

Inorganica Chimica Acta 281 (1998) 64-69

Inorganica Chimica Acta

Binuclear diorganophosphinothioformamido complexes of gold(I): synthesis and crystal structure of [Au(Ph₂PC(S)NPh)]₂ and related systems

Detlev Clajus^a, Reinhard Kramolowsky^a, George Siasios^b, Edward R.T. Tiekink^{b.*}

^a Institut f
ür Anorganische und Angewandte Chemie, Universit
ät Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
^b Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia

Received 25 November 1997; received in revised form 5 February 1998; accepted 3 March 1998

Abstract

Binuclear gold compounds, $[Au(R_2PC(S)NR')]_2$, were characterized from the reactions of HAuCl₄ or Ph₂PAuCl with R₂PC(S)N(H)R'. The complexes feature bidentate bridging ligands that link two gold centres leading to eight-membered metallacycles and linear S-Au-P coordination geometries. In the case of $[Au(Ph_2PC(S)NPh)]_2$, crystal structure analysis shows the presence of two conformations in the one lattice, i.e. an extended chair and a twisted conformation. \bigcirc 1998 Elsevier Science S.A. All rights reserved.

Keywords: Gold complexes; Thioformamide complexes; Thiolate complexes; Crystal structures

1. Introduction

Interest in gold thiolate chemistry arises, in part, from the use of gold compounds in the treatment of rheumatoid arthritis [1-4], with a number of gold thiolates such as aurothiomalate (Myocrisin, 1) and aurothioglucose (Solganol, 2) used in this context. These polymeric species, which are generally water soluble, may be broken down to monomeric complexes on the addition of triorganophosphine; this can also lead to potent species. Thus, monomeric lipid soluble auranofin, [(1-thio-B-D-glucopyranose-2,3,4,6-tetraacetato-S)(triethylphosphine)gold(I)] 3, is used clinically and can be administered orally rather than by injection as for the polymeric species. Given the clinical use of such complexes. it is not surprising that these and related species have been examined for potential anti-tumour activity. Recent studies have demonstrated that a number of phosphinegold(I) thiolates, with the thiolate derived from a thionucleobase such as 6-mercaptopurine, possess significant in vitro and in vivo anti-tumour activity [5-8]. As a continuation of studies in this area, the interaction of the potentially polydentate ligand diorganophosphinothioformamide, $R_2PC(S)N(H)R'$, R= alkyl, aryl, 4, with gold was investigated.

Anions derived from 4 have been shown to coordinate principally in an S-,P-chelating mode, however, monodentate D. Clajus et al. / Inorganica Chimica Acta 281 (1998) 64–69

P-, chelating S-,N- and bidentate bridging S-,P-,S-,N- and P-,N-modes have also been observed crystallographically [9]. In this study, the reactions of R₂PC(S)N(H)R' with HAuCl₁ and R₃PAuCl each yielded binuclear gold(I) complexes with the general formula $[Au(R_2PC(S)NR')]_2$ which were characterized spectroscopically as well as crystallographically for R = Ph. R' = Ph and cHex.

2. Experimental

2.1. Materials and reagents

All chemicals used were of reagent grade or better. The Ph_2PH [10] and $R_2PC(S)N(H)R'$ phosphines [11] and gold salts HAuCl₁ [12] and Ph₂PAuCl [13] were prepared by literature methods. The Ph₁P and cHex₂PH phosphines were obtained from Aldrich.

2.2. Physical measurements

IR spectra were recorded as KBr discs on a Perkin-Elmer 1720X FT spectrophotometer, proton (300.13 MHz) and ¹³C (75.47 MHz) NMR spectra on a Bruker ACP-300 NMR spectrometer with CDCl₃ as the solvent and SiMe₄ as the internal reference in each case. Proton-decoupled ³¹P NMR spectra were recorded as CHCl₃ solutions on a Bruker AM-360 NMR spectrometer at 36.44 MHz with 85% H₂PO₄ in D₂O as the internal reference. Fast atom bombardment (FAB) mass spectra were recorded with the assistance of T.

