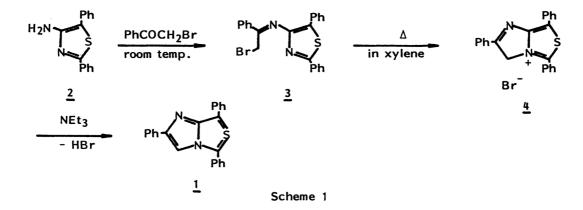

CHEMISTRY LETTERS, pp. 1491-1494, 1982. © The Chemical Society of Japan 1982

A NOVEL TETRAVALENT SULFUR COMPOUND, 1,3,6-TRIPHENYLIMIDAZO[1,2-c]THIA^{IV}ZOLE; SYNTHESIS AND PERIPHERAL CYCLOADDITION REACTION

Otohiko TSUGE*, Shuji KANEMASA, and Takayoshi HAMAMOTO Research Institute of Industrial Science, and Department of Molecular Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Kasuga-shi, Fukuoka 816

A novel tetravalent sulfur compound, 1,3,6-triphenylimidazo[1,2-c]thia^{IV}zole, was synthesized, which reacted with N-(p-tolyl)maleimide as both an azomethine ylide and a thiocarbonyl ylide 1,3-dipole yielding four 1:1 adducts that contained each endo and exo isomers. The cycloadducts of azomethine ylide were found to isomerize into those of thiocarbonyl ylide through a retro 1,3-dipolar cycloaddition reaction. It was offered that this nitrogen-bridged tetravalent sulfur compound was to be designated as a *bi-perifunctional* compound.

In the previous papers, it has been reported that the thiocarbonyl ylide 1,3-dipole of 1,3-diphenylthia^{IV}zolo[3,4-a]benzimidazole reacts with electron-deficient acetylenes and olefins in a stereoand regioselective manner.^{1,2} The imidazo[1,2-c]thia^{IV}zole <u>A</u>, a benzo-free analog of the above tetravalent sulfur compound, is expected to function not only as a thiocarbonyl ylide <u>B</u> but also an azomethine ylide 1,3-dipole <u>C</u>.



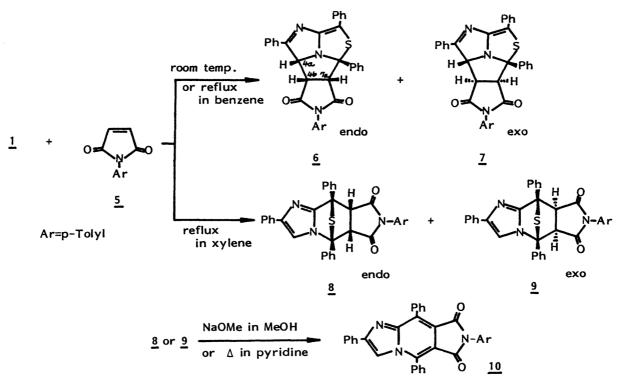
Three examples for the synthesis of nitrogen-bridged tetravalent sulfur compound that carries two functional parts of periphery have been reported, ³⁻⁵ two of them actually demonstrating the contribution of both functionalities. Thus a thia^{IV}zolo[3,4-b]indazole⁴ and pyrrolo[1,2-c]thia^{IV}zole derivative⁵ cycloadded to N-phenylmaleimide as an azomethine imine and azomethine ylide, respective-ly, while both of them reacted with dimethyl acetylenedicarboxylate as a thiocarbonyl ylide. No conceivable explanation, however, has been represented about what led to such different reactions.

In the present communication, we wish to report the synthesis of 1,3,6-triphenylimidazo[1,2-c]thia^{IV}zole, a new tetravalent sulfur system with a bridgehead nitrogen atom, and its unusual reactions in which it has contributed in two ways, as an azomethine ylide and a thiocarbonyl ylide 1,3-dipole, toward a dipolarophile, N-(p-tolyl)maleimide. In addition, we would like to propose that a word "*bi-perifunctional*" is to be used to express the unique nature of this kind of compound.⁶ Synthesis of 1,3,6-Triphenylimidazo[1,2-c]thia^{IV}zole 1.

