compound was dissolved in THF (50 mm, 1vol), and 0.1N aqueous NaOH (8 equiv) was added. After stirring at room temperature for 8 h, the solvent was removed. The residue was dried in vacuo, taken up in benzene (4 mm, $1 \times vol$), added to a fresh solution of AII₃ (prepared from aluminum gratings (40 equiv) and iodine (32 equiv) refluxed for 30 min in anhydrous benzene (2 mLmmol of iodine)) and nBu_4NI (0.1 equiv) at 10°C, and stirred for 30 min at 10°C. 2 M HCl (50 vol%) was added at 10°C, followed by EtOAc (3×vol). The layers were separated and the organic layer was extracted with water (3×2 vol). The aqueous extracts were combined and concentrated.

(4S,7S,10S)-10-Amino-1¹,2¹-bis-hydroxy-7-methyl-5,8-diaza-6,9-dioxo-1,2(4,2) dibenzenacycloundecaphan-4-carboxylic acid (**32**)

Cyclopeptide **29** (25.95 mg, 44 µmol) was deprotected according to gene ral procedure 3 and the crude product was purified by preparative HPLC to yield product **32** as a colorless solid. Yield: 12.3 mg, 0.03 mmol, 68%; m.p. > 258 °C (decomp.). $[a]_{D}^{20} = -24$ (DMSO, c=0.2). HPLC-ESI: $t_R=5.38$ min; m/z = 414.16 [M+H]⁺. IR: $\bar{\nu} = 3258$ (m), 3079 (m), 2926 (m), 1678 (m), 1636 (s), 1438 (s), 1201 (s), 1134 (s), 873 (s), 722 cm⁻¹ (m). ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 1.31$ (d, J = 7.04 Hz, 3 H), 2.70–2.77 (m, 2H), 3.01–3.06 (m, 2H), 4.10 (m, 1H), 4.72–4.81 (m, 2H), 6.82–6.86 (m, 2H), 7.23 (m, 2H), 7.32 (m, 2H), 7.96 (m, 2H), 8.97 (d, J = 8.6 Hz, 1H), 9.07 (d, J = 9.36 Hz, 1H), 9.53 ppm (s, 2H). ¹³C NMR (100 MHz, [D₆]DMSO): $\delta = 24.7$, 31.4, 35.1, 67.2, 68.2, 117.5, 129.0, 130.7, 159.1, 165.8, 170.2 ppm. HR-MS (ESI): calcd for C₂₂H₂₄N₃O₆+: 414.1660 [M+H]⁺; found: 414.1655.

(4S,7S,10S)-10-Amino-1¹,2¹-bis-hydroxy-7-hydroxymethyl-5,8-diaza-6,9dioxo-1,2(4,2)-dibenzenacycloundecaphan-4-carboxylic acid (**33**)

Cyclopeptide **30** (10.2 mg, 16.87 µmol) was deprotected according to general procedure 3 and the crude product was purified by preparative HPLC to yield product **33** as a colorless solid. Yield: 4.67 mg, 10.8 µmol, 64%; m.p. >248 °C (decomp.). $[a]_{D}^{2D} = -19.8$ (DMSO, c = 0.33). HPLC-ESI: $t_R = 5.05$ min; m/z = 429.9 $[M+H]^+$. IR: $\bar{\nu} = 3270$ (m), 2932 (m), 1670 (s), 1639 (s), 1441 (s), 1198 (s), 1134 (s), 981 (m), 826 (s), 798 (m), 721 cm⁻¹ (m). ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 2.74$ (dd, J = 9.5 Hz, 1H), 3.05–3.09 (m, 1H), 3.24–3.30 (m, 2H), 3.54–3.65 (m, 2H), 4.15 (s, 1H), 4.69–4.79 (m, 2H), 5.03 (s, 1H), 6.81–6.87 (m, 2H), 9.55 (s. 1H), 9.76 ppm (s. 1H). ¹³C NMR (100 MHz, [D₆]DMSO): $\delta = 29.1$, 29.9, 51.7, 53.7, 55.3, 55.5, 62.9, 115.4, 115.9, 121.3, 124.7, 125.6, 126.3, 129.7, 130.5, 130.5, 131.8, 154.3, 155.1, 168.1, 170.3, 173.9 ppm. HR-MS (ESI): calcd for C₂₁H₃₄N₃O₇⁺: 430.1609 [*M*+H]⁺; found: 430.1608.