Table 1 Crystallographic data

Blumenthal on a VG ZAB-2HF spectrometer (using 3-nitrobenzyl alcohol as matrix, exciting gas argon, FAB gun voltage 7 kV, current 1 mA and accelerating potential 8 kV). Microanalytical data were obtained at the Universität Hamburg.

2.3. Syntheses

Two methods were employed to prepare $Au(R_2PC(S)-NR')_2$; details are given in Table 1.

2.3.1. Method 1, reaction of [Ph₂PC(S)N(H)Ph] with HAuCl₄

Under an inert atmosphere of dry N_2 and at 0°C (ice-bath), one molar equivalent of HAuCl₁: 3H₂O (150 mg, 0.38 mmol) was dissolved in a solution of acetone and water (4:1 vol./vol., 5 cm³). Three molar equivalents of thiodiglycol (0.12 cm³, 1.15 mmol) were added dropwise to the yelloworange solution over a period of 2 h, yielding a colourless solution. To this solution, a 1:1 molar equivalent of [Ph₂PC(S)N(H)Ph] (134 mg, 0.42 mmol), dissolved separately in hot ethanol (~5 cm³), was added dropwise over a period of 10 min. A scilid precipitated out almost immediately and after the completion of the addition, the complex was collected by vacuum filtration and washed with cold ethanol. The crude product was recrystallized from a chloroform/ethanol solution (4:1 vol./vol., 5 cm³) and the resulting crystals dried over P₂O₅ in vacuo.

Formula	[Au(Ph,PC(S)NPh)], 0.33CH,Cl,	[Au(cHex,PC(S)NPh)],
Μ	1063.0	1058.9
Colour	vellow	pale vellow
Crystal size (mm)	0.08×0.28×0.28	$0.04 \times 0.04 \times 0.32$
Crystal system	monoclinic	triclinic
Space group	P_{2_1}/n	PÍ
a (Å)	16.500(4)	10.061(1)
b (Å)	13.862(1)	13.301(2)
c (Å)	24.771(8)	7.862(4)
α (°)		104.32(2)
β(°)	92.58(5)	104.11(2)
γ (°)		77.14(1)
$V(\dot{A}^3)$	5659(1)	973.8(5)
Z	6	1
$D_{\rm c} (\rm g \rm cm^{-1})$	1.871	1.805
F(000)	3036	516
μ (cm ⁻¹)	80.18	77.69
Range of transmission factors	0.064-0.365	0.483-0.568
No. data collected	12072	3830
No. unique data	9988	3438
No. unique data with $l \ge 2.5\sigma(1)$	5206	2848
R	0.042	0.027
R _w	0.046	0.028
Residual density (e A ⁻¹)	1.51	1.85

D. Clajus et al. / Inorganica Chimica Acta 281 (1998) 64-69

Table 2	
Fractional atomic coordinates for Au(R ₂ PC(S)NR') ₂	

Table 2 (continued)