Treatment of 4-amino-2,5-diphenylthiazole 2^7 with an equivalent amount of phenacyl bromide in ethanol at room temperature precipitated 3, mp 122-123 °C (dec.), as a colorless solid in 60 % yield. The product 3 is rather unstable suffering a decomposition on its purification by recrystallization.

But, it was given a satisfactory analysis as well as spectral data⁸ for the assigned structure, 4-(2bromo-1-phenylethylideneamino)-2,5-diphenylthiazole. When heated under reflux in xylene for 0.5 h, <u>3</u> readily cyclized into 1,3,6-triphenyl-5H-imidazo[1,2-c]thiazolium bromide <u>4</u>, mp 236.5-240 °C, in 83 8 yield. This salt 4 corresponds to a protonated form of the tetravalent sulfur compound 1 (Scheme 1).

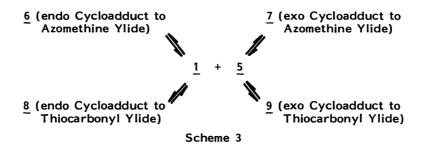
Deprotonation of $\underline{4}$ with triethylamine in chloroform gave a halogen-free product $\underline{1}$, mp 194-196.5 °C, as orange needles (from ethanol) in 97 % yield. Structural determination of $\underline{1}$, 1,3,6-triphenylimidazo[1,2-c]thia^{iv}zole, was based on the analysis and spectral data, ⁹ especially on the electronic spectrum that showed an absorption maximum at 487 nm (log ε 3.92). This nitrogen-bridged tetravalent sulfur compound $\underline{1}$, the second isolated example of this kind of compounds, ¹⁰ has such a remarkable thermal stability that it is recovered unchanged even when refluxed in xylene for 6 h.¹¹ *Peripheral Cycloaddition Reactions of* 1 *with* N-(p-Tolyl)maleimide 5.


The reaction of <u>1</u> with an equivalent amount of N-(p-tolyl)maleimide <u>5</u> in dry benzene, under nitrogen at room temperature for 24 h, gave a mixture of two isomeric 1:1 adducts which were isolated through a column chromatography on silica gel using benzene as an eluent: <u>6</u>, mp 172.5-174 $^{\circ}$ C, as yellow needles in 26 % yield and 7, mp 197-199 $^{\circ}$ C, as red prisms in 47 % yield (Scheme 2).

The structures of <u>6</u> and <u>7</u> were determined as the endo and exo [3 + 2] cycloadducts to the azomethine ylide 1,3-dipole of <u>1</u>, respectively, on the basis of the spectral data.¹² The ¹H-NMR spectra indicate the presence of three consecutive methine hydrogens whose coupling constants are 9.5 (J_{4a-4b}) and 9.0 Hz (J_{4b-7a}) for <u>6</u>, and 3.0 (J_{4a-4b}) and 9.5 Hz (J_{4b-7a}) for <u>7</u>, supporting the endo and exo configurations.

The relative yields between <u>6</u> and <u>7</u> were found to depend on the reaction conditions such as reaction temperature, time and solvent as shown in Table 1. Below 80 %, the only isolated products are <u>6</u> and <u>7</u>. The reaction in pyridine at room temperature is favorable for the formation of endo adduct 6, whereas the reaction in benzene at 80 % predominantly gives the exo adduct <u>7</u>. At 110 %

Reaction Conditions				Products (yield %)			
Temperature	Solvent	Time	Total Yield(%)	<u>6</u>	<u>7</u>	8	<u>9</u>
room temp.	benzene	24 h	73	26	47	-	-
room temp.	pyridine	24	89	52	37	-	-
reflux (80 ℃)	benzene	3	70	10	60	-	-
80 °C	pyridine	0.5	73	34	39	-	-
reflux (110 °C)	toluene	2	68	+	9	11	48
reflux (115 ℃)	pyridine	1.5	68	3	6	8	51
reflux (140 ℃)	xylene	1	70	_	_	10	60


Table 1. The Reaction of 1 with 5.

