Stereodivergent synthesis of new amino sugars, furanodictines A and B, starting from d-glucuronolactone

Daisuke Matsuura, Takeshi Mitsui, Tetsuya Sengoku, Masaki Takahashi, Hidemi Yoda*
Department of Materials Science, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu 432-8561, Japan

A R T I C L E I N F O

Article history:

Received 23 September 2008
Received in revised form 3 October 2008
Accepted 3 October 2008
Available online 14 October 2008

Abstract

An efficient and divergent strategy for the total synthesis of the first 3,6-dihydroaminosugars, furanodictines A (2-acetamido-3,6-anhydro-2-deoxy-5-O-isovaleryl-D-glucofuranose) and B (2-acetamido3,6 -anhydro-2-deoxy-5-O-isovaleryl-D-mannofuranose), has been developed. The synthetic process is featured by readily accessible and stereodefined manipulation of highly functionalized bicyclic tetrahydrofuran derivatives incorporating the glucuronolactone (common starting material)-derived skeleton.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Various physiologically active substances have been hitherto produced in nature and a great number of research groups have long been searching for natural products that may be helpful for drug development. Especially, pharmaceutical scientists are naturally interested in studying the secondary metabolites produced by cellular slime molds to explore their diversity as well as physiological and pharmacological activities. In 2001, Oshima et al. isolated furanodictines $A(1)$ and $B(2)$, which are secondary metabolites of the cellular slime mold Dictyostelium discoideum, from the multicellular fruit body by methanol extraction (Fig. 1) ${ }^{1}$ with a view to clarify the potent biological diversity and apply to new drug development. Through detailed investigation by the same group, these compounds were unambiguously revealed to be the first examples of amino sugars isolated from natural sources with a 3,6-anhydrohexofuranose carbon skeleton and demonstrated to have physiological activity in promoting neuritogenesis in rat pheochromocytoma (PC-12) cells. ${ }^{2}$ In addition, the absolute configurations of $\mathbf{1}$ and 2 were determined by achieving their asymmetric construction using N-acetyl-D-glucosamine and N-acetyl-d-mannosamine as starting materials, respectively, and comparing the spectral data with those of natural products. ${ }^{1}$ Since then, their structural complexity coupled with highly novel characteristic as an antitumor agent for neuronal differentiation described above has made them inviting targets for synthesis. In 2004, the second and novel total synthesis of 1 has been accomplished in this laboratory featuring addition of an organometallic compound to the furanosylamine derivative prepared from

[^0]D-arabinose as a starting material. ${ }^{3}$ On the other hand, the formal total synthesis of 2 was reported by Mereyala et al. starting from D-glucose in the same year. ${ }^{4}$ These synthetic procedures, however, generally require multi-step synthetic pathways or crucial techniques, and were not necessarily satisfactory to obtain target compounds. In these circumstances, we recently communicated a simple and effective asymmetric preparation of 2 using commercially available d-glucuronolactone (3) without separation of stereoisomers. ${ }^{5}$ On the basis of our new findings in the preceding report, we have researched the stereodivergent strategy of both furanodictines, $\mathrm{A}(\mathbf{1})$ and $\mathrm{B}(\mathbf{2})$, employing 3 as a common starting material and herein wish to demonstrate the details of an efficient and convenient synthetic route for the stereoselective construction of these two amino sugars.

In formulating the synthetic plan for 1 and 2 , we recognized that the absolute configurations at $C(3)$ and $C(4)$ are the same as the configurations at the corresponding centers $C(3)$ and $C(4)$ of the protected common lactone (4) derived from D -glucuronolactone (3) (Fig. 2). Further, we envisioned that the stereogenic center $C(2)$ of $\mathbf{1}$ with the $\alpha-$ NHAc group would originate from an azide-induced $\mathrm{S}_{\mathrm{N}} 2$ substitution reaction of II obtained through debenzylation of I. Meanwhile, the remaining stereogenic center $C(5)$ would have to be independently set in inversion of configuration of the hydroxylated

$X=H, Y=N H A c:$ furanodictine $A(1)$
$X=N H A c, Y=H$: furanodictine $B(2)$
Figure 1. Furanodictines A and B.

Figure 2. Retrosynthesis of furanodictines.
carbon of I, allowing the synthesis of the crucial intermediate III. On the other hand, the retrosynthesis of $\mathbf{2}$ could be simply performed by the introduction of an azide group through $\mathrm{S}_{\mathrm{N}} 2$ reaction of IV obtained from $\mathbf{4}$, followed by reduction of the azide group of \mathbf{V}.

2. Results and discussion

2.1. Synthesis of furanodictine A (1)

Our initial investigations were aimed at scrutinizing the feasibility of glycosylated bicyclic lactols such as I shown in Figure 2 for an azide-induced $\mathrm{S}_{\mathrm{N}} 2$ substitution reaction followed by reduction of its azide group. As shown in Scheme 1, the common starting material 4 for the synthesis of furanodictines A (1) and B (2) was easily prepared from glucuronolactone (3) through successive protecting reactions with acetone and benzyl bromide in 95\% yield. ${ }^{6}$ Intrigued by the previous report regarding TBS-protection of an α-hydroxylactol with TBSOTf in the presence of $\mathrm{Et}_{3} \mathrm{~N}$, where regioselective results were obtained at low temperature to achieve good yields, ${ }^{7}$ we investigated the reactivity of 4 under the same
reaction conditions after deacetalization with aq TFA. Remarkable enhancement in the regioselectivity together with the yield of these reactions was fortunately observed after detailed examination to yield 5 (180° rotated in Scheme 1) with complete regioselectivity in 91% isolated yield. Whereas direct deoxygenation of the remaining lactol-hydroxy group of 5 with an $\mathrm{Et}_{3} \mathrm{SiH} /$ Lewis acid system resulted in the formation of a complex mixture and stepwise conversion via reduction followed by regioselective tosylation in the presence of $\mathrm{Bu}_{2} \mathrm{SnO}^{8}$ spontaneously caused cyclization to give the deoxygenated furanolactone derivative $\mathbf{6}$ in high yield. Then, $\mathbf{6}$ thus obtained was reduced with DIBAL-H and the Williamson type of etherification by treating with $\mathrm{CH}_{3} \mathrm{I}$ under basic conditions afforded the desired glycosylated product 7 as a nonstereoselective anomeric mixture. ${ }^{9}$ It was ascertained that these products of the α - and β-methyl glycosides, 7a and 7b, were easily separated from each other by column chromatography on silica gel (7a: $R_{f}=0.71,7 \mathbf{b}: R_{f}=0.45$ hexane/ $\mathrm{AcOEt}=5 / 1$, respectively). ${ }^{10}$ Removal of the TBS protecting group in $\mathbf{7 a}$ and $\mathbf{7 b}$ was efficiently performed with TBAF to provide the desired intermediates $\mathbf{8}$ in quantitative yields, respectively.

With the desired compounds $\mathbf{8}$ in hand, which contain the reverse stereochemistry at $C(5)$ required to synthesize natural (+)-furanodictine (1), we independently attempted the asymmetric preparation of the desired stereoisomers $9 \mathbf{a}$ and $\mathbf{9 b}$ derived from each anomer. The results from our survey are described in Scheme 2. To begin with, the inversion of configuration of the hydroxycontaining carbon of $\mathbf{8}$ was performed with AcOK in the presence of 18-crown-6 after derivation to the triflate with trifluoromethanesulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$), leading to the desired acetylated inversion product, but in low yield, together with the eliminated olefinic compound as a main component, whereas the reaction of 8 under Mitsunobu conditions ${ }^{11}$ reversely failed to generate reaction products. These attempts led to a conclusion that reactions of $\mathbf{8}$ should be conducted under neutral conditions to allow the inversion of configuration. Thus, 8a was oxidized effectively with tetrapropylammonium perruthenate (TPAP)/NMO reagent ${ }^{12}$ to afford the corresponding ketone, which was readily treated with NaBH_{4} in MeOH at $0^{\circ} \mathrm{C}$. We were delighted to find through detailed investigation of stereoselectivity that simple conditions described in Scheme 2 (see: Section 4) could effect these reactions beneficially, bringing about the desired reduction product $\mathbf{9 a}$ as a single stereoisomer. Fortunately, the same results were also obtained upon reaction employing $\mathbf{8 b}$. ${ }^{13}$

Then, we next focused our research on the total synthesis of $\mathbf{1}$. Compounds $9 \mathbf{a}$ and $\mathbf{9 b}$ were subjected to esterification of the hydroxy group with the desired isovaleric acid counterpart in the presence of EDCI (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) and DMAP, ${ }^{14}$ providing the esters in excellent yields, respectively, which were subsequently hydrogenated with H_{2} on Pd / C to give the alcohols 10a and 10b also in high yields. For

Scheme 1. Reagents and conditions: (a) (i) acetone, concd $\mathrm{H}_{2} \mathrm{SO}_{4}, 1 \mathrm{~h}, 97 \%$; (ii) $\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{O}, \mathrm{AcOEt}, 10 \mathrm{~h}, 98 \%$; (b) (i) aq TFA (TFA/ $\mathrm{H}_{2} \mathrm{O}=10 / 1$), $10{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$; (ii) $\mathrm{TBSOTf}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH} \mathrm{Cl}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 91 \%$; (c) (i) $\mathrm{NaBH}_{4}, \mathrm{MeOH},-40^{\circ} \mathrm{C}, 30 \mathrm{~min}, 97 \%$; (ii) p - $\mathrm{TsCl}, \mathrm{Bu}_{2} \mathrm{SnO}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5 \mathrm{~h}, 82 \%$; (d) (i) DIBAL-H, toluene, $-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}, 94 \%$; (ii) MeI, t-BuOK, $-78{ }^{\circ} \mathrm{C}$ to $-15^{\circ} \mathrm{C}, 2 \mathrm{~h}, 50 \%(7 \mathbf{a}), 46 \%$ ($\mathbf{7 b}$); (d) Bu ${ }_{4} \mathrm{NF}, \mathrm{THF}, 1 \mathrm{~h}, 99 \%$ ($\mathbf{8 a}$), 99% ($\mathbf{8 b}$).

Scheme 2. Reagents and conditions: (a) (i) TPAP, NMO, $4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}$; (ii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 84 \%$ (two steps) ($\mathbf{9 a}$), 79% (two steps) ($\mathbf{9 b}$); (b) (i) isovaleric acid, EDCI , DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$; (ii) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 12 \mathrm{~h}, 88 \%$ (two steps) (10a), 90% (two steps) ($\mathbf{1 0 b}$); (c) (i) $\mathrm{Tf}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$; (ii) $\mathrm{NaN} \mathrm{N}_{3}, \mathrm{DMF}, 40^{\circ} \mathrm{C}, 80 \mathrm{~h}, 97 \%$ (two steps) ($\mathbf{1 1 a}$), 96% (two steps) (11b); (d) (i) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 / 1), 2 \mathrm{~h}$ (for 11a), $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 3 \mathrm{~h}$ (for 11b); (ii) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}, 96 \%$ (two steps) (12a), 87% (two steps) ($\mathbf{1 2 b}$); (e) 70% aq $\mathrm{AcOH}, 110^{\circ} \mathrm{C}, 20 \mathrm{~h}, 84 \%$ (from 12a as well as $\mathbf{1 2 b}$).