Fractional ato	omic coordinates for	Au(R ₂ PC(S)NR') ₂					
Atom	x	у	:	Atom	x	у	:
R = R' = Ph		······		C(33a)	-0.105(1)	0.459(1)	-0.0451(8)
Au(1)	-0.00563(4)	0.05897(3)	0.04863(2)	C(33b)	0.312(2)	0.427(2)	0.004(1)
Au(?)	0.03976(4)	0.16526(4)	0.15805(2)	C(33c)	-0.366(1)	0.303(2)	0.085(1)
Aur3a	0.08357(5)	0.35488(4)	0.20149(3)	C(34a)	-0.056(2)	0.535(1)	-0.0598(8)
Club	0.4893(8)	0.1282(7)	0.0297(4)	C(34b)	0.385(2)	0.460(2)	0.021(1)
CIC	0.4630(8)	0.0781(7)	0.1360(1)	C(34c)	-0.336(2)	0.295(2)	0.037(1)
Sclay	0.0391(3)	0.2029(2)	0.0128(1)	C(35a)	0.013(2)	0.525(1)	-0.0811(8)
S(1b)	0.2125(3)	0.3632(2)	0.1700(2)	C(35b)	0.422(2)	0.420(2)	0.063(1)
S(le)	-0.0984(3)	0.1910(3)	0.1519(2)	C(35c)	-0.263(2)	0.307(2)	0.025(1)
P(1a)	0.0676(3)	0.0728/2		C(36a)	0.041(2)	0.429(1)	-0.0901(6)
P(1b)	0.1756(3)	0.1462(2)	0.1708(2)	C(36b)	0.384(2)	0.345(1)	0.0924(8)
P(1c)	-0.0457(3)	0.3552(3)	0.1703(2)	C(36c)	-0.208(2)	0.324(2)	0.0680(9)
Nelas	0.0101/01	0.2557(7)	-0.0022(1)	C(100)	0.428(2)	0.071(2)	0.078(1)
N(2b)	0.2737(9)	0.2315(8)	0.1020(5)	P = allor I	2' - Dh		
N(20)	-0.176(1)	0.3.013(8)	0.1020(3)	R = cnex, r	c = Pn	0.006.197.2	0.19572.2.
Colar	-0.170(1)	0.2004(9)	0.1021(3)	Au	0.06404(2)	0.00048(2)	0.18572(3)
CUL	0.036(1)	0.1905(6)	-0.0567(5)	5(1)	-0.2302(2)	0.1435(1)	-0.1509(2)
C(10)	0.229(1)	0.2490(9)	0.1417(6)	P(1)	-0.0954(1)	0.1535(1)	0.2524(2)
Cites	-0.118(1)	0.507(1)	0.1759(6)	N(1)	-0.1966(5)	0.3207(4)	0.1047(7)
C(11a)	0.044(1)	0.0829(9)	-0.1576(6)	C(1)	-0.1770(6)	0.2201(5)	0.0633(8)
	0.208(1)	0.1436(9)	0.2425(6)	C(11)	-0.0191(6)	0.2521(5)	0.4375(8)
C(TIC)	-0.060(1)	0.280(1)	0.2868(7)	C(12)	0.0420(8)	0.2019(6)	0.5999(8)
C(12a)	-0.056(1)	0.104(1)	-0.1778(7)	C(13)	0.1192(8)	0.2754(7)	0.7573(9)
C(12b)	0.287(1)	0.159(1)	0.2586(7)	C(14)	0.2298(7)	0.3122(6)	0.700(1)
C(12c)	-0.003(2)	0.281(2)	0.3285(9)	C(15)	0.1693(8)	0.3643(6)	0.539(1)
C(15a)	-0.055(1)	0.103(1)	-0.2331(8)	C(16)	0.0965(7)	0.2891(6)	0.3836(9)
C(135)	0.312(1)	0.143(1)	0.3122(9)	C(21)	-0.2421(6)	0.1240(5)	0.3211(8)
C(13e)	-0.012(2)	0.220(3)	0.375(1)	C(22)	-0.3622(7)	0.2195(5)	0.343(1)
C(14a)	0.002(2)	0.082(2)	-0.2684(8)	C(23)	- 0.4785(7)	0. (926(6)	0.406(1)
C(14b)	0.255(2)	0.114(1)	0.3485(8)	C(24)	-0.5306(7)	0.0954(6)	0.287(1)
C(14c)	~ 0.077(3)	0.161(3)	0.378(2)	C(25)	-0.4136(8)	0.0025(5)	0.266(1)
