A New Facile, and Convenient Synthesis of 2-Oxo-3alkenoic Acids and Esters

Masaru Hojo*, Ryōichi Masuda, Hiroshi Sano, Makoto Saegusa Department of Industrial Chemistry, Faculty of Engineering, Kobe University, Kobe, 657, Japan

Activated 1-alkenes such as ketene dithioacetals, vinyl sulfides. N-vinyl amides, and N-vinylcarbazole react with oxalyl chloride or ethoxalyl chloride in the presence of pyridine to give the 2-oxo-3-alkenoic acids or ethyl esters, respectively.

In the course, of investigations in this laboratory, 2-oxo-3alkenoic acids and their esters became necessary. Previously we reported that ketene dithioacetals^{1, 2}, vinyl sulfides², vinyl ethers³, and N-vinyl amides³ react with trifluoroacetic anhydride quite easily at room temperature to give the corresponding β -trifluoroacetylated compounds in high yields.

The present work was undertaken as an extension of these electrophilic substitution reactions of olefinic hydrogens and to prepare the title compounds. The substrates are ketene dithioacetals, vinyl sulfides, N-vinyl amides, and Nvinylcarbazole and the reagents used are oxalyl chloride and ethoxalyl chloride.

As anticipated the oxocarboxylation and oxoethoxycarbonylation did proceed quite easily at room temperature to give the corresponding β -acylated products in fair yields (Schemes A,B). It seems of interest to note here that reactions of oxalyl chloride with 1,1-diphenylethylene and with anthracene are reported to give β -phenylcinnamoyl chloride and 9-chlorocarbonylanthracene^{4.5.6}, respectively.

$$\begin{array}{c} X^{1} \\ C = CH_{2} \\ X^{2} \\ \text{1a-g} \\ X^{1} \\ X^{2} \\ C = CH - C - C \\ CI \\ & \begin{array}{c} C - CI \\ N \\ N \\ \end{array}, \text{ r.t., 10 min-18 h} \\ & \begin{array}{c} X^{1} \\ C = CH - C \\ CI \\ \end{array} \\ & \begin{array}{c} X^{1} \\ 27 - \sim 100 \% \\ \end{array} \\ & \begin{array}{c} X^{1} \\ X^{2} \\ \end{array} \\ C = CH - C - C \\ OH \\ \end{array} \\ \begin{array}{c} 2 \\ 2 \\ 3 - g \\ \end{array}$$

1, 2	χ1	X ²
а	_s-	<u>_</u> -s-
b	H ₃ C-()-S-	H ₃ C-\S-
С	CI-CI-S-	cı-<>-s-
· d	<u>_</u> >-s-	
е	<u>_</u> s-	H ₃ C -
f		Н
g	H ₃ C - S=0 H ₃ C - N-	Н

Scheme A

TAUK 1.	3-030-2-direin	ac Acids 2	and it shows the first state of the parent and Data 101 and 21	ala 101 211 6	17 DIII			
Prod- uct	Reaction Time	Yield [%]	m.p. [°C]	(Z/E)-Ratio	Molecular Formula ^a	I.R. (KBr) voh	$\begin{bmatrix} cm^{-1} \end{bmatrix}$ $v_{c=0}$	¹ H-N.M.R. (CDCl ₃ /TMS) δ[ppm]
2a	40 min	82	159.5°	I	C ₁₆ H ₁₂ O ₃ S ₂	3500	1764	6.64 (s, 1H); 7.50 (m, 10H); 8.42 (s, 1H)
2b	10 min	92	183–184°	I	C ₁₈ H ₁₆ O ₃ S ₂ (344.5)	3280	1764	2.27 (s, 3 H); 2.41 (s, 3 H); 6.59 (s, 1 H); 7.25 (s, 1 H); 7.42 (q, 8 H, J = 7.2 Hz)
2c	6.3 h	~ 100	137◦	ı	see experimental section	tal section		
2d	18 h	11 ^b	181 ∘∘	1	$C_{16}H_{12}O_3S$ (784.3)	3050	1688, 1660	5.40 (s, E); 6.09 (s, Z); 7.13 (m, Z); 7.44 (m, 10 H, E); 10.70 (br. 1 H)
2e	45 min	62	$104-106^{\circ}$ c	0.7	$C_{11}H_{10}O_3S$ (220.2)	3290	1760, 1630	2.06 (s, Z); 2.60 (s, E); 6.68 (s, E); 7.30 (s, Z); 7.55 (s, 6H)
2f	6 h	27 ^b	113°d	_	$C_{10}H_8O_3S$ (208.2)	3420	1720, 1650	6.74 (d, 1H, J = 16.2 Hz); 7.39 (d, J = 10.8 Hz); 7.56, 7.60 (2s, 6H); 8.10 (d, J = 10.8 Hz); 8.59 (d, J = 16.2 Hz)
2g	1 h	68	139–140°	E	C ₁ ,H ₁₆ NO ₅ S (346.4)	3300	1776, 1668	2.36 (s, 2H); 2.42 (s, 3H); 5.74 (d, 1H, $J = 13.2 \text{ Hz}$); 6.74–7.77 (m, 9H); 9.03 (d, 1H, $J = 13.2 \text{ Hz}$)
2h	ı	ı	$\frac{103-105^{\circ}}{(n-C_6H_{14}/C_6H_6)}$	2		3200-2000	1720, 1650	2.08 (s, Z); 2.55 (s, E); 6.96 (s, E); 7.20 (s, Z); 7.35 (s, 5H); 9.65 (s, 1H)
73	and the second s		96–97° (n-C ₆ H ₁₄ /C ₆ H ₆)	0.25	ì	3400-3100	1757, 1660	1.49 (t, 3 H, J = 7.6 Hz); 2.45 (s, Z); 2.52 (s, E); 2.95 (q, 2 H, J = 7.6 Hz); 6.91 (s, E); 7.14 (s, Z); 8.96 (s, 1 H)

