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Developing new reaction methodologies that give access to 
unprecedented reactivity modes or provide more selective, 
efficient and environmentally sustainable alternatives to estab-

lished approaches is the central goal of many research programmes 
throughout chemistry1. Inspiration for the design of new reactions 
is rooted in the understanding of reaction mechanisms and the fun-
damental reactivity principles that underpin them2. Methylthioether 
functionalities, which are ubiquitous and of utmost importance in 
nature, are inserted into tRNA and ribosomal proteins by highly 
effective radical-S-adenosylmethionine (SAM) methylthiotransfer-
ases bearing [4Fe-4S] redox-active clusters (Fig. 1a)3–5. Surprisingly, 
the way that organisms construct carbon–sulfur bonds during the 
biosynthesis of sulfur-containing residues in living organisms is 
barely understood5. Thiyl radicals are essential intermediates in 
many biosynthetic pathways6,7, for example, in the deoxygenation of 
ribonucleotides8, a transformation occurring in living organisms as 
part of the de novo generation of DNA precursors. The omnipres-
ence of thiyl radicals in biological systems9 along with their vari-
ous synthetic opportunities to access organosulfur moieties widely 
represented within natural products, pharmaceuticals or material 
products10, has been an inspiration to investigate the utilization of 
these highly reactive species in diverse applications11. Thiol–ene 
click reactions12, in which a thiyl radical generated from the cor-
responding thiol regioselectively adds in an anti-Markovnikov 
fashion to an alkene, are among the most prominent approaches to 
carbon–sulfur bond formation13. They have been applied in biocon-
jugates14,15, pharmaceutical chemistry16 and polymer science17. In the 
past, UV-light irradiation or radical initiators have mostly been used 
for the generation of thiyl radicals11. However, the functional group 
tolerance, the need for costly set-ups for UV irradiation and the pro-
duction of huge amounts of waste have been limiting factors.

The aforementioned drawbacks set up the development of  
visible-light photocatalytic systems as a means to initiate the  

thiol–ene reaction (Fig. 1b)18–20. Significantly milder reaction con-
ditions of photocatalytic systems enable application in bioconjuga-
tion reactions and polymer synthesis21,22. Despite such advantages, 
the photoinitiated thiol–ene reaction still suffers from three major 
limitations. First, the inherent reactivity of thiols (for example, 
thiol–Michael additions) goes hand-in-hand with a lack of che-
moselectivity, especially in complex molecules bearing suitable 
Michael acceptor functionalities23. Second, the hydromethylthiola-
tion of unactivated alkenes and alkynes under mild and biocompat-
ible conditions has never been reported, due to the need to handle 
highly toxic, gaseous methanethiol as reagent. Third, a chemoselec-
tive generation of thiyl radicals from thiols in biological systems is 
hardly possible due to the presence of cellular thiols, limiting the 
overall value of this approach for labelling applications.

Inspired by the S–S bond dissociation energies of aliphatic disul-
fides of ~65 kcal mol−1 (ref. 24), reports on the direct sensitization of 
aryl disulfides using UV light11, and the mild reaction conditions 
of a sensitization protocol, we hypothesized using suitable photo-
catalysts for the energy transfer activation of alkyl disulfides, such 
as dimethyl disulfide (2 ), to access alkylthiyl radicals (Fig.  1c)25. 
This energy-transfer-enabled disulfide–ene reaction would allow 
the biologically relevant chemoselective hydromethylthiolation of 
alkenes and alkynes under mild conditions, namely visible-light 
irradiation26,27. The use of visible light as an abundant natural 
resource to promote chemical reactions offers many advantages28. 
Considering the costs and environmental sustainability, photo-
catalytic reactions have attracted widespread attention, with many 
examples demonstrating unusual or exotic reactivity patterns that 
do not occur in the absence of light29,30. Ground-breaking transfor-
mations utilizing photoexcited catalysts to engage in electron trans-
fer processes with organic molecules or other metal complexes have 
been achieved recently29–31. The other fundamental pathway for the 
bimolecular decay of photoexcited states, namely energy transfer, 
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has rarely been used in organic synthesis29. Triplet–triplet energy 
transfer (TTEnT) from visible-light photocatalysts has only been 
utilized to achieve a small number of organic transformations29. 
These are roughly divided into three categories: E/Z isomerization 
of (activated) alkenes32, [2+ 2] photocycloadditions33,34 and sensiti-
zation of transition metal complexes35.