(4\$,7\$,10\$)-10-Amino-1¹,2¹-bis-hydroxy-7-(3'-aminopropyl)-5,8-diaza-6,9dioxo-1,2(4,2)-dibenzenacycloundecaphan-4-carboxylic acid (**34**)

Cyclopeptide **31** (26 mg, 34.0 µmol) was deprotected according to general procedure 3 and the crude product was purified by preparative HPLC to yield product **34** as a colorless solid. Yield: 10.7 mg, 23.4 µmol, 69%; m.p. >237 °C (decomp.). $[a]_{20}^{20} = -16.1$ (DMSO, c=0.2). HPLC-ESI: $t_R=4.30 \text{ min}; m/z=457.1 [M+H]^+$. IR: $\tilde{\nu}=3021$ (m), 2927 (m), 1721 (s), 1661 (m), 1550 (m), 1440 (s), 1262 (s), 987 (s), 823 (s), 763 cm⁻¹ (m). ¹H NMR (400 MHz, [D₆]DMSO): $\delta=1.70$ (m, 4H), 2.76–2.79 (m, 4H), 2.99–3.02 (m, 2H), 4.14 (s, 1H), 4.67–4.68 (m, 2H), 6.81–6.92 (m, 3H), 7.17–7.25 (m, 3H), 8.14 (s, 6H), 9.02 ppm (m, 2H). ¹³C NMR (100 MHz, [D₆]DMSO): $\delta=29.1$, 29.8, 38.3, 40.1, 120.0, 125.2, 128.9, 130.2, 131.6, 154.8, 168.6, 171.0 ppm. HR-MS (ESI): calcd for C₂₃H₂₉N₄O₆+: 457.2081 [*M*+H]⁺; found: 457.2079.

Translation Inhibition Testing

The in vitro transcription/translation inhibition assay was performed in 384 well plates (Optiplate-384 F, PerkinElmer) using the RTS 100 *E. coli* HY Kit (Roche Diagnostics) as described.^[37] In brief, the plasmid DNA template containing the GFP gene under the control of a T7 promoter was used as provided. $6 \,\mu$ L of buffer I (20 mM Tris-HCl, 10 mM MgSO₄, 20 mM NaCl, 5% trifluoroethanol (TFE; pH 7.4) were introduced per

well, and serial dilutions (6 $\mu L)$ of the compounds were prepared in triplicates. The final concentration of TFE was 5 % in each well.

 $2 \ \mu$ L of the reaction cocktail (containing no DNA template) were added to each well. To start transcription, $2 \ \mu$ L of the diluted plasmid (20:1) were added to each well to reach a total volume of 10 μ L. The plates were sealed and incubated for 90 min at 30 °C and then stored at 4 °C overnight. Fluorescence per well was then analyzed by using a TECAN infinite M200 plate reader at 395 nm excitation and an emission wavelength of 504 nm (25 reads/well, optimal gain, 22 °C). The data were normalized (I/I_{max}) and plotted against the compound concentration. Sigmoidal curves were fitted using Hill's equation to yield IC₅₀ values by means of Origin 7.5 (OriginLab Corporation). Reactions with no inhibitor and with no DNA template were included as controls.

Acknowledgements

This work was supported in part by the state of NRW (Center for applied chemical genomics, ZACG), and the Max-Planck-Society (to HW). L.A. received a Kekulé fellowship from the Fonds der Chemischen Industrie. H.W. holds an advanced investigator grant from the European Research Council. We thank Prof. Dr. S. Grond (U Tübingen, Germany) for providing a sample of kirromycin, and Dr. B. Ellinger (MPI Dortmund) for conducting bacterial growth inhibition tests.