Scheme 3. Reagents and conditions: (a) (i) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 2 \mathrm{~h}$; 92%; (ii) $p-\mathrm{TsCl}, \mathrm{Bu}_{2} \mathrm{SnO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 7 \mathrm{~h}$; (iii) NaH, THF, 30 min , 72% (two steps); (b) DOWEX $50 \mathrm{~W} \mathrm{X}-8$ (H ${ }^{+}$form) $\mathrm{MeOH}, 12 \mathrm{~h}, 99 \%$; (c) (i) Tf $\mathrm{T}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$; (ii) $\mathrm{NaN}_{3}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 80 \mathrm{~h}, 61 \%$ (two steps); (d) (i) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 / 1$), 2 h ; (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}, 65 \%$ (two steps); (e) (i) 70% aq AcOH, $110^{\circ} \mathrm{C}$, 20 h , 98%; (ii) TBSCl, imidazole, DMF, $3 \mathrm{~h}, 99 \%$; (f) (i) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}$, AcOEt, 12 h ; 99%; (ii) isovaleric acid, EDCI, DMAP, CH2Cl $2 \mathrm{~h} ; 88 \%$; (g) Bu $\mathrm{CHF}_{4} \mathrm{NF}, \mathrm{THF}, 1 \mathrm{~h}, 96 \%$.
the purpose of introducing an acetamide group presented in furanodictines, treatment of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ with $\mathrm{Tf}_{2} \mathrm{O}$ in the presence of pyridine afforded the triflates, which were in turn successively subjected to nucleophilic $\mathrm{S}_{\mathrm{N}} 2$ displacement reaction with NaN_{3}, smoothly affording the azide products 11 in quite high yields (97% (11a) and 96% (11b)) as a single isomer, respectively (determined by ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR analyses). Reduction of the azide moiety of 11a under Staudinger conditions with $\mathrm{PPh}_{3} / \mathrm{H}_{2} \mathrm{O}$ or hydrogenation of 11b with 10% Pd on carbon ${ }^{15}$ gave the corresponding labile primary amines, which were quickly effected by acetylation to furnish the desired acetamides 12a and 12b in satisfactory two-step yields, respectively. Finally, these compounds were readily deglycosylated at $110^{\circ} \mathrm{C}$ in 70% aqueous acetic acid solution to complete the total synthesis of furanodicitne $\mathrm{A}(\mathbf{1}),[\alpha]_{\mathrm{D}}^{22}+113.0\left(c 0.8, \mathrm{CHCl}_{3}\right)$ \{natural 1, $[\alpha]_{D}^{25}+100.4\left(c \quad 0.233, \mathrm{CHCl}_{3}\right)^{1}$ and synthetic $\mathbf{1},[\alpha]_{D^{25}}^{25}+118.5(c$ $\left.\left.0.437, \mathrm{CHCl}_{3}\right)^{1}\right\}{ }^{16}$ in 84% yields, respectively. Thus, one of the target compounds, 1, was synthesized in 17 steps and 22% overall yield from commercially available d-glucuronolactone (3).

2.2. Synthesis of furanodictine B (2)

Having obtained and characterized synthetic furanodictine A (1), we turned our attention to the synthesis of furanodicitine B (2) also employing $\mathbf{3}$ as the same starting material via the conveniently functionalized lactone 4. The results are summarized in Scheme 3. While direct hydrogenation of the lactol derived from DIBAL-H reduction of 4 with $\mathrm{Et}_{3} \mathrm{SiH}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ disappointingly yielded the inseparable mixture even at low temperature, ${ }^{17}$ reduction of 4 with LiAlH_{4} provided the diol in 92% yield, which was readily effected by regioselective tosylation in the presence of $\mathrm{Bu}_{2} \mathrm{SnO}^{8}$ as described in Scheme 1, followed by cyclization under basic conditions to lead to the tetrahydrofuran
derivative $\mathbf{1 3}$ in high yield. Compound $\mathbf{1 3}$ thus obtained was subjected to methanolysis catalyzed by DOWEX 50 W X-8 (H^{+}form), giving the methyl glycoside $\mathbf{1 4}$ quantitatively as an epimeric mixture $(\alpha / \beta=1 / 1.9) .{ }^{18}$ Upon reaction with $\mathrm{Tf}_{2} \mathrm{O}$ in the presence of pyridine followed by nucleophilic displacement with NaN_{3} in the same manner described in Scheme 2, the hydroxy group of $\mathbf{1 4}$ was smoothly converted to the azide $\mathbf{1 5}$ in satisfactory yield with also complete inversion of configuration. Reduction of the azide intermediate 15 with Staudinger's $\left(\mathrm{PPh}_{3} / \mathrm{H}_{2} \mathrm{O}\right)$ system again ${ }^{15}$ followed by acetylation gave the corresponding amide $\mathbf{1 6}$ in good yield. Next, we envisioned a more concise and convenient manner to achieve the total synthesis of furanodictine B (2) apart from methods hitherto reported. ${ }^{1,3}$ After hydrolysis of the methyl glycoside part of $\mathbf{1 6}$ in refluxing 70% acetic acid solution, the resulting lactol part was protected with TBSCl to give the silyl ether 17 in 97% two-step yield. Obtained 17 was subjected to deprotection of the benzyl group and esterification of the remaining hydroxy function with the desired isovaleric acid in the presence of EDCI and DMAP ${ }^{8}$ provided O-TBS ether $\mathbf{1 8}$ in 88% yield through a two-step sequence. Finally, 18 was readily deprotected with $\mathrm{Bu}_{4} \mathrm{NF}$ to complete the total synthesis of furanodictine $B(2),[\alpha]_{D}^{26}+104.8\left(c 0.86, \mathrm{CHCl}_{3}\right)$ \{natural 2, $[\alpha]_{D}^{25}+85.6\left(c 0.250, \mathrm{CHCl}_{3}\right)^{1}$ and synthetic 2, $[\alpha]_{D}^{25}+98.4(c$ $\left.\left.0.808, \mathrm{CHCl}_{3}\right)^{1}\right\},{ }^{19}$ in 96% yield (15 steps and 18% overall yield from d-glucuronolactone). The spectral data of synthetic $\mathbf{1}$ and $\mathbf{2}$ were completely identical to those of the natural products in all respects. ${ }^{1}$

3. Conclusions

In summary, an efficient and stereodivergent strategy for the total synthesis of the first 3,6-dihydroaminosugars, furanodictines A and B, has been developed from the common starting material,
d-glucuronolactone. The synthetic process is featured by readily accessible and stereodefined manipulation of highly functionalized bicyclic tetrahydrofuran derivatives incorporating the glucurono-lactone-derived skeleton and substantially performed under mild and ambient conditions through entire sequence. In addition, it is easily applicable to the preparation in relatively large amount since the starting material as well as the reagents employed is commercially available and the synthetic pathway is short and operationally simple.

4. Experimental section

4.1. General

All solvents and reagents were of reagent grade quality from Aldrich Chemical Company, Fluka, Acros, or Wako Pure Chemicals and used without any further purification. Melting points were measured on an automated melting point system (MPA 100, Stanford Research Systems). Fourier transform infrared (FTIR) spectra were recorded on a Shimadzu FTIR-8200A spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra operating at the frequencies of 300 and 75 MHz , respectively, were measured with a JEOL JNM-AL300 spectrometer in chloroform-d $\left(\mathrm{CDCl}_{3}\right)$ unless otherwise stated. Chemical shifts are reported in parts per million (ppm) relative to TMS as internal standard ($\delta=0 \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$ NMR, and CDCl_{3} was used as internal standard ($\delta=77.0$) for ${ }^{13} \mathrm{C}$ NMR. The coupling constants are reported in hertz (Hz). Optical rotations were measured in 1 dm path length cell of 2 mL capacity using a JASCO Model DIP-1000 polarimeter at a wavelength of 589 nm . Reactions were monitored by thin-layer chromatography (TLC) using 0.25 mm Merck silica gel $60-\mathrm{F}_{254}$ precoated silica gel plates by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid in methanol followed by heating. Column chromatography was performed on Kanto Chemical silica gel 60N eluting with the indicated solvent system. The non-crystalline compounds were shown to be homogeneous by chromatographic methods and characterized by NMR, IR, high resolution mass spectra (HRMS), and microanalysis. High-performance liquid chromatography (HPLC) was carried out using a Shimadzu Model LC-10AD or 10AT intelligent pump and SPD-10A UV detector. HRMS were recorded on a JEOL JMS-T100CS spectrometer. Microanalyses were performed with a JSL Model JM 10.