C(15a)	0.075(2)	0.062(1)	-0.2497(9)	C(26)	-0.2981(7)	0.0284(5)	0.1995(9)
C(15b)	0.176(1)	0.104(1)	0.3318(8)	C(31)	-0.2618(6)	0.3830(4)	-0.0260(8)
C(15c)	-0.126(3)	0.157(2)	0.337(1)	C(32)	-0.3972(7)	0.3829(6)	-0.120(1)
C(16a)	0.098(1)	0.063(1)	-0.1937(7)	C(33)	-0.4570(8)	0.4504(6)	-0.234(1)
C(16b)	0.151(1)	0.1191(9)	0.2790(6)	C(34)	-0.3807(9)	0.5168(6)	-0.262(1)
C(16c)	-0.121(2)	0.216(1)	0.2910(8)	C(35)	-0.2459(9)	0.5181(6)	-0.170(1)
C(21a)	0.172(1)	0.070(1)	-0.0778(6)	C(36)	-0.1875(7)	0.4519(5)	-0.050(1)
C(21b)	0.217(1)	0.0355(9)	0.1435(6)				
C(21c)	-0.085(1)	0.472(1)	0.2452(6)				
C(22a)	0.218(1)	0.156(1)	-0.077(1)	2.3.2. Me	thod 2, Reaction a	of [Ph_PAuCl] wi	th
C(22b)	0.204(1)	0.015(1)	0.0881(6)	[Ph ₂ PC(S	S)N(H)Ph]		
C(22c)	-0.046(1)	0.550(1)	0.2234(8)	One n	nolar equivalent	of [Ph ₂ PAuC]]	(200 mg. 0.40
C(23a)	0.297(2)	0.152(2)	- 0.076(1)	mmol) w	as dissolved in te	trabydrofuran (25	() with stir.
C(236)	0.230(1)	-0.072(1)	0.0678(7)	ning A 1	1 malar and all	and of a lid (Dh D	
C(23c)	-0.081(2)	0.645(1)	0.2297(9)	ring. A I	.1 motar equivate	ent of solid [Ph ₂ P	C(S)N(H)Ph
C(24a)	0.339(1)	0.063(2)	-0.074(1)	(141 mg	, 0.44 mmol) wa	is added. Stirring	was continued
C(24b)	0.264(1)	-0.142(1)	0.1035(7)	until diss	solution after whi	ich Et ₃ N (~ 2 c	m ³) was added
C(24c)	-0.144(2)	0.656(1)	0.259(1)	dropwise	over a few minut	es during which t	he colour of the
C(25a)	0.294(2)	-0.018(1)	-0.0742(8)	solution f	adad After 15 mi	n stirring the solu	tion was filtered
C(25b)	0.276(1)	-0.123(1)	0.1563(7)	solution i	aucu. Arter 45 fili	n surring, the solu	ation was interec
U(25c)	-0.184(1)	0.579(1)	0.2810(8)	and the s	orvent removed if	i vacuo. The prod	uct was washed
C (26a)	0.213(1)	-0.016(1)	-0.0748(7)	with etha	noi and then recry	stallized from a s	mall quantity of
C(26b)	0.253(1)	-0.034(1)	0.1775(6)	an ethanc	ol/dichloromethar	ne mixture (1:4 vo	$ol./vol., 5 cm^3$)
C(200)	-0.152(1)	0.487(1)	0.2734(7)	A crysta	l suitable for X-1	rav analysis was	shown to have
C(31a)	-0.007(1)	0.353(1)	-0.0770(6)	occluded	CH.Cl. in the lat	tice	
C(31b)	0.312(1)	0.309(1)	0.0764(7)	occiudeu	criecte in me fat	nce.	
C(3lc)	-0.231(1)	0.334(1)	0.1187(7)				
C(32a)	- 0.078(1)	0.367(1)	-0.0545(7)	2.4. Crys	tallography		
C(32b)	0.275(1)	0.350(1)	0.0317(9)		····		
U(320)	-0.310(2)	0.325(2)	0.1295(8)				