(reflux in toluene) or at 115 $^{\circ}$ C (reflux in pyridine), the other two products, <u>8</u> and <u>9</u>, are formed together with small amounts of two adducts <u>6</u> and <u>7</u>.

When the same reaction was carried out in xylene under reflux for 1 h, no traces of $\underline{6}$ and $\underline{7}$ were obtained but instead the two isomeric 1:1 adducts were afforded by a column chromatography on silica gel: $\underline{8}$, mp 215-216 °C, as colorless needles in 10 % yield and $\underline{9}$, mp 259.5-262 °C, as colorless needles in 60 % yield. The structures of $\underline{8}$ and $\underline{9}$ were elucidated as the endo and exo [3 + 2] cyclo-adducts to the thiocarbonyl ylide 1, 3-dipole of $\underline{1}$, respectively, on the basis of the spectral data. ¹³ In the ¹H-NMR spectrum the methine hydrogens of $\underline{8}$ (4.65 and 4.82 ppm) are observed in considerably lower fields than those of $\underline{9}$ (3.84 and 4.07 ppm) since those of $\underline{8}$ are deshielded by the sulfur atom. ¹⁴ When treated with sodium methoxide in methanol or refluxed in pyridine for 48 h, both $\underline{8}$ and $\underline{9}$ easily eliminated hydrogen sulfide to give the imidazo[1,2-a]pyrrolo[3',4'-c]pyridine $\underline{10}$, mp >300 °C, in excellent yields. The formation of $\underline{10}$ is consistent with the structures of $\underline{8}$ and $\underline{9}$.

It is concluded that the four isomeric cycloadducts, $\underline{6}$ to $\underline{9}$, all lie in a thermal equilibrium, and that $\underline{6}$ is the initial kinetically controlled product and $\underline{9}$ is the final thermodynamically controlled one, on the basis of the following isomerization reactions: i) At the very initial stage of the reaction of $\underline{1}$ with $\underline{5}$ in benzene at 80 °C, $\underline{6}$ is the only product (by ¹H-NMR); ii) A mixture of $\underline{6}$ and $\underline{7}$ ($\underline{6}/\underline{7}=1/12$)

is obtained by refluxing $\underline{6}$ or $\underline{7}$ in benzene for 18 h; iii) A mixture of $\underline{8}$ and $\underline{9}$ ($\underline{8}/\underline{9}=1/2$) is obtained by refluxing $\underline{6}$ or $\underline{7}$ in xylene for 4 h; iv) A mixture of $\underline{8}$ and $\underline{9}$ ($\underline{8}/\underline{9}=1/6$) is obtained by refluxing $\underline{8}$ or $\underline{9}$ in xylene for 24 h. The corresponding exo cycloadducts $\underline{7}$ and $\underline{9}$ are found to be more thermally stable than the endo ones $\underline{6}$ and $\underline{8}$ from the equilibrium compositions between $\underline{6}$ and $\underline{7}$ (1:12) and $\underline{8}$ and $\underline{9}$ (1:6).

The endo-exo isomerizations described above are confirmed to take place through a retro 1,3-dipolar cycloaddition reaction by the facts that the parent compounds $\underline{1}$ and $\underline{5}$ have been detected during the isomerization of $\underline{6}$ or $\underline{7}$ into their mixture in benzene-d₆ at 80 °C and of $\underline{8}$ or $\underline{9}$ into their mixture in xylene at 140 °C (by ¹H-NMR and thin layer chromatography). The isomerization into regio isomers would have taken the same reaction pathways (Scheme 3).

