Rate Parameters for Reaction of Oxygen Atoms with C_2F_4 , CF_2CFCl and CF_2CCl_2

BY W. J. R. TYERMAN

Department of Physical Chemistry, University of Cambridge

Received 25th June, 1968

Ground-state CF_2 was monitored by kinetic spectroscopy after long wavelength flash photolysis of $C_2F_4+NO_2+N_2$ mixtures and was ascribed as a product of the overall reaction

 $O(2^{3}P)+C_{2}F_{4}\rightarrow CF_{2}O+CF_{2}.$

(1)

From the decrease in the CF₂ yield in competitive systems, rate constants relative to k_1 were determined for CF₂CFCl and CF₂CCl₂. The reactivities of the chlorofluoroethylenes show a similar trend with ionization potential to that established for hydrocarbon olefins. From preliminary measurements of the overall decomposition of C₂F₄ flashed in O₂ at 25°C, it is proposed that singlet CF₂ reacts with O₂ about 0.2 times as rapidly as with C₂F₄. Although there was no direct evidence for triplet CF₂ molecules formed in (1), the results are consistent with an earlier analysis of continuous photolysis experiments, if CF^{*}₂ is rapidly relaxed in collisions with NO₂ or NO.

Reactions of ground-state oxygen atoms with tetrafluoroethylene and perfluoropropene have been studied by Heicklen and collaborators ^{1,2} and those with some partially fluorinated olefins by Moss and Jennings.^{3, 4} The reactivities of fluoroolefins compared to the corresponding hydride at first decrease with substitution of F atoms adjacent to the double bond, but further substitution apparently reverses this trend so that C_2F_4 and C_2H_4 are about equally reactive at room temperature. Saunders and Heicklen ¹ studied the Hg-sensitized decomposition of N₂O in the presence of C_2F_4 and found that, in the absence of O₂, the yields of CF₂O and N₂ were equal. With small partial pressures of O₂ present, tetrafluoroethylene epoxide could also be isolated, and the yield of CF₂O was tripled. It was proposed that the reaction O+C₂F₄ forms *triplet* CF₂ (85 %) and an excited C₂F₄O (15 % at 23°C)² and that both species react with O₂.

Long-wavelength flash-photolysis of NO₂ is a convenient ^{6, 7} source of O(2³P). Preliminary experiments with $C_2F_4 + NO_2 + N_2$ mixtures ⁸ showed that ground state CF₂ molecules were present immediately after the photoflash and that CF₂ was not formed from CF₂CFCl or CF₂CCl₂. These reactions have been studied further, to establish whether or not triplet carbenes are formed, and because photometry of the CF₂ bands provides a simple method of measuring relative rate constants in competitive systems.

EXPERIMENTAL

The flash-photolysis apparatus was of conventional design, with a quartz photolysis flashlamp mounted parallel to a reaction cell 80 cm in length. A Pyrex cell was used in all experiments where it was necessary to restrict photolytic light to $\lambda > 300$ nm, to prevent direct photolysis of the olefins and to avoid formation of excited O atoms by photolysis of NO₂. Photolytic flash energies were 1065-1650 J, and the energy of the spectroscopic flash was 100 J. The intensities of the flashes decayed to half their maximum values in 40 and 10 µsec after initiation, respectively. The complete cell, photolamp and reflector assembly

was surrounded by a furnace which could be heated electrically to $\sim 150^{\circ}$ C and the temperature at various points along the cell could be measured by a thermocouple. Spectra were photographed in a Hilger Quartz Littrow spectrograph on Ilford HP3 plates, which were developed in Ilford Contrast FF developer (diluted 1+4) for 3 min. Plates were photometered with a Joyce-Loebl double-beam recording microdensitometer (model E12 mk III).