4.2. Experimental procedures

4.2.1. (1S,3R,4R,5S,8S)-8-Benzyloxy-7-keto-3,4-isopropylidenedioxy-2,6-dioxabicyclo[3.3.0]octane (4)
4.2.1.1. Acetonide protection. To a solution of d-glucuronolactone $\mathbf{3}$ ($3.00 \mathrm{~g}, 17.04 \mathrm{mmol}$) in acetone (45 mL) was added concd $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(2.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was quenched by addition of powdered $\mathrm{NaHCO}_{3}(500 \mathrm{~g})$, filtered, and evaporated to dryness to obtain a colorless oily residue. The residue was diluted with AcOEt (200 mL), washed with saturated NaHCO_{3} $(50 \mathrm{~mL})$ and brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude was recrystallized from toluene to give the corresponding acetonide ($3.57 \mathrm{~g}, 16.5 \mathrm{mmol}, 97 \%$) as colorless crystals. $R_{f}=0.37$ (silica gel, hexane/AcOEt $=1 / 2$); $[\alpha]_{D}^{25}+55.2$ (c 1.1, CHCl_{3}); IR (KBr) $3250(\mathrm{O}-\mathrm{H}), 1792(\mathrm{C}=\mathrm{O}), 1036(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.99(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.94$ (dd, $J=4.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.83-4.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 4.49$ (dd, $J=9.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 2.75(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6$ (C), $113.7(\mathrm{C}), 106.6(\mathrm{CH})$, $82.9(\mathrm{CH}), 81.2(\mathrm{CH}), 78.0(\mathrm{CH}), 70.6(\mathrm{CH}), 26.9\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{Na}$: 239.0532, found: 239.0508.
4.2.1.2. Protection with BnBr . To a solution of acetonide (1.00 g , 4.61 mmol) and benzyl bromide ($0.990 \mathrm{~g}, 5.77 \mathrm{mmol}$) in AcOEt $(4.6 \mathrm{~mL})$ was added silver oxide(I) $(0.650 \mathrm{~g}, 2.77 \mathrm{mmol})$. After stirring for 10 h , the reaction mixture was filtered through a pad of Celite and washed with AcOEt (80 mL). The filtrate was concentrated in vacuo and the resulting residue was purified by column chromatography (silica gel, hexane/AcOEt=5/1) to give 4 $(1.39 \mathrm{~g}, 0.566 \mathrm{mmol}, 98 \%)$ as a colorless oil. $R_{f}=0.35$ (silica gel, hexane/AcOEt=2/1); $[\alpha]_{D}^{26}+46.2\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR (NaCl) 1800 $(\mathrm{C}=\mathrm{O}), 1501(\mathrm{C}=\mathrm{C}), 1142(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 6.04(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.92(\mathrm{~s}, 2 \mathrm{H}$, PhCH_{2}), 4.86 (dd, J=4.3, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.79 (d, J=3.7 Hz, 1H, CH), 4.71 (d, J=2.9 Hz, 1H, CH), 4.25 (d, J=4.3 Hz, 1H, CH), 1.46 (s, 3H, CH_{3}), 1.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7(\mathrm{C}), 136.1$ (C), 128.1 (CH), 127.8 (CH), 128.6 (C), 112.7 (C), 106.6 (CH), 82.2 $(\mathrm{CH}), 81.4(\mathrm{CH}), 77.1(\mathrm{CH}), 74.6(\mathrm{CH}), 72.2\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right), 26.1$ $\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6}+\mathrm{Na}$: 329.1001, found: 329.0979.
4.2.2. (1S,4R,5S,8S)-8-Benzyloxy-4-(tert-butyldimethylsilyloxy)-3-hydroxy-7-keto-2,6-dioxabicyclo[3.3.0]octane (5)
4.2.2.1. Deprotection of acetonide. A solution of $4(1.50 \mathrm{~g}$, 4.90 mmol) in 91% aqueous TFA (8 mL) was stirred at $10^{\circ} \mathrm{C}$ for 12 h and then concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/AcOEt=1/2) to give the corresponding 1,2 -diol ($1.19 \mathrm{~g}, 4.46 \mathrm{mmol}, 91 \%$) as a colorless oil. $R_{f}=0.35$ (silica gel, hexane/AcOEt=1/2); IR (NaCl) $3550(\mathrm{O}-\mathrm{H})$, $2950(\mathrm{C}-\mathrm{H}), 1789(\mathrm{C}=\mathrm{O}), 1142(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.24-7.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.49-4.56(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$), 4.18-4.07 (m, 6H, CH, OH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α-anomer: $\delta 174.1$ (C), 136.1 (C), 128.5 (CH), $128.4(\mathrm{CH}), 128.3(\mathrm{C})$, $103.4(\mathrm{CH}), 84.2(\mathrm{CH}), 77.1(\mathrm{CH}), 74.7(\mathrm{CH}), 74.1(\mathrm{CH}), 72.4\left(\mathrm{CH}_{2}\right) ; \beta-$ anomer: $\delta 173.3$ (C), 136.1 (C), 128.4 (CH), 128.3 (CH), 128.2 (C), $98.1(\mathrm{CH}), 83.7(\mathrm{CH}), 76.2(\mathrm{CH}), 74.6(\mathrm{CH}), 73.9(\mathrm{CH}), 72.4\left(\mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}$: C, 58.64; H, 5.30. Found: C, 58.44; H, 5.60.
4.2.2.2. TBS-protection. To a solution of the 1,2 -diol $(0.200 \mathrm{~g}$, 0.752 mmol) and triethylamine ($0.230 \mathrm{~g}, 2.27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was added tert-butyldimethylsilyl trifluoromethanesulfonate $(0.300 \mathrm{~g}, 1.13 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=5 / 1$) to give $5(0.260 \mathrm{~g}, 0.684 \mathrm{mmol}, 91 \%)$ as a colorless oil. $R_{f}=0.43$ (silica gel, hexane $/ \mathrm{AcOEt}=3 / 1$); IR (NaCl) $3651(\mathrm{O}-\mathrm{H}), 2954(\mathrm{C}-\mathrm{H}), 1786(\mathrm{C}=\mathrm{O}), 1471(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α-anomer: $\delta 7.44-7.32$ (m, 5H, ArH), 5.52 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.94(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 4.83(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PhCH} 2$), 4.77 (dd, $J=4.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.56(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{CH}), 3.26-3.22$ (br s, 1H, OH), 0.91 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}$), $0.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$; β-anomer: $\delta 7.44-7.32$ (m, $5 \mathrm{H}, \mathrm{ArH}), 5.64(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.96(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} 2)$, 4.86 (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} 2), 4.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.66(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.22(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.26-3.22(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.13\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) α-anomer: $\delta 172.2$ (C), $136.3(\mathrm{C}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH})$, 128.2 (C), 98.6 (CH), 84.6 (CH), 76.6 (CH), 75.1 (CH), $74.4(\mathrm{CH}), 72.4$ $\left(\mathrm{CH}_{2}\right)$, $25.6(\mathrm{C}), 17.9\left(\mathrm{CH}_{3}\right),-5.0\left(\mathrm{CH}_{3}\right)$; β-anomer: $\delta 172.2(\mathrm{C}), 136.3$ (C), $128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{C}), 98.3(\mathrm{CH}), 84.0(\mathrm{CH}), 76.6(\mathrm{CH})$, $75.1(\mathrm{CH}), 74.4(\mathrm{CH}), 72.1\left(\mathrm{CH}_{2}\right), 25.5(\mathrm{C}), 17.9\left(\mathrm{CH}_{3}\right),-5.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na}: 403.1553$, found: 403.1582.
4.2.3. (1S,3S,4S,5S,8S)-4-Benzyloxy-8-(tert-butyldimethylsilyloxy)-3-keto-2,6-dioxabicyclo[3.3.0]octane (6)
4.2.3.1. Reduction with NaBH_{4}. To a solution of $\mathbf{5}(0.900 \mathrm{~g}$, 2.37 mmol) in $\mathrm{MeOH}(4.7 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.178 \mathrm{~g}$, 4.73 mmol) at $-40^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with AcOEt ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/AcOEt=2/1) to give the corresponding 1,4-diol ($0.875 \mathrm{~g}, 2.29 \mathrm{mmol}, 97 \%$) as colorless crystals. $R_{f}=0.21$ (silica gel, hexane $/ \mathrm{AcOEt}=2 / 1$); $[\alpha]_{\mathrm{D}}^{23}-16.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$; $\operatorname{IR}(\mathrm{KBr}) 3550(\mathrm{O}-\mathrm{H})$, 3035 (C-H), 1763 (C=O), 1498 ($\mathrm{C}=\mathrm{C}$), 1094 (C-O) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.02(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, PhCH_{2}), 4.83 (d, $J=11.9 \mathrm{~Hz}, \mathrm{PhCH}_{2}$), 4.37 (dd, $J=4.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.28 (dd, $J=2.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.20$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.12 (ddd, $J=8.3,3.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.76-3.69 (m, 2H, CH2), 2.65 (s, 1H, OH), $2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0$ (C), 136.1 (C), 128.7 (CH), 128.6 $(\mathrm{CH}), 128.3(\mathrm{C}), 81.5(\mathrm{CH}), 75.6(\mathrm{CH}), 72.8\left(\mathrm{CH}_{2}\right), 71.4(\mathrm{CH}), 68.1(\mathrm{CH})$, $63.4\left(\mathrm{CH}_{2}\right), 25.7(\mathrm{C}), 17.9\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z} \mathrm{calcd}$ for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na}$: 405.1709, found: 405.1737.
4.2.3.2. Cyclization with TsCl. To a mixture of 1,4 -diol (0.220 g , 0.575 mmol), triethylamine ($0.176 \mathrm{~g}, 1.74 \mathrm{mmol}$), and di- n-butyltin oxide ($0.0428 \mathrm{~g}, 0.172 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added p-toluenesulfonyl chloride ($0.124 \mathrm{~g}, 0.650 \mathrm{mmol})$. After stirring for 5 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with AcOEt ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=10 / 1$) to give 6 (0.172 g , $0.472 \mathrm{mmol}, 82 \%$) as a colorless oil. $R_{f}=0.71$ (silica gel, hexane/ AcOEt=2/1); $[\alpha]_{\mathrm{D}}^{22}+43.5$ (c 1.0, CHCl_{3}); IR (NaCl) $2952(\mathrm{C}-\mathrm{H}), 1801$ $(\mathrm{C}=\mathrm{O}), 1560(\mathrm{C}=\mathrm{C}), 1134(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.44-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.94\left(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.87$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.72 (dd, $J=4.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.62 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.46(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.15(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 4.14\left(\mathrm{dd}, J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.86\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7$ $(\mathrm{C}), 136.4(\mathrm{C}), 129.5(\mathrm{CH}), 128.3(\mathrm{CH}), 127.0(\mathrm{C}), 85.0(\mathrm{CH}), 76.8\left(\mathrm{CH}_{2}\right)$, $75.9(\mathrm{CH}), 75.4(\mathrm{CH}), 73.9(\mathrm{CH}), 72.3\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 17.9(\mathrm{C}),-4.9$ $\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}$: 387.1604, found: 387.1610.
4.2.4. (1S,3S,4S,5S,8R)-4-Benzyloxy-8-(tert-butyldimethylsilyloxy)-3-methoxy-2,6-dioxabicyclo[3.3.0]octane (7a) and (1S,3R,4S,5S,8R)-4-benzyloxy-8-(tert-butyldimethylsilyloxy)-3-methoxy-2,6-dioxabicyclo[3.3.0]octane (7b)
4.2.4.1. Reduction with DIBAL-H. To a solution of $6(0.150 \mathrm{~g}$, 0.412 mmol) in toluene (0.8 mL) was added diisobutylaluminium hydride (1.0 M solution in THF, $1.2 \mathrm{~mL}, 1.24 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, filtered through a pad of Celite, and extracted with AcOEt ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=4 / 1$) to give the corresponding lactols ($0.142 \mathrm{~g}, 0.388 \mathrm{mmol}, 94 \%$) as a colorless oil. $R_{f}=0.18$ (silica gel, hexane $/ \mathrm{AcOEt}=5 / 1$); $\mathrm{IR}(\mathrm{NaCl}) 3323(\mathrm{O}-\mathrm{H}), 2949$ ($\mathrm{C}-\mathrm{H}$), $1497(\mathrm{C}=\mathrm{C}), 1134(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α-anomer: $\delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.32(\mathrm{dd}, J=3.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 4.78 (d, $\left.J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.74(\mathrm{dd}, J=4.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.58$ (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.54 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.27 (d,
$J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.00\left(\mathrm{dd}, J=9.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.83(\mathrm{~d}, J=4.8$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.80\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.20(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$, OH), 0.88 (s, 9H, CH3), 0.08 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$); β-anomer: $\delta 7.35-7.25$ (m, $5 \mathrm{H}, \mathrm{ArH}$), 5.20 (dd, J=9.0, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.75 (m, 1H, CH), 4.71 (s, $2 \mathrm{H}, \mathrm{PhCH} 2$), 4.63 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.42 (dd, $J=4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 4.35 (dd, J=9.3, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $4.14(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 3.88 (dd, $J=4.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.72 (dd, $J=9.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 0.88 (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α-anomer: $\delta 137.6(\mathrm{C}), 128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{C}), 101.9(\mathrm{CH}), 87.7(\mathrm{CH})$, $84.1(\mathrm{CH}), 80.2(\mathrm{CH}), 77.7\left(\mathrm{CH}_{2}\right), 76.1(\mathrm{CH}), 72.3\left(\mathrm{CH}_{2}\right), 25.7(\mathrm{C}), 17.9$ (C), $-5.0\left(\mathrm{CH}_{3}\right) ; \beta$-anomer: $\delta 136.9$ (C), $128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 127.7$ (C), $96.2(\mathrm{CH}), 87.8(\mathrm{CH}), 84.1(\mathrm{CH}), 80.3(\mathrm{CH}), 78.2(\mathrm{CH}), 76.1\left(\mathrm{CH}_{2}\right)$, $72.1\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 17.9(\mathrm{C}),-4.9\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}$: 389.1760, found: 389.1735.
4.2.4.2. Etherification with $\mathrm{CH}_{3} \mathrm{I}$. To a solution of the lactols ($0.521 \mathrm{~g}, 1.42 \mathrm{mmol}$) in THF (7.1 mL) were added potassium tertbutoxide ($0.479 \mathrm{~g}, 4.27 \mathrm{mmol}$), methyl iodide ($4.04 \mathrm{~g}, 28.5 \mathrm{mmol}$), and tetra-n-butylammonium iodide ($0.158 \mathrm{~g}, 0.427 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the resulting mixture was slowly warmed to $-15^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with AcOEt ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=11 / 1,5 / 1$) to give $7 \mathrm{a}(0.270 \mathrm{~g}$, $0.710 \mathrm{mmol}, 50 \%$) and $\mathbf{7 b}(0.251 \mathrm{~g}, 0.660 \mathrm{mmol}, 46 \%)$ as colorless oils. Compound 7a: $R_{f}=0.71$ (silica gel, hexane/ $\mathrm{AcOEt}=5 / 1$); $[\alpha]_{\mathrm{D}}^{22}$ +113.8 (c 1.0, CHCl $)$; IR (NaCl) 3035 (C-H), $2930(\mathrm{C}-\mathrm{H}), 1497$ $(\mathrm{C}=\mathrm{C}), 1124(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.26(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArH}$), 4.89 (d, J=2.8 Hz, 1H, CH), 4.79 (d, J=11.9 Hz, 1H, PhCH $)_{2}$, 4.75 (d, $J=4.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.57 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.43 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.32 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.04 (dd, $J=9.4$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.89 (dd, $J=4.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.84(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.7(\mathrm{C}), 129.3(\mathrm{CH}), 127.6(\mathrm{CH}), 127.4(\mathrm{C})$, $108.6(\mathrm{CH}), 87.9(\mathrm{CH}), 83.0(\mathrm{CH}), 80.5(\mathrm{CH}), 76.4(\mathrm{CH}), 76.1\left(\mathrm{CH}_{2}\right)$, $72.6\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{3}\right),-4.9\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}$: 403.1917, found: 403.1880. Compound 7b: $R_{f}=0.45$ (silica gel, hexane/AcOEt $=5 / 1$); $[\alpha]_{\mathrm{D}}^{22}+32.6$ (c 1.0, CHCl_{3}); IR (NaCl) $3030(\mathrm{C}-\mathrm{H}), 2952(\mathrm{C}-\mathrm{H}), 1498(\mathrm{C}=\mathrm{C}), 1097$ (C-O) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 4.77 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.75 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.68 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.65 (dd, $J=4.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.34 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.30(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.75$ (dd, $J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.72 (dd, $J=5.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.40 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.2(\mathrm{C}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9(\mathrm{C}), 102.3(\mathrm{CH}), 88.5$ $(\mathrm{CH}), 78.5(\mathrm{CH}), 78.1(\mathrm{CH}), 77.8(\mathrm{CH}), 75.1\left(\mathrm{CH}_{2}\right), 72.1\left(\mathrm{CH}_{2}\right), 55.8$ $\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right),-4.9\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}$: 403.1917, found: 403.1926.