(Z/E)-mixture difficultly separable in pure state, value for mixture given. (Z)-Isomer.

Satisfactory microanalyses obtained: $C \pm 0.28$, $H \pm 0.26$, $S \pm 0.30$; except 2g which was not analyzed. Yield after chromatography.

$$\begin{array}{c} X^{1} \\ C = CH_{2} \\ X^{2} \\ \hline \begin{array}{c} C_{2}H_{5}O - \overset{\bigcirc{C}}{C} - \overset{\bigcirc{C}}{C} - CI/CHCI_{3}/\overset{\bigcirc{C}}{\bigvee}_{N}, \text{ r.t., } 12 \text{ min - 6 d} \\ \hline \\ X^{2} \\ \hline \\ X^{2} \\ \hline \\ X^{2} \\ \hline \\ X^{2} \\ C = CH - \overset{\bigcirc{C}}{C} - \overset{\bigcirc{C}}{C} - CI/CHCI_{3}/\overset{\bigcirc{C}}{\bigvee}_{N}, \text{ r.t., } 12 \text{ min - 6 d} \\ \hline \\ X^{1} \\ C = CH - \overset{\bigcirc{C}}{C} - \overset{\bigcirc{C}}{C} - \overset{\bigcirc{C}}{C} - \overset{\bigcirc{C}}{C} - \overset{\bigcirc{C}}{C} - CI/CHCI_{3}/\overset{\bigcirc{C}}{\bigvee}_{N}, \text{ r.t., } 12 \text{ min - 6 d} \\ \hline \\ X^{2} \\ C = CH - \overset{\bigcirc{C}}{C} - \overset{C}{C} - \overset{\bigcirc{C}}{C} - \overset{C$$

1,3	Χ¹		X ²
a-g		see Scheme	Α
h	H₃C−S	5-	<u>_</u>
j	C ₂ H ₅	5-	H ₃ C
j	C ₂ H ₅ -	S-	H
k		-CH ₂ -S-	<u>H</u>
ı	CN-	-	H
m	8	1 —	н

Scheme B

Namely, the carbonyl group is lost during these reactions, while it remains intact in the present reaction. These results are summarized in Table 1 and 2.

The present method is experimentally mild, facile, and useful for 2-oxo-3-alkenoic acids and esters which are not easy to obtain by other methods.

4,4-Bis[4-chlorophenylthio]-2-oxo-3-butenoic Acid (2c); Typical Procedure:

To a stirred mixture of ketene dithioacetal 1c (0.317 g, 1.01 mmol) and pyridine (0.0934 g, 1.18 mmol) in chloroform (10 ml) is added oxalyl chloride (0.4159 g, 3.28 mmol) and the mixture is allowed to stand for 6.3 h at room temperature. After reaction, the whole mixture is added to an aqueous solution of sodium carbonate (20 ml), washed thoroughly with water (30 ml), and then dried with anhydrous sodium sulfate. The solvent is removed in vacuo to give the product 2c which is recrystallized from hexane and ethanol; yield: 0.3969 g (100%); m.p. 137°C.