Results and discussion
Luminescence screening and optimization. We began our stud-
ies with a hypothesis-driven approach by applying our recently 
reported luminescence quenching screening36,37 to investigate the 
ability of dimethyl disulfide (2) to interact with various excited-
state photocatalysts featuring different excited-state triplet ener-
gies. In particular, four different Ir-based photocatalysts gave rise to 
significant luminescence quenching when dimethyl disulfide (2) is 
present. The photocatalyst [Ir(dF(CF3)ppy)2(dtbbpy)](PF6) ([Ir–F] ,  
dF(CF3)ppy =  2-(2,4-difluorophenyl)-3-trifluoromethylpyridine, 
dtbbpy =  4,4ʹ -di-tert-butyl-2,2ʹ -bipyridine) was the most efficient 
among them, with a quenching fraction of 42% (Fig.  2a). The 
luminescence quenching correlated with the triplet excited-state 
energies of the photosensitizers. Notably, catalysts with exception-
ally high excited-state oxidation or reduction potentials showed 
no or lower luminescence quenching. From this we assume that a 
TTEnT reaction from the excited photocatalyst to the disulfide is 
the modus operandi.

To investigate the chemo- and regioselectivity of the hydro-
methylthiolation reaction, carvone (1a ), dimethyl disulfide (2 ) and 
[Ir–F]  were reacted in acetonitrile under visible-light irradiation 
(λmax =  455 nm). Of great relevance is the fact that the yield of the 
methylthiolated product 3a correlated perfectly with the screening 
results. Due to the electrophilic nature of the methylthiyl radical, 
the exocyclic, more electron-rich alkene functionality of carvone 
(1a) was chemo- and regioselectively hydromethylthiolated in an 
anti-Markovnikov fashion (Fig. 2a). Our TTEnT activation hypoth-
esis was independently supported by control reactions, in which the 
need for the [Ir–F]  photosensitizer and light were demonstrated. 
To further support this hypothesis, benzophenone, a classical triplet 
sensitizer, was used under 365 nm irradiation, affording the desired 
product 3a in 25% yield. Further optimization of parameters, such 
as the irradiation wavelength or the solvent, allowed the yield of 3a  
to be increased to 74% (Supplementary Section 3.1). The reaction 
is characterized by a fast reaction progress, as documented in the 
reaction profile (Fig. 2b).

