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ABSTRACT

Esterase from porcine liver smoothly resolves varieties of racemic

2-methylene-3-substituted-3-hydroxypropanoates (B-H adducts) to

obtain the corresponding unreacted esters in very good to excellent

ee (94 to >99%, seven examples) and hydrolyzed acids in good ee

(58–75%). Substitution in B-H adducts, chosen for resolution, are

funtionalized phenyl, thiophen-3-yl, cinnamyl, and alkyl groups.
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INTRODUCTION

Synthesis of 2-(methylene)-3-hydroxypropanoate(s), the Baylis-
Hillman (B-H) adducts,[1] in homochiral form is a challenging task.[2]

Initial attempts from various research groups to obtain enantiopure B-H
adducts yielded only few successful reports mainly based on the strategies
of kinetic resolution. Noyori and co-workers while doing asymmetric
hydrogenation of various racemic allylic alcohols, reported kinetic
resolution of (�)-1 by carrying out (S )-BINAP-Ru diacetate catalyzed
hydrogenation which led to isolation of (S )-1 in >99% ee.[3,4] However
both the Refs. [3] and [4] lack generality of the approach on kinetic
resolution of B-H adducts as substrates. Lipase catalyzed resolution of
racemic B-H adducts was studied independently by different groups[5]

where originally Burgess and Jennings[5a] reported 72 to >95% ee for (S )-
2 (10 examples, R1: lower alkyl and alkoxy). Horseradish peroxide (HRP)
catalyzed kinetic resolution of hydroperoxide derivatives of B-H adducts,
(�)-3 (two examples), were studied by Adam et al. where >99% ee have
been achieved.[6] Interestingly, the B-H adducts, chosen in the above
citations, except two examples in Ref. [4], are based on aliphatic aldehydes
i.e., 3-alkyl substituted cases. To the best of our knowledge, only Basavaiah
and Dharma Rao reported kinetic resolution of a series of B-H adducts
derived from aromatic aldehydes using pig liver acetone powder (PLAP).[7]

They reported a highest ee of 86% for deacetylated product obtained from
(�)-4whenAr is 1-napthyl and EWG is cyano, and for the rest of examples
ee ranges from 46 to 70%.[7] Figure 1 represents the compounds 1–4.
Owing to the difficulty in achieving successful asymmetric synthesis of
B-H products, partly due to the slow progress of the reaction,[8] an effi-
cient, convenient, and general way to resolve racemic B-H products is still
a quest for many research groups. As it reflects from a recent work from
Trost et al., who studied C2-symmetric ligand-Pd(0) complex assisted

OH
CO2Me

(S) - 11

(Pr)Me

OH

(S) - 22

O

R1 (Et)Me

OOH
CO2Me

(+) - 33-

Ar

OAc
EWG

(+) - 44-

R2

O
EWG

R3

(+) - 55-

Figure 1.
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dynamic kinetic asymmetric transformation (DYKAT) of several racemic
B-H adducts (�)-5 (Fig. 1:R3 is methoxycarbonyl group) and obtained the
correspondingO-aryl derivatives (S)-5 (R3 is aryl) in 39 to >99% ee. Here
also R2 in 5 is limited to only aliphatic groups.[9]

In this communication, we disclose porcine liver esterase catalyzed
kinetic resolution of B-H adducts 6 obtained from aromatic, hetero-
aromatic, cinnamyl as well as aliphatic aldehydes reacting with ethyl
acrylate.

RESULTS AND DISCUSSION

Examples 6a–d were conveniently synthesized in gram scale (50–60%
yield) using equimolar quantities of ethyl acrylate and the corresponding
aldehydes in MeCN, DMF, or dioxane solvent (2.0M) using 20mol% of
DABCO at RT.[10a] For 6e–g, reactions were done by heating (70�C)
overnight at neat condition in sealed tube (40–60% yield).[10b,c] Table 1
outlines these synthesis.

Esterase from porcine liver (Sigma, EC 3.1.1.1, Lot No. 40K7060, 41
units per mg solid) was chosen for hydrolysis of the B-H adducts 6a–g.
We designed the incubation protocol in such way that the hydrolysis cum
resolution proceeds reasonably faster and the procedure becomes
useful for laboratory synthesis of homochiral B-H adducts. Initially the
hydrolysis reaction was standardized using the substrates 6a and 6b in
aqueous phosphate buffer (pH 7.2) along with organic co-solvents
(1–10% with respect to buffer) like acetone, DMSO, DMF, DMA, and

Table 1. Synthesis of Baylis-Hillman adducts 6a–g.