(continued)

Intensity data for $[Au(Ph_2PC(S)NPh)]_2$ and $[Au(cHex_2-PC(S)NPh)]_2$ were measured at room temperature on an

Enraf-Nonius CAD4F diffractometer equipped with Mo K α radiation (graphite monochromator), $\lambda = 0.7107$ Å, using the ω -2 θ scan technique to $\theta_{max} = 25.0^\circ$. The data sets were corrected for Lorentz and polarization effects and for absorption employing an analytical procedure [14]: crystal data are collected in Table 1.

The structures were each solved by the Patterson method and refined by a full-matrix least-squares procedure based on *F* [14]. Non-hydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms included in the models at their calculated positions (C–H0.97 Å). A weighting scheme of the form $w = 1/[\sigma^2(F)]$ was used for the R = R' = Ph analysis, and $w = 1/[\sigma^2(F) + 0.0017F^2]$ for the second; both refinements were continued until convergence. The fractional atomic coordinates are listed in Table 2 and the numbering schemes employed are shown in Figs. 1 and 2 which were drawn with ORTEP [15] at the 45% probability level.

3. Results and discussion

The [Au(R₂PC(S)NR')]₂ compounds, 5, were prepared from the reaction of HAuCl₄ with R₂PC(S)N(H)R' (for R = Ph, R' = Ph and Me; R = cHex, R' = Ph) and from the reaction of R₄PAuCl and R₂PC(S)N(H)R' in the presence of base; physical data are given in Table 3.

The complexes were characterized spectroscopically (IR, NMR and FAB mass) as well as crystallographically for R = R' = Ph and R = cHex, R' = Ph.

Selected IR bands are collected in Table 4. The ν (N–H) absorptions found in the R₂PC(5)N(H)R' compounds were absent in the spectra of the complexes, indicating deprotonation. Two regions of the IR spectra are of particular interest. i.e. 1400–1600 (thioamide(1), mainly due to C–N) and around 1350 cm⁻¹ (thioamide(1), mainly due to C–S). The thioamide(1) band, which occurs around 1500 cm⁻¹ in the free ligand, shifts to higher frequencies in the complexes; the thioamide(1) band (around 1350 cm⁻¹ in the ligands) is shifted to around 950 cm⁻¹ [16]. These results suggest additional and reduced electron density in the C–N and C–S bonds respectively. Small shifts in the positions of the thioamide(1) and (II) bands in the spectra between the R' = Ph and Me complexes are attributed to the differences in the inductive effects of these substituents.

The ¹H NMR spectra showed the expected resonances and integration. The notable feature of the ¹³C NMR spectra was the shift upfield by approximately 40 ppm for the quaternary Cq, compared with the free ligands (Table 4). The ³¹P NMR spectra showed one peak in each case, with the signal in the

Fig. 1. The molecular structure and crystallographic numbering scheme for the two independent molecules of {Au(Ph;PC(S)NPh)]₂; upper view, centrosymmetric molecule.

Fig. 2. The molecular structure and crystallographic numbering scheme for {Au(cHex_PC(S)NPh)}.

complex having moved downfield (~30 ppm) with respect to the free ligand, indicating coordination of the phosphorus atom; see Table 4.

The FAB mass spectra showed the presence of [M]⁺ for each complex, however, in no case was this the most abundant

	Colour	Yield (%)		M.p. (°C)	C (%)	H(%)	P(%)
		Method 1	Method 2		Calc.	Found Calc.	Found Calc.
R = Ph, R' = Ph	pale yellow	91	80	250 (dec.)	43.9	2.8	6.0
					44.1	2.9	6.0
R = Ph, R' = Me	white	78	75	205-210 (dec.)	37.1	3.0	6.8
					36.9	2.9	6.8
R = cHex, R' = Ph	pate yellow	80	84	116-118	42.9	5.2	5.9
					43.1	5.1	5.9
R = cHex, R' = Me	pale yellow	a	78	145 (dec.)	36.2	5.5	6.3
					.36.0	5.4	6.6

Table 3 Physical and microanalytical data for Au(R-PC(S)NR'),

" No reaction.

ion. The major ion observed in each of the spectra was as follows: for R = R' = Ph, $[Au(Ph_2PC(5)NPh)_2]^+$ (m/z 838); for R = Ph, R' = Me, $[Au_2S_2]^+$ (m/z 460); for R = cHex, R' = Ph, $[M-(SCNPh_cHex)]^+$ (m/z 641); for R = cHex, R' = Me, $[cHex_3PAu]^+$ (m/z 476). Except for the appearance of a fragment [M-SCNR']⁺, no other common features in the spectra were noted.

Thus, the spectroscopic and microanalytical evidence indicates the formation of novel gold(1) complexes with deprotonated forms of $R_2PC(S)N(H)R'$ most likely coordinating via a thiolate sulfur and phosphorus. Unambiguous structure assignment is based on single crystal diffraction studies of two derivatives, namely R = R' = Ph and R = cHex, R' = Ph.