Substrate scope and limitations. With the optimized reaction con-
ditions in hand, we investigated the scope and synthetic limitations 
of this disulfide–ene reaction (Fig. 3). The hydromethylthiolation of 
alkenes tolerates a wide range of functional groups, such as ketones 
(3b ), aldehydes (3c ), epoxides (3f , 3v ), amides (3g , 3w ), alcohols 
(3h , 3p ), nitriles (3r ), esters (3l , 3t ), sulfonamides (3x ) or hetero-
cycles (3i , 3k , 3w , 3x ). In all cases, the corresponding products are 
formed in moderate to good yields (42–85%). Substrates exhibiting 
more than one unsaturated carbon–carbon bond are chemoselec-
tively methylthiolated in an anti-Markovnikov fashion at the more 
electron-rich, sterically more easily accessible alkene functionality. 
Aliphatic disulfides with longer alkyl chains (3y  and 3z ) or with a 
hydroxy group (3aa ) could also be employed using this protocol, 
whereas in the case of sterically demanding disulfides, such as 
tert-butyl disulfide, no reactivity is observed (3ab ; Supplementary 
Section 4.11). A slight modification of the reaction conditions 
allows the use of diaryl disulfides as thiyl radical precursors for the 
synthesis of arylthioethers (3ac –3ae , 84–89%). Furthermore, the 
functionalization of an azide derivative (3af ) and of amino acids 
(3ag –3ai ) as bioconjugates delivers the respective hydrothiolated 
products in good yields, paving the road for potential in vitro and in 
vivo applications. The vic-di-methylthiolation of different alkynes 
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Fig. 1 | Chemoselective anti-Markovnikov hydrothiolation of alkenes—
allowing the biologically important hydromethylthiolation—enabled 
by triplet–triplet photosensitization of disulfides. a, Methylthioether 
scaffolds are involved in diverse biosynthetic processes. Furthermore, 
this functional unit can be identified in important drugs, such as in the 
essential amino acid methionine or in pergolide, an ergoline-based 
dopamine receptor agonist used for the treatment of Parkinson’s disease. 
b, The photocatalytic thiol–ene click reaction allows carbon–sulfur bond 
formation under extremely mild conditions and is therefore widely used in 
bioconjugate chemistry, polymer science and pharmaceutical synthesis. 
However, this methodology is still limited by chemoselectivity issues and 
by oxidative or reductive reaction environments limiting the functional 
group tolerance of the overall reaction. The biologically important 
hydromethylthiolation is challenging, and biochemical applications 
are hardly possible due to the presence of cellular thiols participating 
in undesired side reactions. c, The design of a biocompatible energy-
transfer-enabled disulfide–ene reaction would allow the chemo- and 
anti-Markovnikov selective construction of important methylthioethers. 
Triplet–triplet sensitization of disulfides by photocatalysts with sufficient 
triplet excited-state energy may allow the mild installation of alkyl- and 
arylthioether scaffolds. Tuning of the photocatalysts redox potentials 
would even allow the hydrothiolation of oxidation- or reduction-sensitive 
compounds. BDE, bond dissociation energy.
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was successful, affording an E/Z mixture of 3aj  and 3ak  in 83% and 
68% yield, respectively. The second methylthiolation event most 
probably occurs through reaction of the vinyl radical intermediate 
with a ground-state disulfide molecule as part of a chain reaction. 
The benzothiophene heterocycle 3al  could be regioselectively cre-
ated when reacting diphenyl disulfide with 1-phenyl-prop-1-yne 
(73%)38. Various drug derivatives, incorporating a probenecid (3am ),  
a dehydrocholic acid (3an ), an estrone (3ao ) or an erucic acid (3ap )  
scaffold, could be methylthiolated in good to excellent yields. 

Finally, the functional group tolerance and preservation of this reac-
tion was analysed by performing additive-based robustness screens, 
indicating a high robustness and functional group preservation of 
the overall transformation (Supplementary Table 3)39,40.

Mechanistic investigations. To corroborate the reaction mecha-
nism and to support the postulated TTEnT, photosensitization of 
dimethyl disulfide (2 ) and/or 1-octene by [Ir–F]  was studied in 
detail. Experiments showed that methyl(octyl)sulfane formation is 
based on irradiation with light (400 nm <  λ ≤  455 nm) and the pres-
ence of the photocatalyst. From steady-state UV–vis absorption 
spectroscopy we conclude that visible light (400 nm  <  λ ≤  455 nm) 
is exclusively absorbed by the [Ir–F]  photocatalyst and that neither 
2  (λmax =  255 nm) nor 1-octene (λmax <  200 nm) is appreciably photo-
activated (Fig. 4a). In other words, the photocatalyst is crucial in the 
visible-light-driven disulfide–ene reaction.

