93. High-Pressure [2+4]-Cycloaddition of Dimethylmaleic Anhydride to 3,4-Dimethoxyfuran; Synthesis of Dimethoxycantharidin¹)

Preliminary Communication

by Janusz Jurczak, Tomasz Kożluk and Stanisław Filipek

Institute of Organic Chemistry and Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland

and Conrad Hans Eugster

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(24.III.82)

As an active diene (more active than furan itself), 3,4-dimethoxyfuran (1) affords with many dienophiles the respective cycloadducts in a high yield [2]. It has recently been found that under thermal conditions 1 easily reacts with maleic anhydride and its monomethyl derivative, but not with dimethylmaleic anhydride (2) [3]. This is probably due to steric hindrance resulting from the location of two methyl groups on the double bond of the dienophile. Since all *Diels-Alder* reactions – in particular those with steric hindrance – are pressure-sensitive [4], we resolved to perform the title reaction under conditions of static high pressure.

¹⁾ Organic Syntheses under High Pressure. Part IV. For Part III see [1].

All experiments were carried out in a piston-cylinder high-pressure apparatus for pressures up to 32 kbar. The main features of this apparatus are outlined in [5]. The high-pressure vessel consisted of two external steel rings in which an internal conical steel vessel was placed. The internal high-pressure vessel (cylindrical volume about 70 ml) was closed from below with a steel stopper. All electrical connections (manganin manometer, thermocouple) were led through a conical electrode placed in the stopper. The internal vessel was closed from above by a mobile piston. Sealing of the piston and the stopper was attained using resin-O-rings and brass sealing rings. For the reactions performed at temperatures exceeding room temperature, an external heating jacket was used.

The high-pressure reaction between 1 and 2 was carried out for 6 h in toluene as solvent, at room temperature, under 22 kbar. The reaction mixture was placed in a *Teflon* ampoule (*Figure*) which was inserted into the high-pressure vessel filled with hexane as transmission medium.

Figure. Teflon ampoule

After completion of the reaction the crystalline cycloadduct 3 precipitated from the solvent and was isolated by filtration, yield 50%. The filtrate was evaporated and the ¹H-NMR. spectrum of the residue showed that it still contained about 10% of 3. Reactions performed at lower pressures, e. g. 10 kbar, neither at room temperature nor at 60° afforded (even after 16 h) the cycloadduct.

The cycloadduct 3, $C_{12}H_{14}O_6$, m.p. 116°, is a single diastereomer, as shown by NMR. data (*Table 1*). No 4 could be detected. Solutions in chloroform at room temperature and ordinary pressure slowly revert to the starting compounds. Mass spectra revealed the presence of the molecular ion (m/z 254) and of ions resulting from *retro*-diene cleavage (m/z 128 and 126). The IR. spectrum shows characteristic strong bands at 1845, 1763, 1688, 1380 and 1340 cm⁻¹.

Hydrogenation of the adduct 3 in the presence of 10% Pd/C at 5 atm in a methanolic solution gave a single stereoisomer 8, C₁₂H₁₆O₆, m. p. 130-131°, in 95% yield. Comparison of the NMR. spectra of 3 and 8 with those of the model compounds 5-7 [3], and of 9 [3] and 10 [6], respectively (s. *Table*), clearly shows that the former has the proposed structure 3 and that hydrogenation has occurred from the *exo*-face to yield exclusively 8.