Preliminary experiments with a calibrated step-wedge established that the plate density varied linearly with logarithmic exposure in the density range obtained. Four bands of CF₂ were measured, all arising from molecules with no quanta of vibrational energy ⁹ and with $v'_2 = 7$ (246 nm), 6 (249 nm), 4 (255 nm) and 3 (258 nm). The shorter wavelength bands are more intense, but could not be measured on all plates because of inadequate background intensity, particularly in the experiments with CF₂CCl₂. Fig. 1 compares the CF₂ peak heights in experiments when C₂F₄+NO₂+N₂ mixtures were flashed in the whole cell and with half the cell blanked off. When an absorber is so dilute that pressure broadening is determined only by diluent molecules, the exponents of *l* and *c* in the Beer-Lambert relationship must be equal; fig 1 shows that, within experimental error, these exponents are unity for all the bands measured here. A similar conclusion was reached by Dalby,¹⁰ who monitored CF₂ absorption at 248.8 nm photoelectrically.

Peak height (mm) with 40 cm pathlength

FIG. 1.—Comparison of CF₂ peak heights for pathlengths of 80 and 40 cm. λ (nm) \bigcirc , 255; \triangle , 258; \Box , 246; and \blacksquare , 249.

Even at room temperature and a few torr total pressure, the colour of NO_2 +fluoroethylene mixtures bleached in 4-5 h. (Haszeldine ¹¹ has described addition reactions of NO_2 to fluorinated ethylenes at 50-65°C and higher total pressures.) Gas mixtures were therefore prepared immediately before photolysis in a glass vessel fitted with an electrically driven stirrer, pressures being measured by means of a glass spiral gauge of sensitivity 1·4 : 1. The preparation of the four-component gas mixtures probably introduces the major experimental uncertainties here. In the high temperature studies, there was no difference in CF₂ yield from mixtures which had been allowed to stand at 146°C for various periods up to 5 min, and therefore reaction of NO_2 with the olefins is unimportant under these conditions. In all experiments in which relative rate parameters were measured, the

FIG. 2.—Variation with time of CF₂ bands after flash photolysis of mixtures containing 0.09 torr NO₂, 2.0 torr C₂F₄ and (a) 48 torr N₂ (b) 25 torr O₂ and 23 torr N₂. Flash energy 1350 J, Pyrex cell.

To face page 165.]

W. J. R. TYERMAN

165

partial pressure of NO₂ was 0.09 torr and the total pressure was made up to 50 torr by addition of N₂, in order to minimize flash heating of the reaction mixtures.

Continuous photolysis was carried out in 1 l. Pyrex bulbs placed a few inches from a 60 W electric lamp, and products were sought by infra-red analysis with a Perkin-Elmer 257 spectrophotometer. Although the colour of NO₂ vanished rapidly on irradiation of mixtures with each of the fluoroethylenes, the only product identified was CF₂O, from C₂F₄. CF₂O, CFClO and CCl₂O were not detected in photolyzed CF₂CFCl or CF₂CCl₂+NO₂ mixtures.

MATERIALS

Tetrafluoroethylene was obtained by destructive distillation of degassed polymer; the products were first distilled from 196°K and then from 147°K. The final fraction contained about 1 % of perfluoropropylene, which is relatively inert to attack by $O(2^{3}P)^{2}$.

Nitrogen dioxide and CF₂CFCl (Matheson) and CF₂CCl₂ (Phase Separations Ltd.) were degassed and distilled on the vacuum line. No impurities were detected by infra-red analysis of these reagents. Nitrous oxide, ethylene (B.O.C. grade X) and SF₆ (I.C.I.) were degassed and used without further purification. N₂ (B.O.C., O₂ free) and O₂ (B.O.C.) were dried before use by slow passage through a packed trap at 77°K.

RESULTS

FORMATION OF GROUND STATE CF_2

Fig. 2 shows kinetic absorption spectra of the CF₂ bands after flashing C_2F_4 + NO₂+N₂ or C_2F_4 +NO₂+O₂ mixtures. The rate of appearance of CF₂ and the final intensity were not affected by addition of up to 200 torr O₂, 40 torr SF₆ or 100 torr N₂O. With 37.5 torr C_2F_4 , 0.04 torr NO₂ and 700 torr O₂, the CF₂ intensity was decreased by 25 %, relative to a mixture with 700 torr N₂ in place of the O₂. Under these conditions, the reaction O+O₂+O₂→O₂+O₃ is expected to be ~0.4 times as fast as O+C₂F₄, in agreement with the observed decrease in CF₂ yield. The constancy of the peak heights with various diluents also shows that the pressure broadening of the CF₂ bands varies little for the gases and pressures employed.