To shed light on the mechanistic aspects, phosphorescence 
quenching of [Ir–F]  on addition of 2  and/or 1-octene was investi-
gated by Stern–Volmer analyses: 2  is an effective phosphorescence 
quencher, while 1-octene is not at all. Our findings are in agree-
ment with the screening results and suggest favourable interac-
tions between [Ir–F]  and 2  (Fig. 4b), but no interactions between 
[Ir–F]  and 1-octene. Consequently, we characterized the nature of 
the [Ir–F] /(2) interaction. The triplet excited-state energies of 2  and 
[Ir–F]  were determined using cryostatic phosphorescence measure-
ments as 66.1 ±  2.2 and 60.8 ±  0.01 kcal mol−1, respectively, suggest-
ing a slightly endergonic activation of 2  by the [Ir–F]  photocatalyst, 
a phenomenon that has been rarely described in the literature41. To 
examine the underlying kinetics, nanosecond time-resolved tran-
sient absorption spectroscopy (ns-TAS) was performed using [Ir–F]  
in the absence and presence of variable 2  concentrations reaching 
9 ×  10−2 M (Fig.  4c). The ns-TAS results for 387 nm photoexcited 
[Ir–F]  are dominated by a rather broad 462 nm maximum. Based 
on literature reports, we ascribe the new transient to the excited 
triplet metal-to-ligand charge-transfer/ligand-centred (MLCT/LC) 
state of the [Ir–F]  photocatalyst42. Its lifetime, which is 2.49 ±  0.06 µ s  
in the absence of any 2 , is subject to a 2  concentration-dependent 
shortening. Concomitant with quenching of the [Ir–F]  3*MLCT/LC  
transients, we observed the formation of newly developing tran-
sient absorption features at 400 and 440 nm, which we tenta-
tively assign to 3*2 . Confirmation for our assignment came from 
ns-TAS photosensitization experiments with Michler’s ketone  
(4,4′ -bis(dimethylamino) benzophenone)—a well-known organic 
photosensitizer—rather than benzophenone (Supplementary 
Fig.  8). Here, the same 400 and 440 nm features emerged at the 
expense of the Michler’s ketone triplet excited-state maxima at 415, 
512 and 695 nm (ref. 43). Turning to kinetic analysis of the TTEnT 
we consider the following sequence:

– ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ ––[Ir F] [Ir F] (1)k3* [Ir F]GSR,

– + ⎯ →⎯⎯⎯⎯⎯ – +[Ir F] 2 [Ir F] 2 (2)*k3* 3TTEnT

By virtue of the intrinsic ground-state recovery rate (kGSR) of the 
3*MLCT/LC state of the [Ir–F]  photocatalyst, the observed rate con-
stant (kobs) for the overall TTEnT is based on

= + ⋅k k k2[ ] (3)obs GSR TTEnT

Overall, a perfect linear relationship was confirmed in the 
corresponding (kobs −  kGSR) versus [2 ] plots with a slope of 
(1.16 ±  0.01) ×  107 M−1 s−1 (Supplementary Fig. 11). The slope corre-
lates with the TTEnT rate constant kTTEnT, while a sizeable intercept 
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Fig. 2 | Hypothesis-driven luminescence screening and reaction profile  
of the chemoselective anti-Markovnikov disulfide–ene reaction.  
a, Mechanism-based luminescence quenching studies of dimethyl disulfide 
(2) and various photosensitizers reveal a correlation between quenching 
and the photocatalysts’ triplet excited-state energy ET (for details on 
luminescence quenching studies, see Supplementary Section 2.1). This 
trend was also observed in the hydromethylthiolation of the exocyclic 
alkene functionality of carvone (1a), presumably enabled by triplet–triplet 
sensitization of dimethyl disulfide (2) by the respective photocatalyst. 
All potentials are given in volts versus the saturated calomel electrode 
(SCE) and were measured in acetonitrile. b, Hydromethylthiolation of the 
exocyclic alkene functionality of carvone (1a) proceeds in a quick fashion 
without an induction period. The starting material is completely consumed 
within 90 min. The reaction profile was independently determined twice 
with similar results.
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suggests that the reverse reaction, namely rTTEnT (vide infra) defin-
itively takes place. Independent confirmation for the TTEnT rate 
constant was gathered in phosphorescence lifetime measurements  