Crystals of [Au(Ph₂PC(S)NPh)], crystallize with one and one-half molecules of [Au(Ph2PC(S)NPh)]2 as well as half a molecule of dichloromethane in the asymmetric unit. One of the independent molecules is centrosymmetric and the other occupies a general position. Crystals of [Au(cHex,-PC(S)NPh)], are centrosymmetric with half a molecule comprising the asymmetric unit. The molecular geometries for [Au(R₂PC(S)NPh)]₂ are shown in Figs. 1 and 2 and selected interatomic parameters are collected in Table 5. The structures are binuclear with two gold atoms being bridged by a bidentate [R₂PC(S)NPh] anion leading to eightmembered rings and approximately linear S-Au-P geometries. As can be seen from Table 5, the geometric parameters describing the four independent gold atoms are remarkably concordant. The S-C and C-N bond distances are consistent with single and double bonds respectively, i.e. structure 5. Despite the similarity in the cited parameters, the structures are not identical owing to puckering in the metallacycles.

The centrosymmetric molecule in $[Au(Ph_2PC(S)NPh)]_2$ exists in an extended chair conformation with the mean deviation of the atoms from the 2× (Au, S and P) least-squares plane being 0.072 Å; the C(1) atoms lie \pm 0.542(8) Å out of this plane. A similar conformation is found for $[Au(cHex_2-$ PC(S)NPh)]_2 where the comparable mean deviation is 0.024 Å with C(1) \pm 0.564(4) Å out of the plane. By contrast, significant puckering about the phosphorus atoms occurs in the second independent molecule of $[Au(Ph_2-$

Table 4
Selected spectroscopic data for $R_2PC(S)N(H)R'$ and $Au(R_2PC(S)NR')$.

	IR (cm ⁻¹)		NMR (ppm)	
	₽(C=N)	v(C=S)	¹³ C Cq (¹ J(P–C) (Hz))	٩Ľ
R = Ph, R' = Ph				
Ligand	1528	1388	206.6	19.2
			(39.9)	
Complex	1550	946	169.2	52.1
			(65.3)	
R = Ph, R' = Me				
Ligand	1506	1338	208.5	14.7
•			(37.9)	
Complex	1561	913	167.6	50.7
•			(70.8)	
R = cHex, R' = Ph				
Ligand	1502	1330	210.3	43.9
•			(34.4)	
Complex	1548	945	168.3	78.3
•			(55.1)	
R = cHex, R' = Me				
Ligand	1521	1345	210.8	48.4
			(34.9)	
Complex	1558	924	165.8	76.6
			(60.7)	
			,,	

 $PC(S)NPh)]_2$; the mean deviation in this case is 0.346 Å. Thus, while there are only small differences in the Au/S(1)/ C(1)/P(1), N(1) torsion angles, differences of up to 20° are found for the Au/P(1)/C(1)/S(1), N(1) torsion angles (Table 5). The adoption of two distinct conformations in the one lattice indicates that there is only a small difference in energy between them. The spectroscopic results do not show any evidence for more than one conformation is appears to be a solid state effect. As may be expected for complexes of this type, there are significant Au…Au interactions.

The intramolecular Au···Au interactions in two independent molecules of $[Au(Ph_2PC(S)NPh)]_2$ and in $[Au(CHex_2-PC(S)NPh)]_2$ are 2.924(1), 2.919(1) and 2.869(1) Å respectively. In $[Au(Ph_2PC(S)NPh)]_2$, there is an inter-

		R = cHex, R' = Ph
Ligand b	Ligand c	
2,301(5)	2 306(5)	2 306(1)

Table 5
Selected bond distances (Å), and angles (°) for [Au(Ph-PC(S)NPh)], and [Au(cHex-PC(S)NPh)].