4.2.5. (1R,3S,4S,5S,8S)-4-Benzyloxy-8-hydroxy-3-methoxy-2,6dioxabicyclo[3.3.0]octane (8a)

To a solution of $7 \mathrm{a}(0.453 \mathrm{~g}, 1.19 \mathrm{mmol})$ in THF $(2.4 \mathrm{~mL})$ was added tetrabutylammonium fluoride $(1.0 \mathrm{M}$ solution in THF, $2.38 \mathrm{~mL}, 2.38 \mathrm{mmol}$). After stirring for 1 h , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with AcOEt ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/ $\mathrm{AcOEt}=5 / 1$) to give $8 \mathbf{8 a}(0.313 \mathrm{~g}$, $1.18 \mathrm{mmol}, 99 \%$) as a colorless oil. $R_{f}=0.10$ (silica gel, hexane/ AcOEt=2/1); $[\alpha]_{D}^{23}+146.4\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{NaCl}) 3435(\mathrm{O}-\mathrm{H}), 2939$ (C-H), $1499(\mathrm{C}=\mathrm{C}), 1148(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.79(\mathrm{dd}, J=5.7$,
$4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.77\left(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.55(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.48$ (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.30 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.03 (dd, $\left.J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.89\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88$ (dd, $J=5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.6$ (C), 128.3 (CH), 127.7 (CH), 127.6 (C), $108.5(\mathrm{CH}), 87.3(\mathrm{CH}), 82.7(\mathrm{CH}), 80.5(\mathrm{CH}), 75.4(\mathrm{CH}), 75.3\left(\mathrm{CH}_{2}\right)$, $72.7\left(\mathrm{CH}_{2}\right)$, $55.0\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}+\mathrm{Na}$: 289.1052, found: 289.1028.
4.2.6. (1R,3R,4S,5S,8S)-4-Benzyloxy-8-hydroxy-3-methoxy-2,6dioxabicyclo[3.3.0]octane ($\mathbf{8 b}$)

To a solution of $\mathbf{7 b}(0.0639 \mathrm{~g}, 0.168 \mathrm{mmol})$ in THF $(0.35 \mathrm{~mL})$ was added tetrabutylammonium fluoride $(1.0 \mathrm{M}$ solution in THF, $0.34 \mathrm{~mL}, 0.34 \mathrm{mmol}$). After stirring for 1 h , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and extracted with AcOEt ($10 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/AcOEt=1/3) to give $\mathbf{8 b}(0.0443 \mathrm{~g}$, $0.166 \mathrm{mmol}, 99 \%$) as a colorless oil. $R_{f}=0.10$ (silica gel, hexane/ AcOEt=1/2); [$\alpha]_{\mathrm{D}}^{19}+22.9$ (c 1.0, CHCl_{3}); IR (NaCl) 3491 (O-H), 2991 (C-H), $1498(\mathrm{C}=\mathrm{C}), 1107(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.13(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 4.75\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.70(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.64\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.63$ (dd, $J=5.0$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.41 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.29 (dd, $J=9.5,3.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.24(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.80\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70$ ($\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.48-3.38 (m, 4H, OH, CH3); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.0(\mathrm{C}), 128.3(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(\mathrm{C}), 101.9(\mathrm{CH}), 87.5$ $(\mathrm{CH}), 78.5(\mathrm{CH}), 78.0(\mathrm{CH}), 76.7(\mathrm{CH}), 74.6\left(\mathrm{CH}_{2}\right), 72.1\left(\mathrm{CH}_{2}\right), 55.5$ $\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}: \mathrm{C}, 63.15 ; \mathrm{H}, 6.81$. Found: C, 63.19; H, 6.48.

4.2.7. (1R,3S,4S,5S,8R)-4-Benzyloxy-8-hydroxy-3-methoxy-2,6dioxabicyclo[3.3.0]octane (9a)

4.2.7.1. TPAP oxidation. To a mixture of $\mathbf{8 a}(0.173 \mathrm{~g}, 0.650 \mathrm{mmol})$, molecular sieves ($4 \AA, 0.173 \mathrm{~g}$), and NMO ($97 \mathrm{wt} \%, 0.152 \mathrm{~g}$, $1.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$ was added tetrapropylammonium perruthenate $(0.0228 \mathrm{~g}, 0.0650 \mathrm{mmol})$. After stirring for 12 h , the reaction mixture was filtered through a pad of Celite and washed with ethyl acetate. The filtrate was concentrated in vacuo and the resulting residue was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=1 / 1$) to give the corresponding ketone (0.149 g , $0.566 \mathrm{mmol}, 87 \%$) as a colorless oil. $R_{f}=0.50$ (silica gel, hexane/ AcOEt=1/2); $[\alpha]_{\mathrm{D}}^{25}+153.7\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR (NaCl) $2935(\mathrm{C}-\mathrm{H}), 1771$ ($\mathrm{C}=\mathrm{O}$), $1498(\mathrm{C}=\mathrm{C}), 1109(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.26$ (m, 5H, ArH), 5.13 (dd, J=7.3, 5.1 Hz, 1H, CH), 4.99 (s, 1H, CH), 4.73 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.65 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}$), $4.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.33$ (dd, $\left.J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09(\mathrm{~d}$, $\left.J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.96(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.8$ (C), 137.4 (C), 128.4 (CH), 127.8 (CH), $128.3(\mathrm{C}), 108.3(\mathrm{CH}), 81.9(\mathrm{CH}), 81.0(\mathrm{CH}), 76.6(\mathrm{CH}), 72.7\left(\mathrm{CH}_{2}\right), 71.7$ $\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}: \mathrm{C}, 63.63 ; \mathrm{H}, 6.10$. Found: C, 63.74; H, 6.19.
4.2.7.2. Stereoselective reduction with NaBH_{4}. To a solution of the ketone ($0.0211 \mathrm{~g}, 0.0799 \mathrm{mmol}$) in EtOH (0.8 mL) was added NaBH_{4} ($0.00360 \mathrm{~g}, 0.0953 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/AcOEt=2/1) to give 9a ($0.0206 \mathrm{~g}, 0.0775 \mathrm{mmol}, 97 \%$) as a colorless oil. $R_{f}=0.20$ (silica gel, hexane/AcOEt=1/2); $[\alpha]_{D}^{25}+151.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (NaCl) 3450 ($\mathrm{O}-$ H) $2935(\mathrm{C}-\mathrm{H}), 1499(\mathrm{C}=\mathrm{C}), 1141(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.03(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.82(\mathrm{~d}$, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}$), 4.73 (dd, $J=5.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.64 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.59\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.20$ (ddd, $J=10.6$, $5.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.02$ (dd, $J=9.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.88 (dd, $J=5.7$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.81\left(\mathrm{dd}, \mathrm{J}=9.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.05(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.4(\mathrm{C}), 128.5(\mathrm{CH})$, $127.9(\mathrm{CH}), 127.9(\mathrm{C}), 109.0(\mathrm{CH}), 81.5(\mathrm{CH}), 81.2(\mathrm{CH}), 75.2(\mathrm{CH}), 73.7$ $(\mathrm{CH}), 73.3\left(\mathrm{CH}_{2}\right), 71.2\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}+\mathrm{Na}$: 373.1627, found: 373.1640.

4.2.8. (1R,3R,4S,5S,8R)-4-Benzyloxy-8-hydroxy-3-methoxy-2,6dioxabicyclo[3.3.0]octane (9b)

4.2.8.1. TPAP oxidation. To a mixture of $\mathbf{8 b}(0.410 \mathrm{~g}, 1.54 \mathrm{mmol})$, molecular sieves ($4 \AA .0 .410 \mathrm{~g}$), and NMO ($97 \mathrm{wt} \%, 0.372 \mathrm{~g}$, 3.08 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.5 \mathrm{~mL})$ was added tetrapropylammonium perruthenate $(0.0541 \mathrm{~g}, 0.154 \mathrm{mmol})$. After stirring for 12 h , the reaction mixture was filtered through a pad of Celite and washed with ethyl acetate. The filtrate was concentrated in vacuo and the resulting residue was purified by column chromatography (silica gel, hexane/AcOEt=1/1) to give the corresponding ketone (0.353 g , $1.34 \mathrm{mmol}, 87 \%$) as a colorless oil. $R_{f}=0.50$ (silica gel, toluene/ acetone $=10 / 1) ;[\alpha]_{\mathrm{D}}^{22}+46.3\left(c 0.8, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{NaCl}) 2935(\mathrm{C}-\mathrm{H})$, 1771 ($\mathrm{C}=\mathrm{O}$), 1498 ($\mathrm{C}=\mathrm{C}$), $1109(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.42-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.83(\mathrm{~d}, \mathrm{~J}=7.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.83$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.75 (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.67 (d, $\left.J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.38\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 4.00\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.74(\mathrm{dd}, J=6.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.5(\mathrm{C}=\mathrm{O}), 137.0(\mathrm{C})$, $128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{C}), 101.6(\mathrm{CH}), 78.7(\mathrm{CH}), 76.6(\mathrm{CH})$, $75.2(\mathrm{CH}), 72.7\left(\mathrm{CH}_{2}\right), 69.4\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$: C, 63.63; H, 6.10. Found: C, 63.60; H, 5.99.
4.2.8.2. Stereoselective reduction with NaBH_{4}. To a solution of the ketone ($0.223 \mathrm{~g}, 0.844 \mathrm{mmol}$) in EtOH (8.5 mL) was added NaBH_{4} $(0.0383 \mathrm{~g}, 1.01 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/AcOEt=2/1) to give 9b $(0.205 \mathrm{~g}$, $0.770 \mathrm{mmol}, 91 \%$) as a colorless oil. $R_{f}=0.20$ (hexane/AcOEt=1/2); $[\alpha]_{\mathrm{D}}^{23}-16.7$ ($c 1.0, \mathrm{CHCl}_{3}$); IR (NaCl) $3583(\mathrm{O}-\mathrm{H}), 2956(\mathrm{C}-\mathrm{H}), 1498$ $(\mathrm{C}=\mathrm{C}), 1103(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.29(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar} H), 4.82(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.78(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}$, 4.66 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} 2), 4.55(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.44$ (dd, $J=5.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.23 (ddd, $J=10.6,6.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.90 (dd, $J=9.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.89 (dd, $J=9.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.80 (dd, $J=5.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.74(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.1$ (C), $128.5(\mathrm{CH}), 128.3$ (CH), 128.1 (C), $103.0(\mathrm{CH}), 81.9(\mathrm{CH}), 78.6(\mathrm{CH}), 78.5(\mathrm{CH}), 73.7(\mathrm{CH}), 72.6\left(\mathrm{CH}_{2}\right)$, $71.8\left(\mathrm{CH}_{2}\right), 57.0\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}: \mathrm{C}, 63.15 ; \mathrm{H}, 6.81$. Found: C, 63.54; H, 7.17.