(Supplementary Fig. 12). A kTTEnT of (1.31 ±  0.04) ×  107 M−1 s−1 is in 
excellent agreement with the ns-TAS experiments. For determina-
tion of the aforementioned krTTEnT and the underlying equilibrium 
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constant KTTEnT we performed ns-TAS experiments with different 
[Ir–F]  to 2  ratios. For the

∕ – + ⇄ – +[Ir F] 2 [Ir F] 2MLCT LC( ) (4)* *3 3

equilibrium, (kobs-kGSR,[Ir–F]) for the overall TTEnT relates to44

− = ⋅ – + ⋅–k k k k[[Ir F]] 2( ) [ ] (5)[Ir F]obs GSR, TTEnT rTTEnT

Division by the concentration of 2  results in the following linear 
expression:

−
=

⋅ –
+–k k k

k
2

[[Ir F]]
2

( )
[ ] [ ]

(6)r
[Ir F]obs GSR, TTEnT

TTEnT

We took the (kobs-kGSR,[Ir–F])/[2 ] versus [[Ir–F]]/[2 ] plots to derive 
kTTEnT as (5.26 ±  0.23) ×  107 M−1 s−1, krTTEnT as (8.65 ±  0.88) ×  106 M−1 s−1 
and KTTEnT as 6.08 ±  0.71. Notably, due to S–S bond weakening and 
homolytic cleavage to afford thiyl radical intermediates (vide infra), 
the thermodynamically favoured reverse energy transfer, which rein-
states the 3*MLCT/LC state of the [Ir–F]  photocatalyst, is slowed down.

Having confirmed the triplet sensitization mechanism, the con-
secutive reaction steps were systematically investigated. To this end, 
we performed a radical scrambling experiment to investigate the 
presence of thiyl radical intermediates under our reaction condi-
tions. Irradiation of dimethyl disulfide (2 ) and dibutyl disulfide (4 ) 
with visible light in the presence of the [Ir–F]  photocatalyst resulted 
in methyl butyl disulfide (5 ) as the major product. Very probably, 
methyl butyl disulfide (5 ) formation involves thiyl radicals as inter-
mediates and their radical recombination or radical addition into 
another disulfide molecule (Fig. 4d).
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Hydrogen atom abstraction in the α -position to the sulfur atom 
of 2  by carbon-centred radical 7 could lead to the formation of the 
carbon-centred disulfide radical 8. This radical consecutively reacts 
with a methylthiyl radical or another dimethyl disulfide (2) mol-
ecule to yield trisulfide 9 , which was isolated as a side product dur-
ing the optimization process. When the reaction was performed 

in different deuterated polar aprotic or nonpolar solvents, no deu-
terium incorporation within the product structure was observed, 
suggesting that the hydrogen atom abstraction is exclusively taking 
place from the disulfide (Fig.  4e). In contrast, if the reaction was 
performed in polar protic solvents, almost full deuterium incorpo-
ration in the product molecule was detected. Under these reaction 
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conditions, the polar protic solvent is the hydrogen atom source 
(Supplementary Section 4.9).

As we succeeded in monitoring the TTEnT from the [Ir–F]  
photocatalyst to dimethyl disulfide (2 ), we turned our attention to 
probe the final step in the disulfide–ene reaction, namely the reac-
tion of 3*2  with 1-octene. In this context, the 400 and 440 nm signa-
ture of 3*2  enabled the reaction to be followed spectroscopically. In 
ns-TAS experiments with 1-octene in a concentration range from 
1 ×  10−7 to 5 ×  10−3 M, the concentration-dependent 3*2  decay gave 
rise to kreact =  (1.38 ±  0.07) ×  108 M−1 s−1. The final thioether prod-
uct is, however, spectroscopically invisible in the wavelength range 
from 400 to 1600 nm.