C₁₆H₁₀Cl₂C₃S₂ calc. C 49.88 H 2.62 S 16.64 (385.3) found 49.27 2.97 16.17

• I. R. (KBr): v = 3325 (OH); 1750 cm⁻¹ (C=O).

¹H-N.M.R. (CDCl₃/TMS): $\delta = 6.62$ (s, 1 H); 7.39 (q, 8 H, J = 8 Hz); 7.40 ppm (s, 1 H).

Ethyl 4,4-Bis[4-chlorophenylthio]-2-oxo-3-butenoate (3c); Typical Procedure:

The reaction mixture from above is added to ethanol (20 ml), instead of aqueous sodium carbonate solution, to give the ester 3c; yield: $\sim 100\%$; m.p. 150-151 °C.

Table 2. Ethyl 3-Oxo-2-alkenoates 3a-m prepared

Prod- uct	Reaction Time	Yield [%]	m. p. [°C]	(Z/E)- Ratio	Molecular Formula ^a	I. R. (KBr) $v_{C=0}$ [cm ⁻¹]	1 H-N.M.R. (CDCl ₃ /TMS) δ [ppm]
3a	40 min	59 ^b	104-105°		C ₁₈ H ₁₆ O ₃ S ₂ (344.5)	1740, 1639	1.36 (t, 3H, $J = 7.2$ Hz); 4.36 (q, 2H, $J = 7.2$ Hz); 6.42 (s, 1H); 7.46 (m, 10H)
3b	12 min	~100	117-118°		$C_{20}H_{21}O_3S_2$ (393.5)	1745, 1641	1.39 (t, 3H, $J = 7.2$ Hz); 2.37 (s, 3H); 2.40 (s, 3H); 4.40 (q, 2H, $J = 7.2$ Hz); 6.41 (s, 1H); 7.35 (m, 8H)
3c	24 h	~100	150-151°		see experime	ental section	
3 d	22 h	34 ^b	oil	1	$C_{18}H_{16}O_3S$ (312.4)	1729, 1657	1.34 (t, 3H, $J = 7.2$ Hz); 4.47 (q, 2H, $J = 7.2$ Hz); 6.18 (s, E); 6.77 (s, Z); 6.94–8.17 (m, 10H)
3e	16 h	58 ^b	oil	2.6	$C_{13}H_{14}O_3S$ (250.3)	1724, 1665	1.37 (t, 3 H, $J = 7.2$ Hz); 1.99 (s, Z); 2.52 (s, E); 4.39 (q, 2 H, $J = 7.2$ Hz); 6.48 (s, E); 7.14 (s, Z); 7.50 (s, br, 5 H)
3f	5d	50 ^b	83°	Z	$C_{12}H_{12}O_3S$ (236.3)	1740, 1640	6.61 (d, $J = 15.6$ Hz, E); 7.09 (d, $J = 10.2$ Hz, Z); 7.41 (s); 7.45 (s); 7.72 (d, $J = 10.2$ Hz, Z); 8.18 (d, $J = 15.6$ Hz, E)
3g	16 h	70 ^b	124–124.5°	E	$C_{20}H_{21}NO_{5}S$ (387.5)	1745, 1680	1.31 (t, 3 H, $J = 6.8$ Hz); 2.36 (s, 3 H); 2.42 (s, 3 H); 4.28 (q, 2 H, $J = 6.8$ Hz); 5.55 (d, 1 H, $J = 13.8$ Hz); 6.74–7.73 (m, 8 H); 8.72 (d, 1 H, $J = 13.8$ Hz)
3 h	24 h	~100	oil	1	$C_{13}H_{14}O_3S$ (250.3)	1760, 1650	1.33 (t, 3 H, <i>J</i> = 7.2 Hz); 1.98 (s); 2.45 (s); 4.28 (q, 2 H, <i>J</i> = 7.2 Hz); 6.41 (s); 7.00 (s); 7.29 (s, 5 H)
3i	24 h	94	oil	0.3	$C_9H_{14}O_3S$ (202.3)	1708	1.38 (t, 6H, $J = 7.8$ Hz); 2.40 (s, Z); 2.49 (s, E); 2.95 (q, 2H, $J = 7.8$ Hz); 4.29 (q, 2H); 6.66 (s, E); 6.90 (s, Z)
3ј	24 h	48 ^b	oil	0.3	C ₈ H ₁₂ O ₃ S (188.2)	1768, 1744	1.34 (t, 6H, $J = 7.2$ Hz); 2.93 (q, 2H, $J = 7.8$ Hz); 4.31 (q, 2H, $J = 7.2$ Hz); 6.67 (d, $J = 15.0$ Hz); 6.98 (d, $J = 9.6$ Hz); 7.62 (d, $J = 9.6$ Hz); 8.06 (d, $J = 15.0$ Hz)
3k	6 d	93	oil	E	$C_{13}H_{14}O_3S$ (250.3)	1730, 1655	1.47 (t, 3 H, $J = 7.0$ Hz); 4.18 (s, 2 H); 4.30 (q, 2 H, $J = 7.0$ Hz); 6.85 (d, 1 H, $J = 15.0$ Hz); 7.40 (m, 5 H); 8.20 (d, 1 H, $J = 15.0$ Hz)
31 3m	23 h 2.5 h	90 ∼100	58-59° 108-109°	E E	see experim C ₁₈ H ₁₅ NO ₃ (293.3)	nental section 1723, 1686	1.45 (t, 3 H, $J = 6.6$ Hz); 4.45 (q, 2 H, $J = 6.6$ Hz) 7.32 (d, 1 H, $J = 14.4$ Hz); 7.20–8.10 (m, 8 H); 8.74 (d 1 H, $J = 14.4$ Hz)