	$\mathbf{R} = \mathbf{R}' = \mathbf{P}\mathbf{h}$			R = cHex, R' = Pf	
	Ligand a	Ligand b	Ligand c		
Au-S(1)	2.318(3)	2.301(5)	2.306(5)	2 306(1)	
Au-P(1)	2.271(4)	2.265(5)	2.271(5)	2.276(1)	
S(1)-C(1)	1.73(1)	1.76(1)	15(2)	1.765(5)	
P(1)-C(1)	1.84(1)	1.84(1)	1.8.0 21	1845(6)	
N(1)-C(1)	1.29(2)	1.28(2)	1.25(2)	1.278(8)	
S-Au-P(1)	173.4(2)	175.3(2)	176.3(1)	173 70(6)	
Au-S(1)-C(1)	107.6(4)	104.8(6)	108.5(7)	107 3(2)	
Au-P(1)-C(1)	116.5(4)	110.3(5)	1114(5)	114 2(2)	
S(1)-C(1)-P(1)	119.4(7)	117(1)	116(1)	119.1(3)	
S(1)-C(1)-N(1)	126(1)	125(1)	127(1)	125.8(5)	
P(1)-C(1)-N(1)	114(1)	117(1)	116(1)	114.9(4)	
Au/S(1)/C(1)/P(1)	-35(1)	-29(1)	-30(1)	- 38 6(4)	
Au/S(1)/C(1)/N(1)	144(1)	149(1)	152(2)	145 7(6)	
Au/P(1)/C(1)/S(1)	-44(1)	63(1)	57(1)	43.7(4)	
Au/P(1)/C(1)/N(1)	135(1)	- 115(1)	-125(1)	- 140.6(4)	

molecular Au(1)...Au(2) contact of 3.146(1) Å but no other Au. Au contacts less than 4.1 Å. Similarly, there are no Au...Au contacts less than 4.1 A in the lattice of [Au(cHex₂PC(S)NPh)]₂. The absence of extensive intermolecular Au...Au contacts (and indeed other non-hydrogen contacts) may be rationalized in terms of the steric crowding owing to the bulky organic substituents as well as the presence of the close intramolecular Au...Au contacts.

Preliminary biological screening for anti-arthritic activity [9] and cytotoxicity [7] for the dinuclear gold(1) compounds did not show enhanced activity over related systems and, hence, biological studies were not continued.

4. Supplementary material

The Crystallographic Information File for the structures is available from one of the authors (etiekink@chemistry. adelaide.edu.au).

Acknowledgements

G.S. was the holder of an Australian Postgraduate Research Award. The support of this research by Fonds der Chemischen Industrie and the Australian Research Council is gratefully acknowledged.

References

- [1] P.J. Sadler, R.E. Sue, Metal-Based Drugs 1 (1994) 107.
- [2] R.V. Parish, Interdisciplinary Sci. Rev. 17 (1992) 221.
- [3] D.R. Haynes, M.W. Whitehouse, in K.D. Rainsford, G.P. Velo (eds.). New Developments in Antirheumatic Therapy, Kluwer, Dordrecht, 1989, Ch. 8, p. 207.
- [4] A.J. Lewis, D.T. Walz, Prog. Med. Chem. 19 (1982) 1.
- [5] M.P. Arizti, A. Garcia-Orad, F. Sommer, L. Silvestro, P. Massiot, P. Chevallier, J.M. Gutiérrez-Zorrilla, E. Colacio, M. Martinez de Pancorbo, H. Tapiero, Anticancer Res. 11 (1991) 625.
- [6] P.D. Cookson, E.R.T. Tiekink, M.W. Whitehouse, Aust. J. Chem. 47 (1994) 577.
- [7] L.K. Webster, S. Rainone, E. Horn, E.R.T. Tiekink, Metal-Based Drugs 3 (1996) 63.
- [8] G. Siasios, E.R.T. Tiekink, Malay, J. Sci. 17B (1996) 5.
- [9] C.S.W. Harker, E.R.T. Tiekink, M.W. Whitehouse, Inorg. Chim. Acta 181 (1991) 23.
- [10] W. Gee, R.A. Shaw, R.C. Smith, Inorg. Synth. 9 (1967) 19.
- [11] K. Issleib, G. Harzfeld, Chem. Ber. 97 (1964) 1094.
- [12] B.P. Block, Inorg. Synth. 4 (1953) 14.
- [13] A.K. Al-Saády, C.A. McAuliffe, R.V. Parish, J.A. Sandbank, Inorg. Synth. 23 (1985) 191.
- [14] G.M. Sheldrick, SHELX76, program for crystal structure determination. University of Cambridge, UK, 1976.
- [15] C.K. Johnson, ORTEPII, ORNL Report 5136, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- [16] S.W. Carr, R. Colton, D. Dakternieks, Inorg. Chem. 23 (1984) 720.