Based on screening, ns-TAS, phosphorescence lifetime quench-
ing and radical scrambling experiments, the following mechanism 
is proposed (Fig. 4f). After excitation of [Ir–F] , a TTEnT activation 
of dimethyl disulfide (2 ) leads to homolytic S–S bond cleavage, gen-
erating corresponding thiyl radical 6. Similar to the classical thiol–
ene reaction, the chemoselective anti-Markovnikov addition into 
the most electron-rich alkene occurs in an irreversible and quick 
fashion and gives rise to carbon-centred radical 7. If aliphatic disul-
fides and polar aprotic or nonpolar solvents are used, 7 abstracts a 
hydrogen atom from another disulfide molecule 2 , resulting in the 
formation of product 3 and trisulfide 9 . In contrast, if aryl disul-
fides in acetone as solvent or aliphatic disulfides in polar protic sol-
vents are reacted, the hydrogen atom abstraction event takes place 
between carbon-centred radical 7 and the solvent.

Applications and outlook. The mechanistic analysis revealed the 
occurrence of a Dexter-type TTEnT process, where physical contact 
between energy acceptor and energy donor is required. We there-
fore aimed for the improvement of our catalytic system by decreas-
ing the steric bulkiness of the photosensitizer, on the one hand, and 
increasing its triplet excited-state energy, on the other. Due to its 
planar shape and its triplet excited-state energy of 65.1 kcal mol−1, 
organic alloxazine photocatalyst 10  emerged as an ideal candidate45. 
The irradiation wavelength for this catalytic system was adjusted to 
400 nm. The transition-metal-free alloxazine-derived photosensi-
tizer might allow transformations not suitable with the [Ir–F]  cata-
lytic system due to different photo- and electrochemical properties. 
We validated our hypothesis by running the benchmark reaction 
between carvone (1a ) and dimethyl disulfide (2 ) under reaction 
conditions optimized for the [Ir–F] -sensitized protocol, but using 
alloxazine 10 . Importantly, the desired product was obtained in 62% 
yield, proving the suitability of the designed catalytic system. After 
optimizing the reaction conditions, we recorded the reaction pro-
file of this transition-metal-free catalytic system and compared it to 
the [Ir–F] -based system. Due to the increase in triplet excited-state 
energy and the decrease in steric bulkiness of the photosensitizer, 
TTEnT is favoured, and, in turn, the reaction is completed within 
10 min rather than 90 min (Fig. 5a). All of the aforementioned facts 
support our mechanistic hypothesis.

With our optimized catalytic system in hand, we focused on 
the hydromethylthiolation of substrates, which turned out to be 
low-yielding or unreactive in the [Ir–F] -based catalysis (Fig.  5b). 
Satisfyingly, the yields of some substrates were increased substan-
tially using our improved protocol, for example, hydromethylthi-
olation of the biotin derivative 3au  was increased by 70% to 91% 
isolated yield. Moreover, these new conditions enabled the hydro-
methylthiolation of substrates that could not be transformed using 
the [Ir–F]  photocatalyst. For example, methylthiolated phospho-
nate 3aq  and the mycophenolic acid derivative 3at  were obtained in 
49% and 65% yield, respectively.

Any of the alkylthioether products are oxidizable in a stepwise 
and high-yield manner to the corresponding sulfoxides (11 ) or sul-
fones (12 ). Both are versatile and important structural motifs in 
diverse pharmaceuticals or agrochemicals (Fig. 5c)46,47.