References

- 1. O. Tsuge, H. Shiraishi, and T. Takata, Chem. Lett., 1369 (1980).
- 2. O. Tsuge, H. Shiraishi, and M. Noguchi, Chem. Lett., 213 (1981).
- 3. H. Shimoharada, S. Ikeda, S. Kajigaeshi, and S. Kanemasa, Chem. Lett., 1237 (1977).
- 4. K. T. Potts and J. L. Marshall, J. Org. Chem., <u>41</u>, 129 (1976).
- 5. J. M. Kane, J. Org. Chem., 45, 5396 (1980).
- A bi-perifunctional compound is designated to be the one that carries two functionalities along the periphery of cyclic system. The first bi-perifunctional compound has been reported by Potts and his co-worker: K. T. Potts and D. McKeough, J. Amer. Chem. Soc., <u>96</u>, 4268 (1974).
- 7. E. C. Taylor, Jr., J. A. Anderson, and G. A. Berchtold, J. Amer. Chem. Soc., 77, 5444 (1955).
- 8. <u>3</u>: IR 1610 cm⁻¹; ¹H-NMR (CDCl₃) δ 4.89 (2H, s), 7.00-8.30 (15H, m); MS m/e 352 (M⁺-HBr).
- 9. <u>1</u>: IR 1585 cm⁻¹; ¹H-NMR (CDCl₃) δ 6.80-8.50 (16H, m, ArH + =CH-); UV λ_{max}^{EtOH} (log ε) 487 (3.92), 310 (3.85), 255 nm (4.04); MS m/e 352 (M⁺).
- 10. The first isolated example for tetravalent sulfur compounds with bridgehead nitrogens has been shown by Potts and his co-worker (see ref. 4).
- 11. Any spot other than that of 1 has not been detected in the TLC, while 1 partly decomposed to give a few spots after 24 h.
- ^{12.} <u>6</u>: IR 1775, 1705 cm⁻¹ (CO); ¹H-NMR (CDCl₃) δ 2.19 (3H, s), 3.72 (1H, dd, J=9.5, 9.0 Hz, 4b-H), 4.16 (1H, d, J=9.0 Hz, 7a-H), 5.14 (1H, d, J=9.5 Hz, 4a-H), 6.25-8.00 (19H, m); MS m/e 539 (M⁺).

<u>7</u>: IR 1780, 1710 cm⁻¹ (CO); ¹H-NMR (CDCl₃) δ 2.26 (3H, s), 3.31 (1H, dd, J=9.5, 3.0 Hz, 4b-H), 4.24 (1H, d, J=9.5 Hz, 7a-H), 5.48 (1H, d, J=3.0 Hz, 4a-H), 6.20-8.25 (19H, m); MS m/e 539 (M⁺).

- 13. <u>8</u>: IR 1780, 1710 cm⁻¹ (CO); ¹H-NMR $\delta 2.06$ (3H, s), 4.65, 4.82 (each 1H, d, J=9.0 Hz, CH), 6.80 (1H, s, =CH-), 6.54-8.22 (19H, m); MS m/e 539 (M⁺). <u>9</u>: IR 1770, 1720 cm⁻¹ (CO); ¹H-NMR $\delta 2.25$ (3H, s), 3.84, 4.07 (each 1H, d, J=6.5 Hz, CH), 6.88 (1H, s, =CH-), 6.90-7.88 (19H, m); MS m/e 539 (M⁺).
- The deshielding effect of the bridged sulfur atom in this kind of system has been discussed in the following reports: M. P. Cava, M. Behforouz, G. E. M. Husbands, and M. Srinivasan, J. Amer. Chem. Soc., <u>95</u>, 2561 (1973) and K. T. Potts and D. McKeough, J. Amer. Chem. Soc., <u>96</u>, 4268 (1974). See also refs. 1 and 2.

(Received July 29, 1982)