EFFICIENT SYNTHESIS OF OPTICALLY ACTIVE CYCLOHEXENONES

Hiroaki MIYAOKA, Shoichi SAGAWA, Tadamichi INOUE, Hiroto NAGAOKA,¹⁾ and Yasuji YAMADA* *Tokyo College of Pharmacy, Horinouchi, Hachioji, Tokyo 192-03, Japan*

Optically active 5-hydroxymethylcyclohexenones and 5-acetoxymethylcyclohexenones were efficiently obtained by enzymatic enantioselective esterification and chemical conversion.

KEYWORDS enantioselective esterification; lipase PS; 5-hydroxymethylcyclohexenone; 5-acetoxymethylcyclohexenone; CD

Cyclohexenone derivatives are useful for the synthesis of natural products as starting material. Sesquiterpenoid eriolanin was synthesized from (±)-5-hydroxymethyl-3-methoxycyclohexenone (1) by Schlessinger's group,²⁾ and sesquiterpenoid paniculide B was synthesized from (±)-5-hydroxymethylcyclohexenone (2) by Smith III 's group.³⁾ However, no optically active compound of 1 has been obtained to date, and methods for the synthesis of optically active 2 are very few.⁴⁾ This paper presents a method for the efficient synthesis of optically active 5-hydroxymethylcyclohexenone derivatives by enantioselective esterification using lipase and by the chemical conversion of 5-hydroxymethylcyclohexenone derivatives obtaind by lipase-catalyzed esterification.

The lipase-catalyzed enantioselective esterification of alcohols (\pm) -1, $^{2)}$ (\pm) -4⁵⁾ and (\pm) -6⁶⁾ was conducted first. The alcohol (\pm) -1 possessing a methoxy group was treated with vinyl acetate in the presence of immobilized lipase PS⁷⁾ in benzene and tetrahydrofuran (THF) (2:1) at room temperature, to give (-)-1 and (+)-3, as shown in Table I (entries 1 and 2). However, enantiomeric excess of (-)-1 and (+)-3⁸⁾ was not adequately achieved, possibly owing to the low solubility of (\pm) -1 in the solvent used. Esterification of alcohol (\pm) -4 possessing a methoxymethyl group using 1.0 equivalent of vinyl acetate also gave an unsatisfactory enantiomeric excess (entry 3). Satisfactory results were obtained by reducing the amount of vinyl acetate (entry 4): treatment of (\pm) -4 with 0.6 equivalent of vinyl acetate in the presence of immobilized lipase PS in benzene at room temperature gave (-)-4⁹⁾ and (+)-5⁹⁾ with 99% and 95% enantiomeric excesses, respectively. The absolute structures of (-)-1, (-)-4 and (+)-5 were determined by the chemical conversion of these compounds to (+)-2 as described below. The absolute structure of (+)-3 was determined by alkaline hydrolysis of (+)-3 to (+)-1. Esterification of (\pm) -6 under conditions similar to those for entry 4 gave (-)-6¹⁰⁾ (99% ee) in 47% yield and (+)-7¹⁰⁾ (92% ee) in 52% yield (entry 5). The absolute structure of (-)-6 was

406 Vol. 42, No. 2

OH OAC
$$R^2$$
 lipase PS R^2 R^2

Chart 1

Table I. Lipase-Catalyzed Enantioselective Esterification

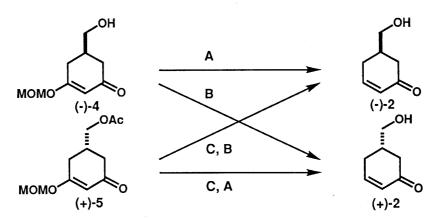
Entry	Substrate	Vinyl acetate	Reaction time (h)	Product Yield % ^{c)} (optical purity % ee)	
1 ^{a)}	(±)- 1	1.0 eq	3.5	(-)- 1 48% (46% ee) ^{d)}	(+)- 3 48% (80% ee) ^{e)}
2 ^{a)}	(±)- 1	0.6 eq	4.0	(-)- 1 43% (80% ee) ^{d)}	(+)- 3 47% (69% ee) ^{e)}
3 ^{b)}	(±)- 4	1.0 eq	3.5	(-)- 4 31% (77% ee) ^{f)}	(+)- 5 31% (74% ee) ^{f)}
4 ^{b)}	(±)- 4	0.6 eq	4.0	(-)- 4 42% (99% ee) ^{f)}	(+)- 5 43% (95% ee) ^{f)}
5 ^{b)}	(±)-6	0.6 eq	2.0	(-)- 6 47% (99% ee) ^{d)}	(+)- 7 52% (92% ee) ^{e)}

a) Reaction conducted in benzene -THF (2:1).

determined by CD measurement of its derivative,¹¹⁾ and that of (+)-7 was determined by hydrolysis of (+)-7 to (+)-6, $[\alpha]_D$ +42.3° (c=0.10, CHCl₃).

The alcohol (-)-4 was converted to (-)-2 and (+)-2, respectively, as shown in Chart $2.^{12}$ Hydrogenation of (-)-4 over 5% palladium on carbon followed by treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) gave (-)-2 [α]_D -80.8°(c=0.25, CHCl₃) in 64% overall yield. On the other hand, reduction of (-)-4 with sodium borohydride in the presence of cerium(III) chloride followed by treatment with 80% acetic acid gave (+)-2,⁴ [α]_D +80.8°(c=0.24, CHCl₃) in 79% overall yield. Similarly, the acetate (+)-5 was also converted to (-)-2 and (+)-2, respectively. Treatment of (+)-5 with lithium hydroxide in dimethoxyethane (DME) gave alcohol (+)-4 in 99% yield, which was converted to (-)-2 in 63% overall yield by reactions similar to those for the conversion of (-)-4 to (+)-2. Hydrogenation of (+)-4 followed by treatment with DBU gave (+)-2 in 78% overall yield.