It was assumed that the CF_2 formed by the pseudo-first order decay of O atoms or an excited species and $\ln [(CF_2)_{t'} - (CF_2)_t]$ was plotted against t (where t' is a delay time ~200 μ sec.) The CF_2 intensity did not decrease appreciably from its maximum value in 1 msec after the flash. Despite the large scatter, satisfactory straight lines were obtained (fig. 3) and fig. 4 illustrates the variation of the measured gradients with C_2F_4 concentration. The data of fig. 4 are consistent with the scheme:

$$O(2^{3}P) + C_{2}F_{4} \rightarrow CF_{2}O + CF_{2}$$

$$\tag{1}$$

$$O(2^{3}P) + NO_{2} \rightarrow NO + O_{2}$$
⁽²⁾

and agree well with the published values of k_1^{1} and k_2^{6} , at low partial pressures of C_2F_4 , assuming 30 % decomposition of the NO₂ during the flash. At higher C_2F_4 concentrations, CF_2 appearance follows the "tail" of the photoflash, corresponding to $k_{\text{effective}} = 5 \times 10^4 \text{ sec}^{-1}$. Singlet CF_2 must therefore form either directly or by rapid deactivation of an excited species.

The absolute CF_2 yield was measured approximately by comparing the CF_2 intensities with those from CF_2CFCl or CF_2CCl_2 (when these olefins were flashed in a quartz cell). The extents of decomposition were taken to be the ratios of CF_2 intensities in repeatedly flashed single mixtures. In one flash, 30 % of a mixture containing 0.09 torr NO₂, 37.5 torr C_2F_4 and 12.4 torr N₂ was decomposed, and the CF_2 peak heights (at 199 μ sec delay) were 0.6 those from 2.0 torr CF_2CFCl (in 48 torr N₂) and 1.0 times those from 1.0 torr CF_2CCl_2 (in 49 torr N₂). The extents of decomposition of the olefins were estimated to be respectively 3 and 6 %, leading to values of 0.036 and 0.06 torr for the partial pressure of CF_2 in the C_2F_4 +NO₂

mixture. These estimates are probably high because CFClCFCl and C_2Cl_4 are ultimate products of the photolyses ^{12, 13} as well as polymers, which lead to overestimation of the extent of decomposition. Furthermore, the absorption spectrum

FIG. 3.—Variation with time of CF₂ concentration. Partial pressures (torr): 0.045 NO₂ and 0.5, •; or \Box , \blacksquare , 1.1 C₂F₄. 0.09 NO₂ and \triangle , \blacktriangle 2.0,; or \bigcirc , \bigcirc , 4.5 C₂F₄.

FIG. 4.—Dependence of rate of CF_2 formation on concentration of C_2F_4 . 0.09 torr NO_2 , total pressure 50 torr \bigcirc (N₂) or \bigcirc (SF₆); 0.045 torr NO_2 , total pressure 25 torr N_2 , \triangle .

of CCl can be observed strongly after flashing CF_2CCl_2 ,¹² and so the quantum yield of CF_2 is possibly less than unity. The overestimation of CF_2 yields will be partly compensated if CF_2 reacts rapidly with CFCl or CCl_2 . The analysis of the continuous photolysis experiments ¹ suggest that there is an 85% yield of CF_2^* from reaction (1) at 23°C, in good general agreement with the approximate measurement made here.