4.2.9. ($1 R, 3 S, 4 S, 5 R, 8 R$)-4-Hydroxy-3-methoxy-2,6-dioxabicyclo[3.3.0]oct-8-yl isovalerate (10a)

4.2.9.1. Esterification with isovaleric acid. To a solution of 9a ($0.0694 \mathrm{~g}, \quad 0.261 \mathrm{mmol}$), 4-dimethylaminopyridine $\quad(63.7 \mathrm{mg}$, 0.521 mmol), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($0.100 \mathrm{~g}, 0.522 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added isovaleric acid ($53.3 \mathrm{mg}, 0.522 \mathrm{mmol}$). After stirring for 30 min , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by
column chromatography (silica gel, hexane/AcOEt=10/1) to give the corresponding ester ($0.0904 \mathrm{~g}, 0.258 \mathrm{mmol}, 99 \%$) as a colorless oil. $R_{f}=0.82$ (silica gel, hexane/AcOEt $=2 / 1$); $[\alpha]_{D}^{25}+151.1$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$; IR (NaCl) $2959(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1497(\mathrm{C}=\mathrm{C}), 1122(\mathrm{C}-$ O) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.02$ (ddd, $J=7.0,6.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.99 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.78 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} 2$), 4.73 (t, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.66 (dd, $J=5.3$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.59 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.10 (dd, $J=8.6$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.90 (dd, $J=5.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.88 (dd, $J=8.6$, $\left.6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.15(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 0.97\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.4(\mathrm{C})$, $128.5\left(\mathrm{CH}_{2}\right), 127.9\left(\mathrm{CH}_{2}\right), 127.9(\mathrm{C}), 109.0(\mathrm{CH}), 81.5(\mathrm{CH}), 81.2(\mathrm{CH})$, $75.2(\mathrm{CH}), 73.7(\mathrm{CH}), 73.3\left(\mathrm{CH}_{2}\right), 71.2\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5(\mathrm{C}), 137.7(\mathrm{C}), 128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7$ (C), $108.9(\mathrm{CH}), 82.7(\mathrm{CH}), 80.8(\mathrm{CH}), 78.7(\mathrm{CH}), 72.8(\mathrm{CH}), 72.7$ $\left(\mathrm{CH}_{2}\right), 69.4\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right), 42.9\left(\mathrm{CH}_{2}\right), 25.6(\mathrm{CH}), 22.3\left(\mathrm{CH}_{3}\right), 22.2$ $\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na}$: 373.1627 , found: 373.1640.
4.2.9.2. Deprotection of benzyl group by hydrogenolysis. A solution of the ester ($0.0452 \mathrm{~g}, 0.129 \mathrm{mmol}$) in EtOH (1.0 mL) was hydrogenated in the presence of $5 \% \mathrm{Pd}$ on activated carbon (0.025 g) at room temperature for 12 h . Pd catalyst was removed by filtration through a pad of Celite and washed with ethyl acetate (50 mL). The filtrate was concentrated in vacuo and the resulting residue was purified by column chromatography (silica gel, hexane/AcOEt=5/1) to give 10a ($0.0299 \mathrm{~g}, 0.115 \mathrm{mmol}, 89 \%$) as a colorless oil. $R_{f}=0.30$ (silica gel, hexane/AcOEt=2/1); $[\alpha]_{\mathrm{D}}^{25}+170.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{NaCl})$ $3415(\mathrm{O}-\mathrm{H}), 2960(\mathrm{C}-\mathrm{H}), 1747(\mathrm{C}=\mathrm{O}), 1182(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13$ (ddd, $J=7.2,6.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.93 (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.80 (dd, $J=6.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.68 (dd, $J=5.9$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.55 (dd, $J=9.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 4.05 (ddd, $J=5.9$, $5.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.88 (dd, $J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.38 (s, 3 H , CH_{3}), 3.05 ($\mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), $2.34-2.26$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.14 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CH}), 0.98\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3$ (C), $111.4(\mathrm{CH}), 81.1(\mathrm{CH}), 79.4(\mathrm{CH}), 75.1(\mathrm{CH}), 72.1(\mathrm{CH}), 68.3\left(\mathrm{CH}_{2}\right)$, $55.4\left(\mathrm{CH}_{3}\right), 43.0\left(\mathrm{CH}_{2}\right), 25.6(\mathrm{CH}), 22.2\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6}+\mathrm{Na}$: 283.1158, found: 283.1132 .

4.2.10. ($1 R, 3 R, 4 S, 5 R, 8 R$)-4-Hydroxy-3-methoxy-2,6-dioxabicyclo[3.3.0]oct-8-yl isovalerate (10b)

4.2.10.1. Esterification with isovaleric acid. To a solution of 9b ($0.164 \mathrm{~g}, 0.616 \mathrm{mmol}$), 4-dimethylaminopyridine ($0.149 \mathrm{~g}, 1.22 \mathrm{mmol}$), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($0.234 \mathrm{~g}, 1.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added isovaleric acid $(0.125 \mathrm{~g}, 1.22 \mathrm{mmol})$. After stirring for 30 min , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/AcOEt=5/1) to give the corresponding ester ($0.201 \mathrm{~g}, 0.574 \mathrm{mmol}, 93 \%$) as a colorless oil. $R_{f}=0.82$ (silica gel, hexane/AcOEt=1/2); $[\alpha]_{D}^{29}+77.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (NaCl) $2929(\mathrm{C}-\mathrm{H}), 1736(\mathrm{C}=\mathrm{O}), 1122(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.26$ (m, $5 \mathrm{H}, \mathrm{ArH}$), 5.02 (ddd, $J=7.9,5.5$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.77 (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.76$ (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH_{2}), 4.73 (dd, $J=4.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.67 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH_{2}), 4.56 (dd, $J=5.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.12 (dd, $J=9.3,7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), 3.88 (dd, J=9.3, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.90(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.44 (s, 3H, CH3), 2.27-2.24 (m, 2H, CH2), 2.14 (m, 1H, CH), 0.97 (d, $\left.J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3$ (C), 137.1 (C), $128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 128.0(\mathrm{C}), 101.7(\mathrm{CH}), 78.9(\mathrm{CH}), 78.8(\mathrm{CH})$, $77.2(\mathrm{CH}), 73.1\left(\mathrm{CH}_{2}\right), 72.4\left(\mathrm{CH}_{2}\right), 68.5\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 42.9\left(\mathrm{CH}_{2}\right)$, $25.6(\mathrm{CH}), 22.2\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}$: $\mathrm{C}, 65.13$; H, 7.48. Found: C, 65.19; H, 7.21.
4.2.10.2. Deprotection of benzyl group by hydrogenolysis. A solution of the ester ($0.190 \mathrm{~g}, 0.543 \mathrm{mmol}$) in EtOH (2.5 mL) was hydrogenated in the presence of $5 \% \mathrm{Pd}$ on activated carbon $(0.050 \mathrm{~g})$ at room temperature for 12 h . Pd catalyst was removed by filtration through a pad of Celite and washed with ethyl acetate (50 mL). The filtrate was concentrated in vacuo and the resulting residue was purified by column chromatography (silica gel, hexane/AcOEt=2/1) to give $\mathbf{1 0 b}(0.137 \mathrm{~g}, 0.527 \mathrm{mmol}, 97 \%)$ as a colorless oil. $R_{f}=0.30$ (silica gel, hexane/AcOEt=2/1); [$\alpha]_{\mathrm{D}}^{29}+66.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR (NaCl) $3583(\mathrm{O}-\mathrm{H}), 2960(\mathrm{C}-\mathrm{H}), 1737(\mathrm{C}=\mathrm{O}), 1122(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.00$ (ddd, $J=8.0,5.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.83 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.82(\mathrm{dd}, J=5.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.51$ (dd, $J=5.3$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.12 (ddd, $J=11.5,5.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.09 (dd, $\left.J=9.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.91\left(\mathrm{dd}, J=9.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.45(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 3.05 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 2.28-2.26 (m, 2H, CH2 $), 2.14(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$), 0.98 (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3(\mathrm{C}), 102.0(\mathrm{CH}), 80.2(\mathrm{CH}), 78.8(\mathrm{CH}), 77.2(\mathrm{CH}), 73.4(\mathrm{CH})$, $68.3\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 43.0\left(\mathrm{CH}_{2}\right), 25.6(\mathrm{CH}), 22.2\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6}$: C, 55.37; $\mathrm{H}, 7.74$. Found: C, $55.33 ; \mathrm{H}, 7.35$.

4.2.11. (1S,3S,4R,5R,8R)-4-Azido-3-methoxy-2,6-dioxabicyclo[3.3.0]oct-8-yl isovalerate (11a)

To a solution of $\mathbf{1 0 a}(0.0900 \mathrm{~g}, 0.346 \mathrm{mmol})$ and pyridine $(0.0821 \mathrm{~g}, 1.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added trifluoromethanesulfonic anhydride ($0.195 \mathrm{~g}, 0.691 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the corresponding trifluoromethanesulfonate, which was used without further purification. To a solution of this crude in DMF (0.7 mL) was added sodium azide ($0.0676 \mathrm{~g}, 1.04 \mathrm{mmol}$). After stirring for 80 h at $40^{\circ} \mathrm{C}$, the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$ and extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/AcOEt=11/1) to give 11a ($0.0957 \mathrm{~g}, 0.336 \mathrm{mmol}, 97 \%$) as a colorless oil. $R_{f}=0.43$ (silica gel, hexane/AcOEt=10/1); $[\alpha]_{D}^{25}+267.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (NaCl) $2961(\mathrm{C}-\mathrm{H}), 2110\left(\mathrm{~N}=\mathrm{N}^{+}=\mathrm{N}^{-}\right)$, $1744(\mathrm{C}=\mathrm{O})$, 1188 ($\mathrm{C}-$ O) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.08(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 5.03 (ddd, $J=7.2,6.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.82$ (dd, $J=5.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.72 (dd, $J=5.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.08$ (dd, $J=9.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.78 (dd, $J=9.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.72 (dd, $J=4.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.43 (s, 3H, CH3), 2.32-2.21 (m, 2H, CH2), 2.14 (m, 1H, CH), 0.98 (d, $\left.J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1$ (C), $105.4(\mathrm{CH})$, $84.9(\mathrm{CH}), 77.7(\mathrm{CH}), 71.7(\mathrm{CH}), 69.0\left(\mathrm{CH}_{2}\right), 66.8(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 42.9$ $\left(\mathrm{CH}_{2}\right), 25.6(\mathrm{CH}), 22.2\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{Na}$: 308.1222, found: 308.1207.

4.2.12. (1S,3R,4R,5R,8R)-4-Azido-3-methoxy-2,6-dioxabicyclo[3.3.0]oct-8-yl isovalerate (11b)

To a solution of $\mathbf{1 0 b}(0.128 \mathrm{~g}, 0.492 \mathrm{mmol})$ and pyridine $(0.116 \mathrm{~g}$, 1.47 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added trifluoromethanesulfonic anhydride ($0.278 \mathrm{~g}, 0.985 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the corresponding trifluoromethanesulfonate, which was used without further purification. To a solution of this crude in DMF (1.0 mL) was added sodium azide ($0.0961 \mathrm{~g}, 1.48 \mathrm{mmol}$). After stirring for 80 h at $40^{\circ} \mathrm{C}$, the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by
column chromatography (silica gel, hexane/ $\mathrm{AcOEt}=7 / 1$) to give 11b ($0.135 \mathrm{~g}, 0.473 \mathrm{mmol}, 96 \%$) as a colorless oil. $R_{f}=0.40$ (silica gel, hexane $/ \mathrm{AcOEt}=5 / 1$); $[\alpha]_{\mathrm{D}}^{29}+77.0$ (c 1.0, CHCl_{3}); IR (NaCl) 2963 $(\mathrm{C}-\mathrm{H}), 2108\left(\mathrm{~N}=\mathrm{N}^{+}=\mathrm{N}^{-}\right), 1742(\mathrm{C}=\mathrm{O}), 1117(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.99$ (ddd, $J=7.3,5.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $4.99-4.96$ (m, 2H, CH), 4.57 (d, J=3.8 Hz, 1H, CH), 4.08 (dd, $J=8.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 3.91 (dd, J=5.7, $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.89 (dd, $J=8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.98$ (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3$ (C), 108.6 $(\mathrm{CH}), 85.5(\mathrm{CH}), 81.5(\mathrm{CH}), 72.6(\mathrm{CH}), 70.8(\mathrm{CH}), 68.5\left(\mathrm{CH}_{2}\right), 55.4$ $\left(\mathrm{CH}_{3}\right), 43.0\left(\mathrm{CH}_{2}\right), 25.7(\mathrm{CH}), 22.3\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 50.52; H, 6.71; N, 14.73. Found: C, 50.81; H, 6.64; N, 14.70.