The present method of enantioselective esterification can be easily conducted under mild conditions even in a large-scale experiment.¹³⁾ The cyclohexenone derivatives synthesized in this study are useful as chiral building blocks for the synthesis of natural products.


b) Reaction conducted in benzene.

c) Isolated yield.

d) Determined by ¹H-NMR analysis of its (s)-MTPA ester.

e) Determined by ¹H-NMR analysis of the (s)-MTPA ester of the alcohol obtained by alkaline hydrolysis.

f) Determined from optical rotation.

Chart 2 Reagents: **A**. i) H₂, 5% Pd-C, MeOH, r.t.; ii) DBU, benzene, 70°C; **B**. i) NaBH₄, CeCl₃, MeOH, 0°C; ii) 80% AcOH, r.t.; C. 1N LiOH, DME, 0°C.

ACKNOWLEDGMENT We thank Amano Pharmaceutical Co., Ltd. for generous supply of lipase PS.

REFERENCES AND NOTES

- 1) Present address: Meiji College of Pharmacy, 1-22-1 Yato, Tanashi, Tokyo 188, Japan.
- 2) M. R. Roberts, R. H. Schlessinger, J. Am. Chem. Soc., 103, 724 (1981).
- 3) A. B. Smith, III, R. E. Richmond, J. Am. Chem. Soc., 105, 575 (1983).
- 4) S. Kuwahara, K. Mori, Tetrahedron, 46, 8075 (1990).
- 5) (±)-4 was prepared from 3, 5-dimethoxybenzoic acid by Li-liq. NH₃ reduction followed by sequential reaction with LiAlH₄, 1N HCl, and MOMCl-Et₃N in 50% overall yield.
- 6) (±)-6 was prepared from (±)-4 by treatment with TBDMSCl-imidazole followed by treatment with LDA-allyl bromide and then Bu₄NF in 71% overall yield.
- 7) D. Bianchi, P. Cesti, E. Battistel, J. Org. Chem., 53, 5531 (1988).
- 8) (+)-3: ¹H-NMR (400 MHz, CDCl₃) δ ppm: 2.05 (3H, s), 2.15 (1H, m), 2.31 (1H, m), 2.43-2.50 (3H, m), 3.69 (3H, s), 4.03 (2H, d, *J*=5.8 Hz), 5.37 (1H, d, *J*=1.1 Hz).
- 9) (-)-4: $[\alpha]_D$ -94.2°(c=0.34, CHCl₃). HRMS. Found 186.0878, Calcd for $C_9H_{14}O_4$ (M+) 186.0892. IR (neat): 3401, 2943, 1637, 1604 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ ppm: 2.19 (1H, m), 2.32-2.53 (4H, m), 3.46 (3H, s), 3.63 (2H, m), 5.04 (1H, d, J=6.1 Hz), 5.07 (1H, d, J=6.1 Hz), 5.48 (d, J=1.0 Hz). (+)-5: $[\alpha]_D$ +74.2°(c=0.53, CHCl₃). HRMS. Found 229.1084, Calcd for $C_{11}H_{17}O_5$ (M++1) 229.1076. IR (neat): 2953, 1740, 1658, 1610 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ ppm: 2.06 (3H, s), 2.15 (1H, m), 2.32 (1H, m), 2.42-2.51 (3H, m), 3.45 (3H, s), 4.04 (2H, d, J=5.8 Hz), 5.04 (1H, d, J=6.1 Hz), 5.06 (1H, d, J=6.1 Hz), 5.49 (1H, d, J=1.4 Hz).
- 10) (-)-6: $[\alpha]_D$ -44.8°(c=0.12, CHCl₃). HRMS. Found 226.1232, Calcd for $C_{12}H_{18}O_4$ (M+) 226.1205. IR(neat): 3415, 2927, 1637, 1613 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃) δ ppm: 2.22 (1H, m), 2.34 (1H, m), 2.42 (1H, m), 2.52-2.64 (3H, m), 3.47 (3H, s), 3.69 (2H, brd, J=5.5 Hz), 5.04-5.08 (3H, m), 5.10 (1H, dq, J=17.0, 1.7 Hz), 5.46 (1H, s). 5.77 (1H, m). (+)-7: $[\alpha]_D$ +44.3°(c=0.11, CHCl₃). HRMS. Found 268.1307, Calcd for $C_{14}H_{20}O_5$ (M+) 268.1311. R(neat): 2945, 1716, 1643, 1605 cm⁻¹. ¹H-NMR(300 MHz, CDCl₃) δ ppm: 2.06 (3H, s), 2.26-2.47 (4H, m), 2.52-2.68 (2H, m), 3.45 (3H, s), 4.10 (2H, m), 5.02-5.06 (3H, m), 5.09 (1H, dd, J=17.1, 1.1 Hz), 5.48 (1H, s), 5.70 (1H, m).
- 11) The absolute configuration of (-)-6 was determined by analysis of the CD spectrum of 10 prepared from (-)-6 as shown in the following. The CD spectrum of 10 showed negative Cotton effect; λ_{ext} (EtOH) 290.5 nm (Δ_{ϵ} -5.1).

- 12) (-)-1 was converted to (+)-2 by a similar procedure.
- 13) Applying this method, (\pm) -6 (30g) gave (-)-6 (14.1g) and (+)-7(20.8g).

(Received November 25, 1993; accepted January 5, 1994)