OH
CO2Et

R
O

HR

CO2Et+

DABCO (0.2 eq)
Solvent (2.0 M) / neat 6a6a-g

R Solvent Condition Isolated yield B-H adducts

p-NO2-phenyl MeCN RT, 24 h 60% 6a

m-NO2-phenyl MeCN RT, 24 h 55% 6b

p-F-Phenyl DMF RT, 24 h 55% 6c

m-Hydroxy-phenyl Dioxane RT, 24 h 50% 6d

Thiophen-3-yl Neat 70�C, 16 h 60% 6e

Cinnamyl Neat 70�C, 16 h 40% 6f

Isobutyl Neat 70�C, 16 h 40% 6g

Baylis-Hillman (B-H) Adducts 3719
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1,4-dioxane. Reaction temperature was preferred at 35–36�C. We
observed that all the studied co-solvents gave more or less similar results
both in terms of yield and ee of the products. However, hydrolysis
practically did not proceed in the absence of co-solvent. Hence for
illustration purpose we are presenting the results based on reactions
carried out using DMSO as co-solvent (Table 2).

As it was expected the ee of hydrolyzed acid and recovered ester were
found to be very much dependent on progress of hydrolysis, which also
supports kinetic resolution. Thus when the reactions, in general, were
stopped in the late stage (approx. 70% conversion) the recovered
esters showed excellent ee (i.e., 94 to >99%) for 6. On the other hand
when the hydrolysis was interrupted at the early stage (approx. 25–30%
conversion), the corresponding acids 7 were obtained in the range of
58–75% ee. A compromised ee (in the range of 76–92%) of the recovered
esters could also be obtained with improved isolated yield of 40–46%, as
indicated by the Entries 1a, 2a, 3a (Table 2). Based on the literature evi-
dences[11] (see also Table 2), stereochemistry of all the resolved esters 6

were assigned as (S ), and opposite stereochemistry were assigned for
the acids 7. It is to be noted here that the resolved 6e and 7e, though possess
general trend of absolute stereochemistry, are assigned to have respectively
(R) and (S ) stereochemistry due to change in priority. This indicates that
the enzyme recognizes the D-stereochemistry of ester for hydrolysis.

From the structural diversity of the examples disclosed in Table 2,
it also indicates that this approach could be made general for kinetic
resolution of B-H adducts derived from ethyl acrylate and aromatic,
aliphatic, hereoaromatic, a,b-unsaturated aldehydes.

Enantiomeric ratio (E) is another important parameter for any
kinetic resolution study specially of present interest. For each enzymatic
hydrolysis studied here, the calculated E value[12] has been shown in
Table 2. E is a constant and specific to a substrate and enzyme used
for kinetic resolution. We also substantiate this principle. As for example
E for kinetic resolution of 6a remains same (9.6, 9.5, 9.0) in three different
extent of hydrolysis.

CONCLUSIONS

We have discovered a convenient way of achieving optically pure
Baylis-Hillman (B-H) products based on esterase-catalyzed hydrolysis
cum kinetic resolution. The approach is shown to be quite general as
varieties of B-H adducts, based on ethyl acrylate and aromatic, aliphatic,
a,b-unsaturated, as well as heteroaromatic aldehydes, could be resolved

3720 Bhuniya et al.
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Table 2. Kinetic resolution of B-H adducts 6a–g through esterase-catalyzed

hydrolysis.

R

OH O

OEt R

OH O

OEt R

OH O

OH+
Esterase (Porcine Liver),
phosphate buffer (pH = 7.2),
DMSO (7.5 %), 36 oC

6 (S) - 6 6a (R) - 77b

Reaction

time (h)

(S)-6 (R)-7

Entry R- B-H adduct Yieldc % eed Yieldc % eed Ef

1a
O2N

6a 16 40 92 55 50e 9.6

1b 24 30 >99 65 35 9.5

1c 2 65 42e 30 70 9.0

2a O2N 6b 7 46 91e 50 40e 6.8

2b 16 35 >99 60 15e 5.2

2c 0.5 60 48e 30 75 11.4

3a
F

6c 4 45 76 52 38 4.9

3b 16 30 >99 65 17e 5.4

3c 0.5 70 20e 25 64 5.4

4a HO 6d 24 30 99 65 10 4.3

4b 2 65 18e 28 60 4.8

5a
S

6e 24 32 97 65 25 5.7

5b 2 65 16e 30 66 6.2

6a 6f 28 25 99 56 26 7.1

6b 2 55 20e 25 72 7.1

7a 6g 28 35 94 60 15 3.7

7b 1 65 14e 28 58 6.1

aSpecific rotation of resolved 6a–e are positive, and the same is negative for 7a–e.