4.2.13. (1S,3S,4R,5R,8R)-4-Acetamido-3-methoxy-2,6-dioxabicyclo[3.3.0]oct-8-yl isovalerate (12a)

To a solution of $11 \mathrm{a}(0.0900 \mathrm{~g}, 0.316 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}(3 / 1,1.3 \mathrm{~mL}$) was added triphenylphosphine $(0.207 \mathrm{~g}$, 0.789 mmol) at $0^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction mixture was quenched by addition of 3% aqueous $\mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with 3% aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$ and concentrated in vacuo to give the corresponding amine, which was used without further purification. To a solution of the crude amine and pyridine (0.0749 g , 0.947 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added acetic anhydride ($0.0645 \mathrm{~g}, 0.632 \mathrm{mmol}$). After stirring for 3 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/$ AcOEt $=1 / 2$) to give $\mathbf{1 2 a}(0.0913 \mathrm{~g}, 0.303 \mathrm{mmol}$, 96%) as a colorless oil. $R_{f}=0.18$ (silica gel, hexane/AcOEt $=1 / 2$); $[\alpha]_{D}^{23}$ +183.8 (c 1.0, CHCl_{3}); IR (NaCl) 3311 ($\mathrm{N}-\mathrm{H}$), $2963(\mathrm{C}-\mathrm{H}), 1736$ $(\mathrm{C}=\mathrm{O}), 1636(\mathrm{C}=0), 1191(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.08$ (d, J=6.8 Hz, 1H, CH), 5.02 (d, J=4.2 Hz, 1H, CH), 4.99 (ddd, $J=7.9,6.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.73(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.48(\mathrm{dd}, J=5.5$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.46$ (ddd, $J=6.8,5.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.06$ (dd, $J=9.3$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.78 (dd, $J=9.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.28-2.25 (m, 2H, CH2), $2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98(\mathrm{~d}$, $\left.J=6.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5$ (C), 169.8 (C), $104.1(\mathrm{CH}), 87.5(\mathrm{CH}), 77.7(\mathrm{CH}), 72.0(\mathrm{CH}), 68.3\left(\mathrm{CH}_{2}\right), 58.9(\mathrm{CH}), 55.1$ $\left(\mathrm{CH}_{3}\right), 43.0\left(\mathrm{CH}_{2}\right), 25.7(\mathrm{CH}), 23.2\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right)$; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{6}+\mathrm{Na}: 324.1423$, found: 324.1403.

4.2.14. ($1 S, 3 R, 4 R, 5 R, 8 R$)-4-Acetamido-3-methoxy-2,6-dioxabicyclo[3.3.0]oct-8-yl isovalerate (12b)

A solution of $\mathbf{1 1 b}(0.0638 \mathrm{~g}, 0.224 \mathrm{mmol})$ in EtOH (2.0 mL) was hydrogenated in the presence of $5 \% \mathrm{Pd}$ on activated carbon $(0.050 \mathrm{~g})$ at room temperature for 3 h . The Pd catalyst was removed by filtration through a pad of Celite and washed with ethyl acetate $(30 \mathrm{~mL})$. The filtrate was concentrated in vacuo to give the corresponding amine, which was used without further purification. To a solution of the crude amine and pyridine ($0.0538 \mathrm{~g}, 0.671 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added acetic anhydride $(0.0457 \mathrm{~g}$, 0.448 mmol). After stirring for 3 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=1 / 2$) to give $\mathbf{1 2 b}(0.0586 \mathrm{~g}, 0.195 \mathrm{mmol}, 87 \%)$ as a colorless oil. $R_{f}=0.15$ (silica gel, hexane/AcOEt=1/2); $[\alpha]_{D}^{23}+65.6$ (c 1.0, CHCl_{3}); IR (NaCl) 3281 ($\mathrm{N}-\mathrm{H}$), 2961 (C-H), $1740(\mathrm{C}=\mathrm{O}), 1659$ $(\mathrm{C}=\mathrm{O}), 1192(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.26(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.97 (ddd, $J=7.3,5.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.93 (dd, $J=4.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.51(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.33$
$(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.06\left(\mathrm{dd}, J=8.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78(\mathrm{dd}, J=8.4$, $\left.5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.13(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5$ (C), $169.9(\mathrm{C}), 109.5(\mathrm{CH}), 86.3(\mathrm{CH}), 81.1$ $(\mathrm{CH}), 73.0(\mathrm{CH}), 68.4\left(\mathrm{CH}_{2}\right), 62.1(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 43.0\left(\mathrm{CH}_{2}\right), 25.6$ $(\mathrm{CH}), 23.0\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{6}: \mathrm{C}$, 55.80; H, 7.69; N, 4.65. Found: C, 55.66; H, 7.46; N, 5.05.

4.2.15. Furanodictine A (1)

A solution of $12 \mathrm{a}(0.0190 \mathrm{~g}, 0.0621 \mathrm{mmol})$ in 70% aqueous $\mathrm{AcOH}(1.0 \mathrm{~mL})$ was heated under reflux. After 20 h , the reaction mixture was quenched by addition of saturated aqueous NaHCO_{3} (3 mL) and extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, AcOEt) to give 1 ($0.0150 \mathrm{~g}, 0.0522 \mathrm{mmol}, 84 \%$) as a colorless oil. Under identical conditions, reaction of $\mathbf{1 2 b}$ gave virtually the same yield of $\mathbf{1}$. $R_{f}=0.20$ (silica gel, AcOEt); $[\alpha]_{\mathrm{D}}^{22}+113.0\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR (NaCl) 3350 ($\mathrm{O}-\mathrm{H}$), 3281 (N-H), 2961 (C-H), 1738 ($\mathrm{C}=\mathrm{O}$), 1659 ($\mathrm{C}=\mathrm{O}$), $1190(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α-anomer: $\delta 6.17$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 5.55 (dd, J=4.4, $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.99 (ddd, $J=7.3,6.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.89 (dd, $J=5.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.56$ (dd, $J=5.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.39$ (ddd, $J=7.5,4.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.06 (dd, $J=9.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.95 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 3.81 (dd, $\left.J=9.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.28-2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); β-anomer: $\delta 5.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.23$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 5.10 (ddd, $J=6.1,5.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.90 (m, 1H, CH), 4.42-4.36 (m, 2H, CH), 4.13 (dd, J=10.1, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 3.81 (dd, J=10.1, $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.68 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 2.28-2.24 (m, 2H, CH 2), $2.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98(\mathrm{~d}$, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \alpha$-anomer: $\delta 172.6$ (C), $170.5(\mathrm{C}), 98.1(\mathrm{CH}), 87.0(\mathrm{CH}), 78.0$ $(\mathrm{CH}), 72.3(\mathrm{CH}), 68.6\left(\mathrm{CH}_{2}\right), 58.7(\mathrm{CH}), 43.0\left(\mathrm{CH}_{2}\right), 25.6(\mathrm{CH}), 23.1$ $\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right) ; \beta$-anomer: $\delta 172.7(\mathrm{C}), 170.0(\mathrm{C})$, $103.5(\mathrm{CH}), 86.7(\mathrm{CH}), 81.9(\mathrm{CH}), 73.1(\mathrm{CH}), 71.2\left(\mathrm{CH}_{2}\right), 60.9(\mathrm{CH})$, $42.9\left(\mathrm{CH}_{2}\right), 25.5(\mathrm{CH}), 23.0\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{6}+\mathrm{Na}$: 310.1267, found: 310.1241. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{6}$: C, 54.35; H, 7.37; N, 4.88. Found: C, 54.66; H, 7.03; N, 4.93.
4.2.16. ($1 R, 3 R, 4 R, 5 S, 8 R$)-8-Benzyloxy-3,4-isopropylidenedioxy-2,6dioxabicyclo[3.3.0]octane (13)
4.2.16.1. Reduction with LiAlH_{4}. To a solution of $4(1.26 \mathrm{~g}$, 4.12 mmol) in THF (32 mL) was added lithium aluminum hydride $(0.469 \mathrm{~g}, 12.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction mixture was quenched by addition of 50% aqueous THF (30 mL), filtered through a pad of Celite, and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (40 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=1 / 1$) to give the corresponding 1,4 -diol (1.17 g , $3.77 \mathrm{mmol}, 92 \%$) as colorless needles. $R_{f}=0.30$ (silica gel, hexane/ AcOEt=1/2); [$\alpha]_{D}^{26}-7.1$ (c 1.0, CHCl_{3}); IR (NaCl) $3323(\mathrm{O}-\mathrm{H}), 2949$ (C-H), $1497(\mathrm{C}=\mathrm{C}), 1134(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}, \operatorname{ArH}), 5.95(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.79(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.70 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.49 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.29(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.17$ (dd, $J=5.1,2.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$), 4.01 (ddd, $J=5.1,5.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.90-3.71$ (m, 2H, CH_{2}), 3.31 (br s, 1H, OH), 2.01 (br s, 1H, OH), 1.48 (s, 3H, CH3), 1.31 (s , $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5(\mathrm{C}), 128.5(\mathrm{CH}), 128.3$ (CH), 127.2 (C), $111.7(\mathrm{C}), 104.4(\mathrm{CH}), 85.2(\mathrm{CH}), 79.4(\mathrm{CH}), 77.9(\mathrm{CH})$, $75.6(\mathrm{CH}), 73.8\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na}$: 333.1314, found: 333.1320.
4.2.16.2. Tosylation and cyclization. To a mixture of 1,4-diol ($0.781 \mathrm{~g}, 2.52 \mathrm{mmol}$), triethylamine ($0.510 \mathrm{~g}, 5.04 \mathrm{mmol}$), and di- $n-$ butyltin oxide ($0.188 \mathrm{~g}, 0.755 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.9 \mathrm{~mL})$ was added p-toluenesulfonyl chloride ($0.576 \mathrm{~g}, 3.02 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 7 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ (10 mL) and extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the corresponding tosylate, which was used without further purification. To a solution of the crude tosylate in THF (6.2 mL) was added sodium hydride ($0.181 \mathrm{~g}, 7.54 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction mixture was quenched by addition of satd $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/AcOEt=6/1) to give 13 ($0.531 \mathrm{~g}, 1.82 \mathrm{mmol}, 72 \%$) as a colorless oil. $R_{f}=0.71$ (silica gel, hexane/AcOEt=1/2); $[\alpha]_{\mathrm{D}}^{22}+83.2\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR (NaCl) 2952 (CH), $1496(\mathrm{C}=\mathrm{C}), 1134(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.38-7.26 (m, 5H, ArH), 6.01 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.83 (dd, $J=3.8$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.74(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} 2), 4.58(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 4.56 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$), $4.47(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.07$ (ddd, $J=7.0,4.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.90 (dd, $J=8.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.69 (dd, $J=8.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5$ (C), $128.5(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{C})$, $112.3(\mathrm{C}), 107.2(\mathrm{CH}), 85.6(\mathrm{CH}), 85.1(\mathrm{CH}), 80.7(\mathrm{CH}), 78.6(\mathrm{CH}), 72.4$ $\left(\mathrm{CH}_{2}\right), 69.6\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}$: 315.1208 , found: 315.1194.