RELATIVE RATE CONSTANTS FOR REACTIONS OF O ATOMS

Relative rate parameters were determined by measuring the CF_2 yield when C_2H_4 , CF_2CFCl or CF_2CCl_2 were present to compete with C_2F_4 for O atoms. The chlorinated olefins absorb only weakly in the region of the CF_2 bands, and do not form CF_2 on flashing with NO₂ either at 296 or 419°K. If all the O atoms are removed by reactions (1), (2) and (3):

$$O + olefin \rightarrow products$$
(3)
$$[CF_2]^{-1} = [CF_2]_0^{-1} (1 + \{k_2[NO_2] + k_3[R]\}/k_1[C_2F_4]),$$
(A)

where [R] is the concentration of competing olefin and $[CF_2]_0$ is a constant, proportional to the number of O atoms produced in the cell. If $k_3[R]/k_2$ is sufficiently large, only small errors arise from the change in $[NO_2]$ due to photolysis and to consumption in (2). Although all the O atoms apparently release a CF_2 molecule, the analysis will still be valid if only a fraction release CF_2 , so long as this fraction remains constant within any experiment. There was no evidence for reaction of the initial adduct with C_2F_4 or the other olefins at room temperature.

Results were derived in two ways: by plotting reciprocals of CF₂ peak heights either against [R], keeping $[C_2F_4]$ fixed, or against $1/[C_2F_4]$ with [R] constant within an experiment. The second method was necessary for the experiments with chlorinated olefins because they absorb light weakly in the region of the CF_2 bands. With ethylene, experiments of each type were possible. In essence, the analysis of measurements consists of extrapolation to the intercept where $[CF_2]^{-1} = 0$. This intercept is the (negative) value of $[C_2F_4]^{-1}$ or $[C_2H_4]$ required to make the right-hand side of eqn. (A) equal to zero. Fig. 5-7 are typical plots, and fig. 8 and 9 show reciprocal intercepts plotted against [R], in experiments at 296 $(\pm 1)^\circ$ and 419 $(\pm 2)^\circ$ K. Because of the long extrapolations in some experiments, the values of the intercepts are accurate only to ± 10 %. At room temperature, the results for ethylene either at constant $[C_2F_4]$ or constant $[C_2H_4]$ agree well, confirming that the CF₂ has no precursor which can be scavenged by the olefin. The agreement of $k_1 = (1.05 \pm 0.05)k_{C_2H_4}$ with the previous ratio $(1\cdot 1\pm 0\cdot 1)^{1}$ at 296°K is good evidence that the CF₂ and CF₂O monitored in the two sets of experiments are produced in the same process, which is presumably reaction (1). Experiments were also carried out with mixtures containing fixed amounts of C_2F_4 and varying the C_2H_4 at 419°K. The resulting graphs were adequately linear, but corresponding to $k_1 = (0.3 \pm 0.1)k_{C_{2H_4}}$ which is much less than the value from measurement of CF₂O, $k_1 = 0.66k_{C_{2H_4}}$ at 398°K, indicating that CF₂ may react with C_2H_4 or a product at this temperature. Since Saunders and Heicklen were able to measure the more stable product, their value for the relative rate constant at high temperatures is adopted, and provides absolute rate constants for the other olefins (table 1). Relative activation energies were calculated from the equation

$$E_{\rm rel} = R \left[\frac{\ln k_{\rm rel_T} - \ln k_{\rm rel_{T'}}}{1/T' - 1/T} \right],$$

and the error limits quoted are derived from the standard deviations of the k_{rel} measurements shown on fig. 8 and 9.

FIG. 5.—Reciprocal relative yield of CF₂ against C₂H₄ partial pressure (with C₂F₄ constant) at 296°K. \bigcirc , \bigcirc , 12.5; and \square , \blacksquare , 6.25 torr C₂F₄; \bigcirc , \blacksquare , from band at λ 249 nm; and \bigcirc , \square , from band at 246 nm.

FIG. 6.—Reciprocal relative yield of CF₂ against $[C_2F_4]^{-1}$, at 296°K. CF₂CCl₂; \bullet , 12.5; and \bigcirc , 18.8 torr; CF₂CFCl: \triangle , 9.4 torr; \blacktriangle , no other olefin.

W. J. R. TYERMAN

FLASH PHOTOLYSIS OF $C_2F_4+O_2$ mixtures

If they are formed at all, triplet CF_2 molecules must be relaxed rapidly. If they are never formed, the discrepancies between these results and the analysis of the continuous photolysis experiments indicate that O_2 reacts either with excited C_2F_4

FIG. 7.—Reciprocal relative yield of CF₂ against $[C_2F_4]^{-1}$, at 419°K. CF₂CCl₂: •, 12.5; and \bigcirc , 6.25 torr; CF₂CFCl, \triangle 12.5 torr; \blacktriangle , no other olefin.