- a) K. C. Nicolaou, J. A. Pfefferkorn, A. J. Roecker, G.-Q. Cao, S. Barluenga, H. J. Mitchell, *J. Am. Chem. Soc.* 2000, *122*, 9939–9953;
 b) K. Ding, Z. Han, Z. Wang, *Chem. Asian J.* 2009, *4*, 32–41.
- [2] R. Breinbauer, I. R. Vetter, H. Waldmann, Angew. Chem. 2002, 114, 3002–3015; Angew. Chem. Int. Ed. 2002, 41, 2878–2890.
- [3] L. J. Gooßen, G. Deng, L. M. Levy, Science 2006, 313, 662-664.
- [4] I. Uchida, N. Shigematsu, M. Ezaki, M. Hashimoto, H. Aoki, H. Imanaka, J. Antibiot. 1985, 38, 1462–1468.
- [5] J. Schimana, K. Gebhardt, A. Höltzel, D. G. Schmid, R. Süssmuth, J. Müller, R. Pukall, H.-P. Fiedler, J. Antibiot. 2002, 55, 565–570.
- [6] F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand, D. Häbich, Angew. Chem. 2006, 118, 5194–5254; Angew. Chem. Int. Ed. 2006, 45, 5072–5129.
- [7] M. Paetzel, J. J. Goodall, M. Kania, R. E. Dalbey, M. G. P. Page, J. Biol. Chem. 2004, 279, 30781–30790.
- [8] A. S. Carlström, T. Frejd, J. Chem. Soc. Chem. Commun. 1991, 1216–1217.
- [9] a) J. H. Martin, L. A. Mitscher, P. Shu, J. N. Porter, N. Bohonos, S. E. DeVoe, E. L. Patterson, *Antimicrob. Agents Chemother.* 1967, 422–425; b) J. H. Martin, J. N. Porter, L. A. Mitscher (Lederle Pharm.), US 3,452,136, 1969; [*Chem. Abstr.* 1969, 71, 59640].
- [10] a) M. Ezaki, M. Iwami, M. Yamashita, S. Hashimoto, T. Komori, K. Umehara, Y. Mine, M. Kohsaka, H. Aoki, H. Imanaka, J. Antibiot. 1985, 38, 1453–1461; b) M. Ezaki, N. Shigematsu, M. Yamashita, T. Komori, K. Umehara, H. Imanaka, J. Antibiot. 1993, 46, 135–140.
- [11] I. Uchida, N. Shigematsu, M. Ezaki, M. Hashimoto, H. Aoki, H. Imanaka, J. Antibiot. 1985, 38, 1462–1468.
- [12] H. C. Wegener, Curr. Opin. Microbiol. 2003, 6, 439-445.
- [13] F. Paintner, K. Görler, W. Voelter, Synlett 2003, 4, 0522-0526.
- [14] R. Endermann, K. Ehlert, S. Raddatz, M. Michels, Y. Cancho-Grande, S. Weigand, K. Fischer, 2006, DE 102005014247, 52 pp.
- [15] H. Waldmann, Y.-P. He, H. Tan, L. Arve, H.-D. Arndt, Chem. Commun. 2008, 5562–5564.
- [16] a) U. Schmidt, R. Meyer, V. Leitenberger, A. Lieberknecht, H. Griesser, J. Chem. Soc. Chem. Commun. 1991, 275–277; b) U. Schmidt, V. Leitenberger, H. Griesser, J. Schmidt, R. Meyer, Synthesis 1992, 1248–1254.
- [17] R. Lépine, J. Zhu, Org. Lett. 2005, 7, 2981-2984.
- [18] a) J. Rudolph, F. Hannig, 2002, WO 2002102764, 26 pp; b) T. Lampe, I. Adelt, D. Beyer, N. Brunner, R. Endermann, K. Ehlert, H.-P. Kroll, F. von Nussbaum, S. Raddatz, J. Rudolph, G. Schiffer, A. Schumacher, 2004, DE 10234422, 41 pp; c) R. Endermann, K.

Ehlert, S. Raddatz, Y. Cancho Grande, M. Michels, S. Weigand, I. Adelt, T. Lampe, **2005**, WO 2005058943, 173 pp.; d) R. Endermann, K. Ehlert, S. Raddatz, Y. Cancho-Grande, M. Michels, C. Freiberg, J. Schuhmacher, S. Weigand, **2005**, WO 2005118613, 97 pp; e) T. Lampe, I. Adelt, D. Beyer, N. Brunner, R. Endermann, K. Ehlert, H.-P. Kroll, F. von Nussbaum, S. Raddatz, J. Rudolph, G. Schiffer, A. Schumacher, Y. Cancho-Grande, M. Michels, S. Weigand, **2005**, WO 2005033129, 181 pp; f) R. Endermann, K. Ehlert, C. Freiberg, S. Raddatz, M. Michels, Y. Cancho-Grande, J. Schuhmacher, S. Weigand, **2006**, DE 102005014240, 197 pp.