4.2.17. ($1 R, 4 R, 5 R, 8 R$)-8-Benzyloxy-3-methoxy-4-hydroxy-2,6dioxabicyclo[3.3.0]octane (14)

To a solution of 13 ($0.129 \mathrm{~g}, 0.442 \mathrm{mmol}$) in methanol (3 mL) was added DOWEX 50 W X-8 (H^{+}form, 0.5 g) at room temperature. After stirring for 12 h , the reaction mixture was filtered through a pad of Celite and washed with methanol (50 mL). The filtrate was concentrated in vacuo and the resulting residue was purified by column chromatography (silica gel, hexane/AcOEt=3/2) to give $\mathbf{1 4}$ ($0.116 \mathrm{~g}, 0.436 \mathrm{mmol}, 99 \%$) as a colorless oil. $R_{f}=0.23$ (silica gel, hexane/AcOEt=1/1); IR (NaCl) 3350 (O-H), 2937 (C-H), 1499 $(\mathrm{C}=\mathrm{C}), 1107(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α-anomer: $\delta 7.37-7.26$ ($\mathrm{m}, 5 \mathrm{H}, \operatorname{ArH}$), 5.10 (d, J=4.4 Hz, 1H, CH), 4.71 (d, $\left.J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.59\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.58(\mathrm{~m}, 1 \mathrm{H}$, CH), 4.43 (d, J=4.4 Hz, 1H, CH), 4.14 (br s, $1 \mathrm{H}, \mathrm{OH}$), 4.06-3.76 (m, 3H, $\mathrm{CH}, \mathrm{CH}_{2}$), $3.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \beta$-anomer: $\delta 7.37-7.26$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{ArH}$), 4.98 (s, 1H, CH), 4.78 (d, J=11.5 Hz, 1H, PhCH2), 4.54 (d, $\left.J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.06-3.76$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$), $3.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α-anomer: $\delta 137.5$ (C), $128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9$ (C), $104.5(\mathrm{CH}), 88.3(\mathrm{CH}), 80.7(\mathrm{CH}), 78.2(\mathrm{CH}), 77.8(\mathrm{CH}), 72.7\left(\mathrm{CH}_{2}\right)$, $68.4\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right)$; β-anomer: $\delta 137.5(\mathrm{C}), 128.4(\mathrm{CH}), 128.1(\mathrm{CH})$, 127.9 (C), 110.7 (CH), 87.6 (CH), $81.5(\mathrm{CH}), 78.4(\mathrm{CH}), 78.1(\mathrm{CH}), 72.1$ $\left(\mathrm{CH}_{2}\right), 69.4\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}: 289.1052$, found: 289.1024.

4.2.18. ($1 \mathrm{~S}, 4 \mathrm{4}, 5 R, 8 R$)-4-Azido-8-benzyloxy-3-methoxy-2,6dioxabicyclo[3.3.0]octane (15)

To a solution of $\mathbf{1 4}(0.164 \mathrm{~g}, 0.616 \mathrm{mmol})$ and pyridine $(0.146 \mathrm{~g}$, 1.85 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added trifluoromethanesulfonic anhydride ($0.348 \mathrm{~g}, 1.23 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the corresponding trifluoromethanesulfonate, which was used without further purification. To a solution of the crude trifluoromethanesulfonate in DMF $(1.2 \mathrm{~mL})$ was added sodium azide ($0.0802 \mathrm{~g}, 1.23 \mathrm{mmol}$). After
stirring for 80 h at $60^{\circ} \mathrm{C}$, the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/ AcOEt=7/1) to give $15(0.110 \mathrm{~g}, 0.378 \mathrm{mmol}, 61 \%)$ as a colorless oil. $R_{f}=0.39$ (silica gel, hexane/AcOEt $=3 / 1$); $[\alpha]_{D}^{25}+261.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (NaCl) $3031(\mathrm{C}-\mathrm{H}), 2112\left(\mathrm{~N}=\mathrm{N}^{+}=\mathrm{N}^{-}\right), 1497(\mathrm{C}=\mathrm{C}), 1107$ (C-O) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 5.08 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.77 (dd, $J=6.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.72 (d, $\left.J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.60\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.58(\mathrm{dd}, J=4.8$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.03$ (ddd, $J=6.8,4.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.96$ (dd, $J=8.6$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.87 (dd, $J=6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.75 (dd, $\left.J=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 137.5(\mathrm{C}), 128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{C}), 108.6(\mathrm{CH}), 82.2(\mathrm{CH})$, $79.3(\mathrm{CH}), 78.3(\mathrm{CH}), 72.8\left(\mathrm{CH}_{2}\right), 69.9\left(\mathrm{CH}_{2}\right), 67.5(\mathrm{CH}), 55.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}$: 314.1117, found: 314.1100.
4.2.19. (1S,4S,5R,8R)-4-Acetamido-8-benzyloxy-3-methoxy-2,6dioxabicyclo[3.3.0]octane (16)

To a solution of $15(0.0600 \mathrm{~g}, 0.206 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}(3 / 1,0.8 \mathrm{~mL}$) was added triphenylphosphine (0.118 g , 0.450 mmol) at $0^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction mixture was quenched by addition of 3% aqueous $\mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with 3% aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$ and concentrated in vacuo to give the corresponding amine, which was used without further purification. To a solution of the crude amine and pyridine (57.1 mg , 0.722 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$ was added acetic anhydride ($0.0369 \mathrm{~g}, 0.361 \mathrm{mmol}$). After stirring for 3 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracted with AcOEt $(10 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, AcOEt) to give $16(0.0411 \mathrm{~g}, 0.134 \mathrm{mmol}, 65 \%)$ as a colorless oil. $R_{f}=0.18$ (silica gel, hexane/AcOEt $=1 / 2$); $[\alpha]_{D}^{28}+108.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (NaCl) 3314 ($\mathrm{N}-\mathrm{H}$), 2969 (C-H), 1647 ($\mathrm{C}=\mathrm{O}$), 1547 ($\mathrm{C}=\mathrm{C}$), 1105 (CO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.38(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.96(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.77(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.71-4.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 4.59\left(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.29$ (ddd, $J=6.2,4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.08$ (m, 1H, CH), 4.06 (dd, $J=9.3$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.78\left(\mathrm{dd}, \mathrm{J}=9.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1$ (C), 137.4 (C), 128.6 $(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{C}), 111.2(\mathrm{CH}), 80.9(\mathrm{CH}), 80.5(\mathrm{CH}), 77.7(\mathrm{CH})$, $72.9\left(\mathrm{CH}_{2}\right), 72.2\left(\mathrm{CH}_{2}\right), 56.4(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$ m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5}+\mathrm{Na}$: 330.1317, found: 330.1302.

4.2.20. ($1 \mathrm{~S}, 4 \mathrm{4}, 5 \mathrm{R}, 8 \mathrm{R}$)-4-Acetamido-8-benzyloxy-3-(tert-
 butyldimethylsilyloxy)-2,6-dioxabicyclo[3.3.0]octane (17)

4.2.20.1. Hydrolysis. A solution of $\mathbf{1 6}(0.0340 \mathrm{~g}, 0.111 \mathrm{mmol})$ in 70% aqueous $\mathrm{AcOH}(4.0 \mathrm{~mL})$ was heated under reflux. After 20 h , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and extracted with $\operatorname{AcOEt}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, AcOEt/methanol=35/ 1) to give the corresponding lactols ($0.0320 \mathrm{~g}, 0.109 \mathrm{mmol}, 98 \%$) as a colorless oil. $R_{f}=0.25$ (silica gel, AcOEt/methanol $=35 / 1$); $[\alpha]_{D}^{23}$ +113.6 (c 1.0, CHCl ${ }_{3}$); IR (NaCl) $3350(\mathrm{O}-\mathrm{H}), 3281(\mathrm{~N}-\mathrm{H}), 2965(\mathrm{C}-$ H), 1680 ($\mathrm{C}=\mathrm{O}$), 1508 ($\mathrm{C}=\mathrm{C}$), $1190(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \alpha$-anomer: $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, NH), 5.35 (d, J=3.1 Hz, 1H, CH), 4.89 (dd, $J=5.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.81 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 4.80\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.53(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH_{2}), 4.24 (ddd, $J=7.0,5.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.07 (m, 1H, CH), 3.93
(dd, $J=9.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.81 (dd, $J=9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.63 (br s, 1H, OH), 2.17 (s, 3H, CH3); β-anomer: $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}$), 6.22 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 5.42 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.81 (d, J=11.9 Hz, 1H, PhCH ${ }_{2}$), 4.64 (dd, $J=5.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.54 (d, $\left.J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH})_{2}\right), 4.46$ (dd, $\left.J=5.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 4.41$ (ddd, $J=6.6,5.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.07 (ddd, $J=8.4,5.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.74 (dd, $J=7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.73 (dd, $J=7.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.04 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α-anomer: $\delta 170.2(\mathrm{C}), 137.0(\mathrm{C}), 128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{C}), 104.5(\mathrm{CH})$, $80.6(\mathrm{CH}), 80.3(\mathrm{CH}), 78.1(\mathrm{CH}), 72.7\left(\mathrm{CH}_{2}\right), 71.6\left(\mathrm{CH}_{2}\right), 58.7(\mathrm{CH}), 23.0$ $\left(\mathrm{CH}_{3}\right) ; \beta$-anomer: $\delta 170.2$ (C), 137.0 (C), 128.6 (CH), $128.2(\mathrm{CH}), 128.1$ (C), $96.8(\mathrm{CH}), 82.6(\mathrm{CH}), 78.3(\mathrm{CH}), 72.9\left(\mathrm{CH}_{2}\right), 71.9\left(\mathrm{CH}_{2}\right), 71.7(\mathrm{CH})$, $58.7(\mathrm{CH}), 23.1\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}+\mathrm{Na}$: 316.1161, found: 316.1146.
4.2.20.2. TBS-protection. To a solution of the lactols $(0.0320 \mathrm{~g}$, $0.109 \mathrm{mmol})$ and imidazole ($0.0260 \mathrm{~g}, 0.382 \mathrm{mmol}$) in DMF (1.0 mL) was added tert-butyldimethylsilyl chloride ($0.0444 \mathrm{~g}, 0.295 \mathrm{mmol}$). After stirring for 3 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracted with $\operatorname{AcOEt}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/ $\mathrm{AcOEt}=1 / 1$) to give $17(0.0440 \mathrm{~g}, 0.108 \mathrm{mmol}, 99 \%)$ as a colorless oil. $R_{f}=0.30$ (silica gel, hexane/AcOEt=1/1); $[\alpha]_{\mathrm{D}}^{25}+78.4\left(c 0.9, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{NaCl}) 3308(\mathrm{~N}-$ H), $2955(\mathrm{C}-\mathrm{H}), 1659(\mathrm{C}=\mathrm{O}), 1107(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.51-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} H), 5.37(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.97 (dd, $J=6.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.95$ (dd, $J=4.6$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.78$ (d, $\left.J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.55(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH 2), 4.22 (ddd, $J=7.1,6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.06 (dd, $J=4.7,4.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 3.94\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1(\mathrm{C}), 137.5(\mathrm{C}), 128.5$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{C}), 103.4(\mathrm{CH}), 81.0(\mathrm{CH}), 80.6(\mathrm{CH}), 77.5(\mathrm{CH})$, $73.1\left(\mathrm{CH}_{2}\right), 72.8\left(\mathrm{CH}_{2}\right), 58.0(\mathrm{CH}), 25.9(\mathrm{C}), 23.0\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right),-4.6$ $\left(\mathrm{CH}_{3}\right),-5.2\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Si}+\mathrm{Na}$: 430.2026, found: 430.2051.
4.2.21. (1S,4S,5R,8R)-4-Acetamido-3-(tert-butyldimethylsilyloxy)-2,6-dioxabicyclo[3.3.0]oct-8-yl isovalerate (18)
4.2.21.1. Deprotection of benzyl group by hydrogenolysis. A solution of $17(0.0190 \mathrm{~g}, 0.0467 \mathrm{mmol})$ in ethyl acetate $(1.0 \mathrm{~mL})$ was hydrogenated in the presence of $5 \% \mathrm{Pd}$ on activated carbon (0.025 g) at room temperature for 12 h . The Pd catalyst was removed by filtration through a pad of Celite and washed with ethyl acetate $(30 \mathrm{~mL})$. The filtrate was concentrated in vacuo and the resulting residue was purified by column chromatography (silica gel, hexane/AcOEt=1/2) to give the corresponding alcohol ($0.0147 \mathrm{~g}, 0.0463 \mathrm{mmol}, 99 \%$) as a colorless oil. $R_{f}=0.40$ (silica gel, hexane/ $\mathrm{AcOEt}=1 / 2$); $[\alpha]_{D}^{25}+78.4$ (c $0.9, \mathrm{CHCl}_{3}$); IR (NaCl) $3415(\mathrm{~N}-\mathrm{H}), 3300(\mathrm{O}-\mathrm{H}), 2930(\mathrm{C}-\mathrm{H}), 1655$ $(\mathrm{C}=\mathrm{O}), 1109(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.34(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.82-4.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 4.23(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}), 4.00$ (dd, $J=10.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.90 (dd, $J=10.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 2.67 (br s, $1 \mathrm{H}, \mathrm{OH}$), $2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.13$ (d, $\left.J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2(\mathrm{C}), 105.9(\mathrm{CH})$, $81.9(\mathrm{CH}), 77.4(\mathrm{CH}), 76.1(\mathrm{CH}), 70.2\left(\mathrm{CH}_{2}\right), 57.6(\mathrm{CH}), 25.6(\mathrm{C}), 23.2$ $\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right),-4.7\left(\mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Si}+\mathrm{Na}: 340.1556$, found: 340.1583 .
4.2.21.2. Esterification with isovaleric acid. To a solution of the alcohol ($0.0160 \mathrm{~g}, 0.0504 \mathrm{mmol}$), 4-dimethylaminopyridine (0.0062 mg , 0.0507 mmol), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($0.0193 \mathrm{mg}, 0.101 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added isovaleric acid ($0.0155 \mathrm{mg}, 0.152 \mathrm{mmol}$) at room temperature. After stirring for 2 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and extracted with ethyl acetate
($20 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/AcOEt=2/1) to give $\mathbf{1 8}(0.0178 \mathrm{~g}, 0.0444 \mathrm{mmol}, 88 \%)$ as a colorless oil. $R_{f}=0.25$ (silica gel, hexane/AcOEt=2/1); $[\alpha]_{D}^{23}+90.2$ (c 1.0, CHCl_{3}); IR (NaCl) $3271(\mathrm{~N}-\mathrm{H}), 2950(\mathrm{C}-\mathrm{H}), 1736(\mathrm{C}=\mathrm{O}), 1497$ ($\mathrm{C}=\mathrm{C}$), $1109(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.05(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} H), 5.29(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.15(\mathrm{dd}, J=5.8,5.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$), 4.86 (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.70$ (dd, $J=6.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.17 (ddd, $J=6.4,5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.05 (dd, $J=9.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 3.85 (dd, $\left.J=9.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23-2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.09$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.0(\mathrm{C})$, $170.0(\mathrm{C}), 104.5(\mathrm{CH}), 80.7(\mathrm{CH}), 79.7(\mathrm{CH}), 72.2(\mathrm{CH}), 71.1\left(\mathrm{CH}_{2}\right)$, $59.0(\mathrm{CH}), 43.0\left(\mathrm{CH}_{2}\right), 25.6(\mathrm{CH}), 25.5(\mathrm{C}), 23.1\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right)$, $22.2\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right),-4.7\left(\mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{Si}+\mathrm{Na}$: 424.2131, found: 424.2149 .