FIG. 8.—Variation of reciprocal intercepts with olefin partial pressure, 296°K. \bigcirc , CF₂CCl₂; \bigcirc , CF₂CFCl; \square , C₂H₄

molecules (possibly formed by recombination of CF_2) or with singlet CF_2 . This reaction could be more important than was realized,¹⁰ if the spin-allowed and exothermic process

$$CF_2 + O_2 \rightarrow CF_2 O + O(2^3 P) \tag{4}$$

were followed rapidly by (1), regenerating CF_2 . Reaction (4) is relatively slow, for CF_2 decay is not appreciably affected by O_2 in flashed CF_2CCl_2 or CF_2CFCl^{13}

olefin pressure (torr)

FIG. 9.—Variation of reciprocal intercepts with olefin partial pressure, 419° K. \bigcirc , CF₂CCl₂; \bigcirc , CF₂CFCl.

TABLE 1.	-RATE	PARAMETERS	FOR	REACTIONS	OF	$O(2^{3}P)$)
----------	-------	------------	-----	-----------	----	-------------	---

olefin	k _{rel} (296°K) ª	k _{rel} (419°K) ^a	E _{rel} (eV) ^a	A _{rel} ^a	10 ¹¹ A(cm ³ mol ⁻¹ sec ⁻¹)	E(eV)	IP(eV)
C ₂ F ₄	1	1	0	1	0.26	0.026	9.3 c
CF ₂ CFCl	0.51 ± 0.04	1.36 ± 0.10	0.087 ± 0.015	15 ± 9	3.9	0.113	10·4 c
CF ₂ CCl ₂	0.67 ± 0.06	0.95 ± 0.10	0.030 ± 0.015	$2 \cdot 3 \pm 1 \cdot 5$	0.22	0.026	10·0 ¢
CF ₂ CFCF ₃			0.069	0.2	0.13	0·095 b	
$C_2 H_4$	0.95 ± 0.05		0.039	4.4	1.15	0·065 ^b	10.6

(a), $k_{rel} = k_{olefin}/k_{C_2F_4}$; $E_{rel} = E_{olefin} - E_{C_2F_4}$; $A_{rel} = A_{olefin}/A_{C_2F_4}$; (b), data of ref. (1); (c), data of ref. (23).

which do not reform CF_2 in analogues of reaction (1). This scheme was discounted by Heicklen, Knight and Greene ¹⁴ who studied the Hg-sensitized oxidation of C_2F_4 and found that at high pressures of C_2F_4 , the yield of oxidation products did not increase markedly with O_2 pressure. Nevertheless, it was decided to seek for this reaction by comparing CF_2 intensities in repeatedly flashed single samples of C_2F_4

diluted in O_2 , N_2 or $O_2 + N_2$ mixtures (fig. 10). If CF_2 is removed only by reactions (5) and (6):

$$CF_2 + CF_2 \rightarrow C_2F_4 \tag{5}$$

$$CF_2 + C_2F_4 \rightarrow cyclo - C_3F_6 \tag{6}$$

all of which are slow compared to the lifetime of the photoflash, the ratio of the overall extent of decomposition of C_2F_4 with and without added O_2 equals $1+2k_4[O_2]/3k_6[C_2F_4]$.