Therefore, 3 is 5,6-dimethoxy-2endo, 3endo-dimethyl-7-oxabicyclo [2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, and its hydrogenation product 8 is 5endo, 6endo-

Table. NMR. spectra of 3, 8 and related compounds

In vince	1 2 2	116°37 F 5 04 5 05 5° b)	(b) (39)	8 m m 130 131°a)	0 m n 118° b)	0 m n 118° b) 10 m n 116 117° g)
'n-NMK.	3, m. p.	3, III. p. 110 = 3, III. p. 74.3 = 3.5.			7, m.p. 110)	10, m.p. 110-111 s)
H-C(2) and H-C(3)	1	3.48.5	3.95 m 3.10 s		3.72 s	3.04 s
H ₂ C-C(2) and H ₂ C-C(3)	s) 1.29 s	1	- 1.43 s	1.53 s	1	1
H-C(1) and $H-C(4)$		5.11.8	5.20 m 4.82 and 5.02 each br.s 4.73 $d \times d^{e}$)	$4.73 d \times d^{c}$	5.03 m	$4.90 d \times d^{\text{h}}$
H-C(5) and $H-C(6)$	í	i	1	$3.91 d \times d$	3.77 m	$1.80/1.60 m^1$)
CH ₃ O-C(5) and						
$CH_3O-C(6)$	3.78 s	3.76 s	3.70 \$ 3.77 \$	3.46 s	3.47 s	
¹³ C-NMR.	a)	a)		a)		a)
CH ₁ -C(2) and CH ₁ -C(3	3) 13.1			11.4		1
C(2) and $C(3)$ 5	57.1	50.7		55.9		52.6
CH ₂ O-C(5) and						
$CH_{3}O-C(6)$	58.9	59.3		59.4		
C(1) and C(4)	85.2	81.7		83.5		78.7
C(5) and C(6)	139.0	139.2		78.4		29.1
C(0)0C(0)	174.5	170.0		175.8		174.1
a) This paper; CDCls. 80 (20) MHz.	30 (20) MH	Z.				
b) CDCl ₁ , 100 MHz [3].) 					
c) Compound 3 in [3], supplementary data.	upplement	ary data.				
d) Compound 2 in [3], Table 1, supplementary data.	Table 1, sup	plementary data.				
e) $3J = 3.22$ and $4J = 2.21$ Hz.	1 Hz.					

3 = 3.22 and 4 = 2.13 Hz.

Ref. [6], supplementary data, $CDCl_3$, 200 MHz, $CDCl_3/D_6$ -acetone ca. 5:1. $^3J=3.20$ and $^4J=2.22$ Hz. High field signal corresponds to H_{endo} ことのもと

dimethoxy-2*endo*, 3*endo*-dimethyl-7-oxabicyclo [2.2.1]heptane-2, 3-dicarboxylic anhydride. Remarkably, **8** has the same configuration as cantharidin [7–9].

We thank Dr. P. Rüedi for ¹H- and ¹³C-NMR. spectra.

REFERENCES

- [1] M. Chmielewski & J. Jurczak, J. Org. Chem. 46, 2230 (1981).
- [2] P.X. Iten, A.A. Hofmann & C.H. Eugster, Helv. Chim. Acta 61, 430 (1978); A.A. Hofmann, I. Wyrsch-Walraf, P.X. Iten & C.H. Eugster, ibid. 62, 2211 (1979).
- [3] P.X. Iten, A.A. Hofmann & C.H. Eugster, Helv. Chim. Acta 62, 2202 (1979).
- [4] T. Asano & W.J. LeNoble, Chem. Rev. 78, 407 (1978).
- [5] J. Jurczak, M. Chmielewski & S. Filipek, Synthesis 1979, 41.
- [6] O. Diels & K. Alder, Ber. Dtsch. Chem. Ges. 62, 554 (1929); R. B. Woodward & H. Baer, J. Am. Chem. Soc. 70, 1161 (1948).
- [7] R. B. Woodward & R. B. Loftfield, J. Am. Chem. Soc. 63, 3167 (1941).
- [8] G. Storck, E.E. van Tamelen, L.J. Friedman & A. W. Burgstahler, J. Am. Chem. Soc. 73, 4501 (1951); iiden, ibid. 75, 384 (1953).
- [9] W. G. Dauben, C. R. Kessel & K. H. Takemura, J. Am. Chem. Soc. 102, 6893 (1980).