4.2.22. Furanodictine B (2)

To a solution of $\mathbf{1 8}(0.0160 \mathrm{~g}, 0.0399 \mathrm{mmol})$ in THF $(0.4 \mathrm{~mL})$ was added tetrabutylammonium fluoride $(1.0 \mathrm{M}$ solution in THF, $0.04 \mathrm{~mL}, 0.04 \mathrm{mmol}$). After stirring for 1 h , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and extracted with AcOEt ($10 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, AcOEt) to give $\mathbf{2}(0.0110 \mathrm{~g}, 0.0383 \mathrm{mmol}, 96 \%)$ as a colorless oil: $R_{f}=0.20$ (AcOEt); $[\alpha]_{\mathrm{D}}^{26}+104.8\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR (NaCl) 3413 ($\mathrm{O}-\mathrm{H}$), 3281 ($\mathrm{N}-\mathrm{H}$), 2939 ($\mathrm{C}-\mathrm{H}$), 1744 ($\mathrm{C}=\mathrm{O}$), 1659 $(\mathrm{C}=\mathrm{O}), 1190(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) α-anomer: $\delta 6.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.24(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.17$ (dt, J=6.2, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.98(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.61(\mathrm{dd}, J=6.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 4.22 (dt, $J=6.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.06$ (dd, $J=9.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.83 (dd, $J=9.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.40 (br s, 1H, OH), 2.26 (dd, $J=15.0$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.22 (dd, J=15.0, $\left.7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 2.04 (s, 3H, CH3), 0.98 (d, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); β-anomer: $\delta 6.18$ ($\left.\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 5.55(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, OH), 5.38 (dd, $J=5.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 5.17 (dt, $J=6.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.98 (dd, $J=5.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.53 (dd, $J=5.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.45 (dt, $J=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.08\left(\mathrm{dd}, J=9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.98$ (dd, $J=9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.28 (dd, $J=15.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.24 (dd, J=15.0, 7.3 Hz, 1H, CH2), $2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99$ (d, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$) ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) α-anomer: $\delta 172.3$ (C), 170.2 (C), 103.7 (CH), 80.3 (CH), 79.8 $(\mathrm{CH}), 72.8(\mathrm{CH}), 70.7\left(\mathrm{CH}_{2}\right), 59.2(\mathrm{CH}), 43.0\left(\mathrm{CH}_{2}\right), 25.6(\mathrm{CH}), 23.1$ $\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right) ; \beta$-anomer: $\delta 172.3(\mathrm{C}), 170.2(\mathrm{C}), 96.6$ $(\mathrm{CH}), 80.7(\mathrm{CH}), 80.6(\mathrm{CH}), 73.4(\mathrm{CH}), 71.2\left(\mathrm{CH}_{2}\right), 54.6(\mathrm{CH}), 43.0\left(\mathrm{CH}_{2}\right)$, $25.6(\mathrm{CH}), 23.1\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{6}+\mathrm{Na}$: 310.1267 , found: 310.1268.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science. We acknowledge Nanotechnology Network Project (Kyushu-area Nanotechnology Network) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan

References and notes

1. Kikuchi, H.; Saito, Y.; Komiya, J.; Takaya, Y.; Honma, S.; Nakahata, N.; Ito, A.; Oshima, Y. J. Org. Chem. 2001, 66, 6982.
2. Maeda, Y.; Inouye, K.; Takeuchi, I. Dictyostelium A Model System for Cell and Development Biology. Frontiers Science Series No. 21; Universal Academy.: Tokyo, 1997.
3. Yoda, H.; Suzuki, Y.; Takabe, K. Tetrahedron Lett. 2004, 45, 1599.
4. Mereyala, H. B.; Baseeruddin, M.; Koduru, S. R. Tetrahedron: Asymmetry 2004, 15, 3457.
5. Matsuura, D.; Nojiri, T.; Suzuki, Y.; Takabe, K.; Yoda, H. Synlett 2005, 287.
6. (a) Yoda, H.; Nakaseko, Y.; Takabe, K. Tetrahedron Lett. 2004, 45, 4217; (b) Matsuura, D.; Takabe, K.; Yoda, H. Tetrahedron Lett. 2006, 47, 1371.
7. Boger, D. L.; Ichikawa, S.; Zhong, W. J. Am. Chem. Soc. 2001, 123, 4167.
8. (a) Martinelli, M. J.; Vaidyanathan, R.; Khau, V. V. Tetrahedron Lett. 2000, 41, 3773; (b) Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447.
9. Etherification with $\mathrm{Ag}_{2} \mathrm{O}$ as a base interestingly gave the α-anomer predominantly in 95% isolated yield ($\alpha / \beta=93 / 7$, determined by ${ }^{1} \mathrm{H}$ NMR analysis).
10. It is not necessary to separate the two anomeric mixture, since these compounds should be hydrolyzed to the corresponding lactol function at the final stage for the synthesis of $\mathbf{1}$, resulting in an anomeric mixture again. This process, however, possesses desirable advantages of not only avoiding any confusion in identification on TLC at each stage of work, but being able to proceed without extra separation of reaction products.
11. Mitsunobu, O. Synthesis 1981, 1.
12. Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
13. Determined by ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR analyses. We postulate at present that this high stereoselective performance could be attributed to the convexity of the cis-configurated bicyclic structure. It would proceed through the preferential attack of H^{-}to the carbonyl function from the bottom face of the ketones, respectively, due to the shielding effect of the bis-furan group independent of stereochemistry of the anomer center.
14. Yoda, H.; Egawa, T.; Takabe, K. Tetrahedron Lett. 2003, 44, 1643.
15. For Staudinger reaction, see: (a) Staudinger, H.; Meyer, J. Helv. Chem. Acta 1919, 2, 635; (b) Homer, L.; Gross, A. Ann. 1955, 591, 117; (c) Hank-ovszky, H. O.; Hideg, K.; Lex, L. Synthesis 1981, 147 and recent examples, see; (d) Eipert, M.; Maichle-Moessmer, C.; Maier, M. E. Tetrahedron 2003, 59, 7949; (e) Lucas, S.; Luther, L. M.; Burke, S. D. Org. Lett. 2004, 6, 2965 Both reactions under Staudinger conditions and hydrogenation ones with $10 \% \mathrm{Pd}$ on carbon could be applicable for the preparation of 12a or $\mathbf{1 2 b}$.
16. Synthesized furanodictine A (1) from 12a as well as 12b in this report was a mixture of two anomers $\left\{\alpha / \beta=6.3 / 1\right.$ (natural, $\alpha / \beta=7 / 1$) $\left.{ }^{1}\right\}$. In conclusion, serious differences were not observed between α - and β-anomer of 7 upon carrying out the total synthesis of $\mathbf{1}$ independently. Furanodictine A previously reported in this laboratory ${ }^{3}$ was composed of two anomers $\left\{\alpha / \beta=3.9 / 1\right.$; $[\alpha]_{\mathrm{D}}{ }^{2}$ $\left.+132.6\left(c 0.72, \mathrm{CHCl}_{3}\right)\right\}$. The slight difference of the specific rotations between synthetic and natural 1 should be attributed to the ratio of these two anomers (α - and β-form).
17. These results would be attributed to the torsional strain based on the cisconfigurated bis-furan structure.
18. The ratio of the two anomers was easily determined by ${ }^{1} \mathrm{H}$ NMR, since the observed coupling constant corresponding to the α-anomer was 4. 4 Hz , indicating the cis-relationship and the other β-one has no coupling constant.
19. Synthesized furanodictine B in this report was a mixture $\{\alpha / \beta=1 / 2.4$ (natural, $\left.\alpha / \beta=2 / 3)^{1}\right\}$ of two anomers. The reason for the difference of the specific rotations, see Ref. 16.

[^0]: * Corresponding author. Tel./fax: +8153478 1150.

 E-mail address: tchyoda@ipc.shizuoka.ac.jp (H. Yoda).