Decomposition of mixtures with O_2 was increased relative to those with N_2 , and continuous absorption built up below 270 nm in the repeatedly flashed samples. At the same time, emission lines from the photolamp were *enhanced*, showing that the continuum is due to scattering of light, presumably by a solid product. Solid

number of previous flashes

FIG. 10.—[CF₂] yield in repeatedly flashed C_2F_4 mixtures with N_2 and O_2 . 1 % C_2F_4 with \bigoplus , 99; \bigoplus , 25; or \blacktriangle , 0 torr O_2 , total pressure 100 torr; 1 % C_2F_4 with \bigoplus , 24.8; \bigcirc , 6.3; or \triangle , 0 torr O_2 , total pressure 25 torr.

polymers were formed also in Hg-sensitized $C_2F_4+O_2$ systems.¹⁵ The continuum was much reduced in intensity by decreasing the C_2F_4 and O_2 partial pressures, and data from several experiments at 25°C suggest $k_4 \sim 0.2 k_6$, assuming that no product absorbs significantly in the region of the C_2F_4 spectrum (i.e., ~200 nm).

Repeatedly flashed samples were passed slowly through packed traps at 77°K, in order to condense products and unchanged C_2F_4 , and the trapped residues were then distilled into infra-red cells. In one experiment, 3·4 µmoles of CF₂O were retained from a mixture containing originally 0·5 torr C_2F_4 and 25 torr each of N_2 and O_2 and flashed 7 times (total energy 6000 J); (the extinction coefficient of CF₂O at 5·12 µ was taken to be 205 M⁻¹ cm⁻¹, from ref. (1)). About 12 % of the original C_2F_4 was converted to CF₂O. The yield of CF₂O was the same for a similar mixture with the total pressure increased to 780 torr by addition of N₂, showing that the CF₂O does not form from vibrationally-excited C_2F_4 or CF₂. Although perfluorocyclopropane is a stronger absorber in the infra-red than CF₂O,¹ it was not detected in

the experiments either with or without O_2 present; this is consistent with the slow rate of reaction (6) compared to (5), with small partial pressures of C_2F_4 .

Values for $k_6/(k_5)^{\frac{1}{2}}$ have been derived by Cohen and Heicklen ¹⁶ from Hgsensitized decomposition of C_2F_4 , and by Atkinson and McKeagan ¹⁵ from thermal decomposition of perfluorocyclopropane. With the absolute value of k_5 reported by Dalby,¹⁰ the respective values of k_6 at 25°C become 40 and 95 M⁻¹ sec⁻¹ and therefore $k_4 \sim 13$ M⁻¹ sec⁻¹.

DISCUSSION

photolysis of NO_2 in presence of C_2F_4

Smith ^{6, 7} has discussed the flash photolysis of NO₂ as a source of $O(2^{3}P)$ and measured the relative importance of the reactions

$$O + NO_2 \rightarrow NO + O_2$$

$$O + CS_2 \rightarrow CS + SO$$

in mixtures containing CS_2 , by photometering the absorption bands of CS. CS_2 proved an excellent monitor for O atom reactions because of the high absorption intensity and low reactivity of CS. One difficulty was that the CS was initially vibrationally excited and relaxed relatively slowly; this problem does not arise for CF_2 , which partly compensates for the weaker bands that it is necessary to measure. A further advantage in working with C_2F_4 is that, unlike CS_2 , there is no long wavelength absorption system which could lead directly to photolysis or, as with CS_2 , to production of reactive excited molecules..

Besides photolysis, long wavelength irradiation of NO₂ produces long-lived metastable molecules with a radiative lifetime of 44 μ sec at 4348 Å.^{17, 18} Complex molecules are efficient deactivators, and possibly most of the NO₂^{*} is deactivated by C₂F₄ at a rate limited by the collision frequency. Experiments with added N₂O or SF₆, which are also rapid deactivators ¹⁷ show that there is no significant yield of CF₂ due to such reactions, however. Furthermore, the measurement of the absolute yield of CF₂, though approximate, and the rate constant determined relative to C₂H₄ show that CF₂ forms from O-atom reactions; thus NO₂ decomposition is by photolysis and not by reaction with C₂F₄.

Cvetanović⁵ noted that NO₂ reacts rapidly with isobutene epoxide, and it also might react with the chlorofluoroethylene epoxides. The initial adduct of $O + C_2F_4$ is apparently too short lived to react significantly with NO₂. In any case the kinetic analysis will hold, so long as a fixed fraction of $C_2F_4O^*$ yields CF_2 in each set of experiments.