Whereas specific rotation of resolved 6f–g are negative, and the same is positive

for 7f–g. Comparison of specific rotation of 6a, 6f, and 6g with the literature

value[11] justified the (S)-configuration. For others, in general, it is tentative

assignment based on analogy. See text for stereochemistry assignment of 6e.
bAbsolute configuration of 7a–d, and 7f–g was assigned as (R), and for 7e as

(S), after esterifying the acids into their ethyl esters and comparing the specific

rotation with 6. cIsolated yield of recovered ester 6 and the corresponding acid 7

which were characterized by routine spectra. d% ee were determined by chiral

HPLC method, unless mentioned. e% ee was calculated based on comparison of

specific rotation with authentic sample for which the % ee was determined by

chiral HPLC. fCalculated following the equation: E¼ ln[(1� c)(1� eeS)]/ln

[(1� c)(1þ eeS)]. The extent of conversion c¼ eeS/(eeSþ eeP), where eeS and eeP
are for resolved esters and hydrolyzed acids respectively.[12]

Baylis-Hillman (B-H) Adducts 3721
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in very high to excellent ee (94 to >99%). Though kinetic resolution of
B-H adducts either via enzyme assisted[5–7] or using chemical discrimi-
nation approach[3,4,9] have been reported in the past, each of them has
their own limitation as described in the introduction part. The present
study shows that using procine liver esterase the structural limitations of
B-H adducts may be overcome.

EXPERIMENTAL

1H and 13CNMR spectra were recorded on Mercury Plus (Varian
400MHz), and Gemini (Varian 200MHz) spectrometer in CDCl3 with
TMS as internal standard: chemical shifts are quoted in ppm and J values
are given in Hz. IR spectra were recorded on FT-IR spectrophotometer
from Perkin-Elmer 1600 series. Mass spectra were recorded on Hewlett-
Packard 5989A LC-Mass spectrometer using isobutene as chemical
ionizer gas (source temp. 250�C and quadruple temp. 100�C), or on
triple quadrupole mass spectrometer, PE Sliex model API 3000 (at
þ5000V). Elemental analysis were done on Perkin-Elmer II series.

In a typical procedure for esterase-catalyzed hydrolysis, 6e (600mg,
2.83mmol) was added to a mixture of phosphate buffer (pH 7.2, 240mL)
and DMSO (18mL). Finally enzyme (20mg) was added and the
mixture was stirred at 35–36�C for 24 h, at which time TLC indicated
approximately 70% conversion. The reaction mixture was acidified
to adjust the pH at 2–3. Ethyl acetate extraction gave the crude mass
containing unreacted (R)-6e and the corresponding acid (S)-7e, which
were isolated by column chromatography. Yield: (R)-6e (192mg, 32%),
and (S)-7e (338mg, 65%).

Compounds 6a–d, 6f–g were also resolved to obtain the corre-
sponding optically pure (S)-6a–d, and (S)-6f–g respectively following
the typical procedure described for 6e. Characterization of all resolved
B-H adducts are as below.

Characterization of (S)-6a. HPLC: Chiralpak AD-H (250� 4.6mm);
Hexane:EtOH::95:05 (1.0mL/min); uv-273 nm; tR of (R)-6a: 29.91min
(0.25% area), tR of (S)-6a: 32.35min (99.60% area). [a]D þ93.8� (c 1.0,
MeOH). 1H NMR (CDCl3, 400MHz) �: 1.26 (t, J¼ 7.0Hz, 3H), 3.38 (bs,
1H, -OH), 4.18 (q, J¼ 7.0Hz, 2H); 5.61 (s, 1H), 5.83 (t, J¼ 1.0Hz, 1H),
6.37 (d, J¼ 0.8Hz, 1H), 7.55 (d, J¼ 8.8Hz, 2H), 8.17 (d, J¼ 8.8Hz, 2H).
13CNMR (CDCl3, 50MHz) �: 13.91, 61.20, 72.32, 123.45 (2C), 126.76,
127.37 (2C), 141.27, 147.24, 148.88, 165.84. MS (ES) m/z: 525.3
[M2þNaþ], 520.3 [M2þNH4

þ], 274.0 [MþNaþ], 269.0 [MþNH4
þ],

3722 Bhuniya et al.
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252.1 [Mþ 1], 233.9 [M�17(OH)]. IR (neat) cm�1: 3489, 2984, 1711, 1522,
1349. Anal. calcd. for C12H13NO5: C, 57.37; H, 5.22; N, 5.58. Found: C,
57.25; H, 5.28; N, 5.51.