- [19] Other approaches: a) G. Talbot, R. Gaudry, L. Berlinguet, Can. J. Chem. 1956, 34, 911-914; b) K. Mizusaki, S. Makisumi, Bull. Chem. Soc. Jpn. 1981, 54, 470-472; c) R. F. W. Jackson, A. Wood, M. J. Wythes, Synlett 1990, 735-736; d) U. Schmidt, R. Meyer, V. Leitenberger, F. Stabler, A. Lieberknecht, Synthesis 1991, 409-413; e) J. Häusler, Liebigs Ann. Chem. 1992, 1231-1237; f) R. F. W. Jackson, A. B. Rettie, A. Wood, M. J. J. Wythes, J. Chem. Soc. Perkin Trans. 1 1994, 1719-1726; g) A. Girard, C. Greck, J.-P. Genet, Tetrahedron Lett. 1998, 39, 4259-4260; h) H. Mues, U. Kazmaier, Synthesis 2001, 0487-0498; i) J. Rudolph, F. Hannig, H. Theis, R. Wischnat, Org. Lett. 2001, 3, 3153-3155; j) R. Lépine, A.-C. Carbonnelle, J. Zhu, Synlett 2003, 1455-1458; k) F. Paintner, L. Allmendinger, G. Bauschke, P. Klemann, Org. Lett. 2005, 7, 1423-1426; l) Y. Shiro, K. Kato, M. Fujii, Y. Ida, H. Akita, Tetrahedron 2006, 62, 8687-8695; m) S. K. Pandey, M. Pandey, P. Kumar, Tetrahedron Lett. 2008, 49, 3297-3299.
- [20] M. Kaiser, C. Siciliano, I. Assfalg-Machleidt, M. Groll, A. G. Milbradt, L. Moroder, Org. Lett. 2003, 5, 3435–3437.
- [21] E. J. Corey, F. Xu and M. Noe, J. Am. Chem. Soc. 1997, 119, 12414– 12415.
- [22] a) A. Habel, D. Spiteller, W. Boland, J. Chromatogr. A 2007, 1165, 182–190; b) D. Parker, Chem. Rev. 1991, 91, 1441–1457; c) J. M. Seco, E. Quinoa, R. Riguera, Chem. Rev. 2004, 104, 17–118. d) M. Riedrich, S. D. Harkal, M.-D. Arndt, Angew. Chem. 2007, 119, 2755–2758; Angew. Chem. Int. Ed. 2007, 46, 2701–2703.
- [23] T. Ishiyama, M. Murata and N. Miyaura, J. Org. Chem. 1995, 60, 7508-7510.
- [24] L. J. Mathias, Synthesis 1979, 561-576.
- [25] a) X. Zhang, A. C. Schmitt, W. Jiang, *Tetrahedron Lett.* 2001, 42, 5335–5338; b) B. Plietker, *Synthesis* 2005, 2453–2472.
- [26] J.-Y. Lu, M. Riedrich, M. Mikyna, H.-D. Arndt, Angew. Chem. 2009, 121, 8281–8284; Angew. Chem. Int. Ed. 2009, 48, 8137–8140.
- [27] a) H. Loibner, E. Zbiral, *Helv. Chim. Acta* **1976**, *59*, 2100; b) O. Mitsunobu, *Synthesis* **1981**, 1–28.
- [28] M. Sakaitani, Y. Ohfune, J. Org. Chem. 1990, 55, 870-876.
- [29] R. D. Firn, C. G. Jones, Nat. Prod. Rep. 2003, 20, 382-391.
- [30] a) L. A. Carpino, J. Am. Chem. Soc. 1993, 115, 4397-4398; b) A. Ehrlich, S. Rotemund, M. Brudel, M. Beyermann, L. A. Carpino, M. Bienert, *Tetrahedron Lett.* 1993, 34, 4781-4784; c) L. A. Carpino, A. El-Faham, F. Albericio, *Tetrahedron Lett.* 1994, 35, 2279-2282.
- [31] S.-g. Kim, J. H. Park, J. Org. Chem. 1988, 53, 3111-3113.
- [32] a) F. K. Brown, J. C. Hempel, J. S. Dixon, S. Amato, L. Mueller, P. W. Jeffs, J. Am. Chem. Soc. 1989, 111, 7328-7333; b) J. C. Hempel, F. K. Brown, J. Am. Chem. Soc. 1989, 111, 7323-7327; c) K. Rajamoorthi, D. H. Williams, J. Org. Chem. 1987, 52, 5435-5437.
- [33] J. Sandström, Chirality 1995, 7, 181–192.
- [34] G. Bringmann, A. J. Price-Mortimer, P. A. Keller, M-J. Gresser, J. Garner, M. Breuning, Angew. Chem. 2005, 117, 5518–5563; Angew. Chem. Int. Ed. 2005, 44, 5384–5427.
- [35] J. M. Nelson, T. M. Chiller, J. H. Powers, F. J. Angulo, *Clin. Infect. Dis.* 2007, 44, 977–980.
- [36] B. Ellinger, Ph.D. thesis, TU Dortmund 2010.
- [37] H. R. A. Jonker, S. Baumann, A. Wolf, F. Hiller, S. Schoof, K. W. Schulte, K. N. Kirschner, H. Schwalbe, H.-D. Arndt, *Angew. Chem.* **2011**, *123*, 3366–3370; *Angew. Chem. Int. Ed.* **2011**, *50*, 3308–3312.

Received: December 17, 2010 Published online: May 4, 2011