MECHANISM OF REACTION OF $O(2^{3}P)$ with $C_{2}F_{4}$

Using the Hg-sensitized decomposition of N_2O as source of atomic oxygen, Heicklen and collaborators have studied the reaction of $O+C_2F_4$. In the absence of O_2 the quantum yield of CF_2O is unity, and by monitoring the CF_2O in competitive systems, rate parameters were derived for reactions of O atoms with hydrocarbon olefins ¹ which agree excellently with previously published data.⁵ The relative rate constant $k_1/k_{C_2H_4}$ measured here is in close agreement with the results of Saunders and Heicklen,¹ confirming that the overall reaction (1) accounts for most of the O atoms. In a mechanism which fitted most features of the continuous photolysis

experiments,^{14, 16, 19, 20} both with and without added O_2 , two primary steps were proposed :

$$O + C_2 F_4 \rightarrow CF_2 O + CF_2^* \tag{1a}$$

$$\mathbf{O} + \mathbf{C}_2 \mathbf{F}_4 \to \mathbf{C}_2 \mathbf{F}_4 \mathbf{O}^{**}. \tag{1b}$$

At 23°C, (1*a*) accounts for 85 % of the O atoms, and the remainder form an excited epoxide, which reacts readily with C_2F_4 or O_2 . No direct evidence was found here for the presence or absence of long-lived $C_2F_4O^{**}$ molecules; they are presumably scavenged by C_2F_4 or O_2 and never release CF_2 .

The formation of *triplet* CF_2 molecules was postulated partly to conform with spin conservation in (1*a*), and also to explain the increase in CF_2O yield with added O_2 ; singlet CF_2 was thought completely inert towards reaction with O_2 . Relative rate constants for recombination and reaction with C_2F_4 of the CF_2 were equal to the value for singlet CF_2 ,²⁰ showing that the triplet CF_2 is rapidly relaxed. The reactivity towards O_2 was considered to show that the CF_2 was initially formed in an excited state. In the flash photolysis experiments the singlet CF_2 appears more rapidly than triplet-triplet annihilation:

$$CF_2^* + CF_2^* \rightarrow CF_2 + CF_2 \tag{1c}$$

which could occur at a maximum rate corresponding to 2/9 the collision frequency. NO_2 and NO are inevitably present in the flash-photolyzed mixtures and the rapid formation of singlet CF_2 could be explained if CF_2^* is relaxed by NO₂ and NO at a rate greater than 2×10^{10} M⁻¹ sec⁻¹ (which is equivalent to one tenth of the collision rate). It was not possible to check if formation of singlet CF₂ was delayed with decreased partial pressures of NO_2 since the CF_2 bands were then too weak to be measured accurately. The experiments with 700 torr added O_2 give an upper limit for the reaction rate of CF_2^* with O_2 of $6 \times 10^5 \text{ M}^{-1} \text{ sec}^{-1}$, if less than 5 % of the CF₂^{*} was scavenged in processes not returning CF₂ to the system. Johnston and Heicklen ²⁰ deduced an upper limit of 6×10^6 M⁻¹ sec⁻¹ for this rate constant at 23° C, on the assumption that reaction (1c) occurs at every collision, and the true rate constant may be much smaller. If the rate constant for reaction (4) of singlet CF_2 with O_2 is 13 M⁻¹ sec⁻¹ it could not account for more than a few percent of the CF_2O yield under the conditions of the continuous photolysis studies, although it might be responsible for some of the scatter in the measured quantum yields. Vibrationally excited CF_2 was not observed here or in flash-photolyzed C_2F_4 , although in each case CF_2 must originally bear large amounts of excess energy (~1.5 eV per CF_2 group from C_2F_4 photolyzed at 200 nm). This may indicate that CF_2 itself, or C_2F_4 , is an efficient deactivator of the "hot" CF_2 .