Motivated by the importance of methylthioether scaffolds in 
biological processes we investigated a biocompatible version of the 
disulfide–ene reaction potentially suitable for applications in bio-
logical systems, such as labelling of biomolecules48. Using water 
with a physiologically compatible Tris-HCl buffer (0.2 M, pH 7.4) 
as solvent, we probed the biocompatibility of the disulfide–ene 
reaction of carvone (1a) in the presence of 20 biomolecules in an 
additive-based screening approach (Fig. 5d)39,40. Amino acids, sac-
charides, nucleosides, single-stranded DNA, RNA (short RNA and 
total RNA) and human cell lysate were among the tested biomol-
ecules. Gratifyingly, the yield of 3a  was not affected by the presence 
of any of the biomolecules. In most cases, ultra performance liquid 
chromatography–mass spectrometry (UPLC–MS) and gel elec-
trophoresis analyses documented that the biomolecules were not 
subject to degradation under the reaction conditions (Fig. 5e and 
Supplementary Section 8.2). In addition, the disulfide–ene reaction 
between dimethyl disulfide (2 ) and a variety of olefins was tested in 
the presence of human cell lysate, containing various endogenous 
biomolecules (Fig.  5f). Notably, the desired hydromethylthiolated 
products were formed. Our results indicate that this transformation 
might be suitable for biological systems, and applications are cur-
rently being investigated in our laboratories.

Due to its high atom economy, complete chemo- and regiose-
lectivity, biocompatibility and high synthetic yields, this transfor-
mation might be classified as a click reaction, in analogy to the 
photoinitiated thiol–ene reaction49. Remarkably, the TTEnT-enabled 
disulfide–ene reaction proceeds chemoselectively in the presence of 
thiols, providing ways and means to a complementary strategy of 
constructing carbon–sulfur bonds (Supplementary Section 4.12).

Conclusion
In conclusion, we have discovered a photosensitized disulfide–
ene click reaction that enables the chemo- and regioselective con-
struction of alkyl- and arylthioethers under remarkably mild and 
biocompatible reaction conditions. Our protocol allows the chemo- 
and regioselective incorporation of methylthioether scaffolds into 
highly complex substrates, as proven by a broad substrate scope 
and the functionalization of bioconjugates or drug derivatives. The 
detailed study of the reaction mechanism, with special focus on the 
TTEnT sensitization process via TAS, has led to the development 
of an improved and more efficient transition-metal-free catalytic 
system. We are convinced that the establishment of visible-light-
mediated energy transfer activation, based on careful mechanistic 
analysis and rational design, will open up a new field with versatile 
applications in organic synthesis, allowing hardly accessible bond 
(dis)connections.

Data availability. The data supporting the findings of this study are 
available within the paper and its Supplementary Information, or 
from the corresponding authors upon reasonable request.
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Data collection No software was used for data collection.

Data analysis Regression analysis (linear regression) and processing of reaction profiles, luminescence and UV/vis spectra was performed using 
Microsoft Excel 2013 or Origin 2016. UPLC-MS analysis was performed utilizing Bruker Compass DataAnalysis 4.4 for data analysis. 
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Agilent MSD Productivity ChemStation software. Electrochemistry data analysis was performed using Metrohm Autolab - Nova 1.10 
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All data is made available in the Supplementary Information. Raw data is available from the corresponding authors upon reasonable request.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. Verification of the reaction methodology was performed exhaustively by 
scope preparation and by the performance of an additive-based robustness screen. 

Data exclusions No data were excluded from the analysis.

Replication Newly reported reactions were repeated and / or performed by several of the authors. All attempts at replication were succesful. 
Spectroscopic data could be reproduced with similar results. Furthermore, the use of diverse spectroscopic techniques confirmed the 
observed kinetic rate constants. During the whole study, no replication problems were observed. 

Randomization In our study, an energy transfer enabled hydroalkylthiolation of diverse alkenes and alkynes is described. Consecutively, as part of the design, 
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Blinding The study describes the design and the mechanistic analysis of a novel hydroalkylthiolation methodology. Only in vitro samples were tested. 
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Cell line source(s) Cell lines were obtained from Sigma (HeLa).

Authentication Cells lines were purchased and not authenticated.

Mycoplasma contamination All cell lines used were tested negative for mycoplasma contamination.
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