^{*} Satisfactory microanalyses obtained: $C \pm 0.30$, $H \pm 0.27$, $S \pm 0.19$, Cl = 0.23, $N \pm 0.06$; the identities of 3d and 3e were confirmed by comparison with authentic samples derived from the acids 2d and 2e.

b Yield after chromatography.

 $C_{18}H_{14}Cl_2O_3S_2$ calc. C 52.60 H 3.54 S 15.41 Cl 17.38 (413.3) found 52.31 3.41 15.51 17.15 I.R. (KBr): v = 1724, 1637 cm⁻¹ (C=O).

¹H-N.M.R. (CDCl₃/TMS): $\delta = 1.25$ (t, 3 H, J = 7.8 Hz); 4.20 (q, 2 H, J = 7.8 Hz); 6.44 (s, 1 H); 7.20–7.69 ppm (m, 8 H).

trans-N-β-Ethoxalylvinylpyrrolidone (31); Typical Procedure:

To a stirred mixture of N-vinylpyrrolidone (11; 0.8514 g, 7.66 mmol) and pyridine (0.6042 g, 7.64 mmol) in chloroform (2 ml) is added ethoxalyl chloride (3.1061 g, 22.7 mmol) in chloroform (3 ml) with cooling and the mixture is allowed to stand for 23 h at room temperature. After reaction, the mixture is added to an aqueous solution of sodium carbonate (20 ml). After washing with water (2 × 30 ml) the solution is dried with sodium sulfate. The crude product 31 is obtained by the evaporation of the solvent and is recrystallized from hexane and benzene; yield: 1.4584 g (90 %); m. p. 58-9 °C.

I. R. (KBr): v = 1741, 1720 cm^{-1} (C=O).

¹H-N.M.R. (CDCl₃/TMS): δ = 1.36 (t, 3 H, J = 6.8 Hz); 2.10–2.77 (m, 4 H); 3.66 (t, 2 H, J = 6.6 Hz); 4.30 (g, 2 H, J = 6.8 Hz); 6.04 (d, 1 H, J = 13.2 Hz); 8.22 ppm (d, 1 H, τ = 13.2 Hz).

Received: July 31, 1985

¹ Hojo, M., Masuda, R. J. Org. Chem. 1975, 40, 963.

² Hojo, M., Masuda, R., Kamitori, Y. Tetrahedron Lett. 1976, 1009.

³ Hojo, M., Masuda, R., Kokuryo, Y., Shioda, H., Matsuo, S. *Chem. Lett.* **1976**, 499.

⁴ Kharasch, M.S., Kane, S.S., Brown, H.C. J. Am. Chem. Soc. 1942, 64, 333.

⁵ Bergmann, F., Weizmann, M., Dimant, E., Patai, J., Szmuskowicz, J. J. Am. Chem. Soc. 1948, 70, 1612.

⁶ Latham, Jr. H.G., May, E.L., Mosettig, E. J. Am. Chem. Soc. 1948, 70, 1079.

⁷ Mazza, L.J., Guarna, A. Synthesis 1980, 41.