REACTION OF O(2³P) WITH CHLOROFLUOROETHYLENES

Absolute rate constants were derived from the relative rate constants for C_2H_4 reported by Saunders and Heicklen¹ and

$$k_{C_{2H_4}} = (1.15)10^{-11} \exp(-0.065/RT) \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1}$$

(with the activation energy in eV) which was based on the results of Elias and Schiff²¹ and Cvetanović.⁵ The value of 0.065 eV for the activation energy has been confirmed by Smith,²² but the value of the pre-exponential factor may be in error by ± 50 %. Table 1 shows that the chlorofluoroethylenes exhibit a similar trend in reactivity to that of the hydrocarbon olefins which was recognized by Cvetanović,⁵ i.e., the activation energies correlate with the ionization potentials of the olefins. The recorded pre-exponential factors vary more than those of the hydrocarbons, and both Arrhenius

parameters for CF_2CFCl are abnormally high, which may indicate that secondary reactions remove CF_2 in the high-temperature experiments. Reaction of CF_2^* with C_2H_4 may also be significant at 146°C and contribute to the discrepancy between these results and those from the continuous photolysis studies.

Neither CF_2CFCI nor CF_2CCl_2 release CF_2 which is consistent with the observation of Haszeldine and Steele ²⁴ that atom or free radical attack on CF_2CFCI occurs exclusively at the CF_2 group. The absence of CF_2O as a product suggests that the epoxides are stabilized, in contrast to $C_2F_4O^*$, but subsequently react with NO₂. There was no new infra-red absorption in the carbonyl or epoxide regions; although a number of weak bands were observed, their carriers were not identified.

This work was supported by Science Research Council equipment and maintenance grants. Dr. A. B. Callear and Dr. I. W. M. Smith are thanked for valuable discussions, and Dr. J. Heicklen and Dr. F. W. Dalby for helpful communications.

- ¹ D. Saunders and J. Heicklen, J. Physic. Chem., 1966, 70, 1950. J. Heicklen and V. Knight, J. Physic. Chem., 1966, 70, 3893.
- ² J. Heicklen and V. Knight, J. Chem. Physics, 1967, 47, 4203.
- ³ S. J. Moss and K. R. Jennings, Trans. Faraday Soc., 1968, 64, 686.
- ⁴ S. J. Moss and K. R. Jennings, to be published.
- ⁵ R. J. Cvetanović, Adv. Photochem., 1963, 1, 115.
- ⁶ I. W. M. Smith, Disc. Faraday Soc., 1967, 44, 194.
- ⁷ I. W. M. Smith, Trans. Faraday Soc., 1968, 64, 378.
- ⁸ W. J. R. Tyerman, Chem. Comm., 1968, 392.
- ⁹ C. W. Mathews, Can. J. Physics, 1967, 45, 2355.
- ¹⁰ F. W. Dalby, J. Chem. Physics, 1964, 41, 2297.
- ¹¹ R. N. Haszeldine, J. Chem. Soc., 1953, 2075.
- ¹² J. R. Majer and J. P. Simons, Adv. Photochem., 1964, 2, 137.
- ¹³ J. P. Simons, Nature, 1965, 205, 1308.
- ¹⁴ J. Heicklen, V. Knight and S. A. Greene, J. Chem. Physics, 1965, 42, 221.
- ¹⁵ B. Atkinson, J. Chem. Soc., 1952, 2684. B. Atkinson and D. McKeagan, Chem. Comm., 1966, 189.
- ¹⁶ N. Cohen and J. Heicklen, J. Chem. Physics, 1965, 43, 871.
- ¹⁷ G. H. Myers, D. M. Silver and F. Kaufman, J. Chem. Physics, 1966, 44, 718.
- ¹⁸ A. E. Douglas, J. Chem. Physics, 1966, 45, 1007.
- ¹⁹ J. Heicklen, N. Cohen and D. Saunders, J. Physic. Chem., 1965, 69, 1774.
- ²⁰ T. Johnston and J. Heicklen, J. Chem. Physics, 1967, 47, 475.
- ²¹ L. Elias and H. I. Schiff, Can. J. Chem., 1960, 38, 1657.
- ²² I. W. M. Smith, to be published.
- ²³ J. L. Margrave, J. Chem. Physics, 1959, 31, 1432.
- ²⁴ R. N. Haszeldine and B. R. Steele, J. Chem. Soc., 1954, 3747.