Characterization of (S)-6b. HPLC: Chiralpak AD-H (250� 4.6mm);
Hexane:EtOH::95:05 (1.0mL/min); uv-273 nm; tR of (S)-6b: 22.50min
(99.86% area), tR of (R)-6b: 28.40min (0.14% area). [a]D þ86.1� (c 2.25,
MeOH). 1HNMR (CDCl3, 400MHz) �: 1.26 (t, J¼ 7.0Hz, 3H), 3.30 (d,
J¼ 6.2Hz, 1H, -OH), 4.18 (q, J¼ 7.0Hz, 2H), 5.61 (d, J¼ 6.2Hz, 1H),
5.85 (t, J¼ 1.0Hz, 1H), 6.38 (t, J¼ 0.8Hz, 1H), 7.50 (t, J¼ 7.8Hz, 1H),
7.71–7.73 (aromatics, 1H), 8.11–8.13 (aromatics, 1H); 8.23–8.24 (aro-
matics, 1H). 13CNMR (CDCl3, 50MHz) �: 13.91, 61.19, 72.29, 121.53,
122.60, 126.74, 129.24, 132.72, 141.26, 143.78, 148.16, 165.84. MS (ES)
m/z: 525.2 [M2þNaþ], 520.3 [M2þNH4

þ], 274.3 [MþNaþ], 269.1
[MþNH4

þ], 252.3 [Mþ 1], 234.1 [M�17(OH)]. IR (neat) cm�1: 3484,
2985, 1711, 1531, 1351. Anal. calcd. for C12H13NO5: C, 57.37; H, 5.22;
N, 5.58. Found: C, 57.19; H, 5.25; N, 5.61.

Characterization of (S)-6c. HPLC: Chiralpak AD-H (250� 4.6mm);
Hexane:i-PrOH::95:05 (1.0mL/min); uv-220 nm; tR of (S)-6c: 10.30min
(99.63% area), tR of (R)-6c: 10.97min (0.37% area). [a]D þ98.3� (c 3.25,
MeOH). 1H NMR (CDCl3, 400MHz) �: 1.24 (t, J¼ 7.2Hz, 3H), 3.20 (bs,
1H, -OH), 4.16 (q, J¼ 7.2Hz, 2H), 5.52 (s, 1H), 5.78 (t, J¼ 1.0Hz, 1H),
6.31 (s, 1H), 7.00 (t, J¼ 8.8Hz, 2H), 7.32 (dd, J¼ 8.2, 5.3Hz, 2H).
13C NMR (CDCl3, 50MHz) �: 13.95, 60.93, 72.52, 115.00 (d,
J¼ 21.5Hz, 2C), 125.68, 128.30 (d, J¼ 8Hz, 2C), 137.15 (d, J¼ 3Hz,
1C), 142.15, 162.11 (d, J¼ 244.5Hz, 1C), 166.19. MS (CI) m/z: 224
[M], 207 [M�17 (OH)]. IR (neat) cm�1: 3456, 2985, 1713. Anal. calcd.
for C12H13FO3: C, 64.28; H, 5.84. Found: C, 64.25; H, 5.87.

Characterization of (S)-6d. HPLC: Chiralpak AD-H (250� 4.6mm);
Hexane:i-PrOH::95:05 (1.0mL/min); uv-220 nm; tR of (R)-6d: 49.15min
(0.48% area), tR of (S)-6d: 52.40min (99.52% area). [a]D þ74.1� (c 1.9,
MeOH). 1H NMR (CDCl3, 400MHz) �: 1.25 (t, J¼ 7.1Hz, 3H); 3.50 (bs,
1H, -OH), 4.16 (q, J¼ 7.1Hz, 2H), 5.50 (s, 1H), 5.82 (s, 1H), 6.32 (s, 1H),
6.37 (bs, 1H, phenolic-OH); 6.73 (ddd, J¼ 8.2, 1.5, 1.0Hz, 1H); 6.84–6.86
(aromatics, 2H), 7.16 (t, J¼ 8.0Hz, 1H). 13CNMR (CDCl3, 50MHz) �:
13.77, 61.10, 72.59, 113.69, 114.99, 118.57, 126.06, 129.484, 141.61,
142.50, 155.96, 166.53. MS (CI) m/z: 222 [M], 205 [M�17(OH)]. IR
(neat) cm�1: 3392, 2985, 1701. Anal. calcd. for C12H14O4: C, 64.85; H,
6.35. Found: C, 64.69; H, 6.37.

Characterization of (R)-6e. HPLC: Chiralpak AD-H (250� 4.6mm);
Hexane:EtOH::95:05 (1.0mL/min); uv-235 nm; tR of (S)-6e: 15.7min
(1.29% area), tR of (R)-6e: 16.8min (97.91% area). [a]D þ120� (c 1.0,
MeOH). 1HNMR (CDCl3, 400MHz) �: 1.24 (t, J¼ 7.3Hz, 3H), 3.34

Baylis-Hillman (B-H) Adducts 3723
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(s, 1H, -OH), 4.17 (q, J¼ 7.3Hz, 2H), 5.58 (s, 1H), 5.80 (t, J¼ 1.2Hz,
1H), 6.28 (s, 1H), 7.00 (dd, J¼ 4.9, 1.2Hz, 1H), 7.18 (dd, J¼ 2.9, 1Hz,
1H), 7.24 (dd, J¼ 5.4, 2.9Hz, 1H). 13C NMR (CDCl3, 50MHz) �: 13.78,
60.66, 69.08, 121.61, 125.11, 125.58, 126.07, 141.91, 142.89, 166.05. MS
(ES) m/z: 447.1 [M2þNaþ], 235.1 [MþNaþ], 195.1 [M�17(OH)]. IR
(neat) cm�1: 3442, 2982, 1712, 1268, 1149, 1039. Anal. calcd. for
C10H12O3S: C, 56.58; H, 5.70. Found: C, 56.61; H, 5.81.

Characterization of (S)-6f. HPLC: Chiralpak AD-H (250� 4.6mm);
Hexane:i-PrOH::94:06 (0.5mL/min); uv-254 nm; tR of (S)-6f: 27.18min
(98.12% area), tR of (R)-6f: 28.53min (0.67% area). [a]D �14.4� (c 1.0,
CHCl3).

1HNMR (CDCl3, 400MHz) �: 1.31 (t, J¼ 7.3Hz, 3H), 2.95 (d,
J¼ 6.4Hz, 1H, -OH), 4.24 (q, J¼ 7.3Hz, 2H), 5.11 (t, J¼ 6.4Hz, 1H),
5.88 (s, 1H), 6.27 (s, 1H), 6.28 (dd,J¼ 15.6, 5.8Hz, 1H), 6.64 (d,J¼ 15.6Hz,
1H), 7.22–7.38 (aromatics, 5H). 13CNMR (CDCl3, 50MHz) �: 13.98,
60.85, 71.73, 125.36, 126.45 (2C), 127.64, 128.41 (2C), 129.26, 131.19,
136.39, 141.48, 166.21. MS (ES) m/z: 255.1 [MþNaþ] , 250.4
[MþNH4

þ], 215.1 [M�17(OH)]. IR (neat) cm�1: 3434, 2983, 1713.
Anal. calcd. for C14H16O3: C, 72.39; H, 6.94. Found: C, 72.41; H, 7.03.

Characterization of (S )-6g. HPLC: Chiralpak AD-H (250� 4.6mm);
Hexane:i-PrOH::98:02 (1.0mL/min); uv-220 nm; tR of (R)-6g: 10.32min
(3.04% area), tR of (S)-6g: 11.13min (95.56% area). [a]D �27� (c 3.0,
CHCl3).

1HNMR (CDCl3, 200MHz) �: 0.88 (d, J¼ 2.4Hz, 3H), 0.91 (d,
J¼ 2.5Hz, 3H), 1.27 (t, J¼ 7.3Hz, 3H), 1.30–1.60 (m, 2H), 1.62–1.82 (m,
1H), 2.81 (bs, 1H, -OH), 4.19 (q, J¼ 7.3Hz, 2H), 4.43 (dd, J¼ 8.7, 4.6,
1H), 5.75 (s, 1H), 6.17 (s, 1H). 13CNMR (CDCl3, 50MHz) �: 13.99,
21.65, 23.19, 24.65, 45.48, 60.65, 69.52, 124.18, 143.31, 166.53. MS (CI)
m/z: 187 [Mþ 1] , 169 [M�17(OH)]. IR (neat) cm�1: 3422, 2958, 1716.
Anal. calcd. for C10H18O3: C, 64.49; H, 9.74. Found: C, 64.35; H, 9.81.
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