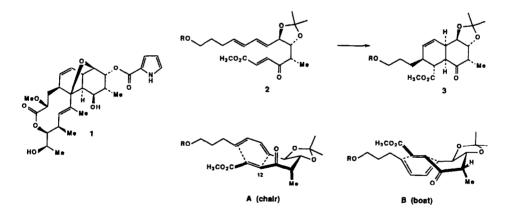
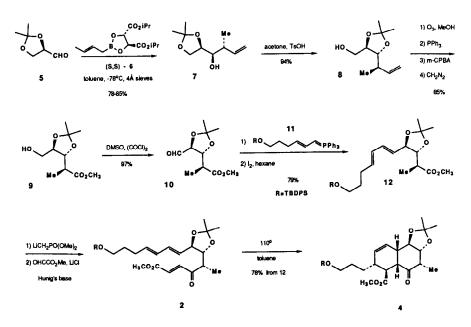
0040-4039/87 \$3.00 + .00 Pergamon Journals Ltd.


STUDIES ON THE SYNTHESIS OF NARGENICIN A1. AN EXAMPLE OF AN INTRAMOLECULAR DIELS-ALDER REACTION THAT PROCEEDS WITH A BOAT-LIKE CONFORMATION OF THE CONNECTING CHAIN

William R. Roush^{*1,2} and Jotham W. Coe

Department of Chemistry Massachusetts Institute of Technology Cambridge, MA 02139

<u>Abstract</u>: The intramolecular Diels-Alder reaction of triene $\underline{2}$ proceeds with excellent stereoselectivity via boat transition state \underline{B} and provides cycloadduct $\underline{4}$ in 78% yield.


In connection with recent studies directed towards the synthesis of nargenicin A_1 (1)³ we had occasion to explore the intramolecular Diels-Alder reaction of triene <u>2</u>.^{3c,4} Based on literature precedent⁵ and prior experience⁶

we expected that this cyclization would provide selective access to the cis-fused octalin nucleus of $\underline{1}$. Although two diastereomeric cis-fused cycloadducts could be produced, we were optimistic that $\underline{3}$, suitably functionalized for further elaboration to $\underline{1}$, would predominate since the Diels-Alder reaction would proceed via chair-like transition state A. On the other hand, for cis fused diastereomer $\underline{4}$ to be obtained, the Diels-Alder reaction would be constrained by the acetonide blocking group to proceed via B with a boat-like conformation of the connecting

blocking group to proceed via B with a boat-like conformation of the connecting chain. Although several reports have appeared suggesting that intramolecular Diels-Alder reactions may proceed via boat-like conformations as in B, experimental evidence in those cases has been lacking.^{5,7} Moreover, computational studies have suggested that the chair conformations, at least in simple systems, should be favored.⁸ It was with great suprise, therefore, that we discovered that the cyclization of $\underline{2}$ proceeds with exceptional selectivity via B, providing the undesired diastereomer $\underline{4}$ as the only observed cycloadduct! Details of this investigation follow.

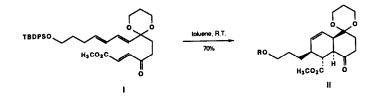
The synthesis of $\underline{2}$ commenced with the reaction of D-glyceraldehyde acetonide $\underline{5}$ and diisopropyl tartrate modified (E)-crotylboronate (S,S)- $\underline{6}$.⁹ This reaction, described in detail elsewhere,⁹ provides $\underline{7}$ with 96% diastereoselectivity. Exposure of $\underline{7}$ to catalytic pTsOH in acetone provides an easily separated 10:1 equilibrium mixture of $\underline{8}$ and $\underline{7}$; after one recycle of recovered $\underline{7}$, diastereomerically pure $\underline{8}^{10}$ ($[\alpha]^{23}_{\ D}$ + 29.6° (c 1.2, CH₂Cl₂)) was obtained in 94% yield. Ozonolysis of $\underline{8}$ (MeOH, -78°C), reduction of the intermediate α -methoxy-

hydroperoxide with Ph_3P , oxidation of the resulting aldehyde with mCPBA and finally treatment with CH_2N_2 provided hydroxy ester <u>9</u> ([α]²⁵_D + 24.8° (c 1.4,

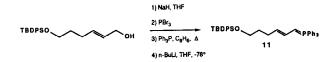
 CH_2Cl_2)) in 85% yield. Oxidation of <u>9</u> by using a standard Swern procedure¹¹ provided crude <u>10</u> which, without purification, was immediately treated with 1.05 equiv. of ylid <u>11¹²</u> in THF (-78°C). The resulting mixture of dienes was then isomerized to E,E-<u>12</u> (>10:1; $[\alpha]^{25}_{D}$ + 14.4° (c 2.9, CH_2Cl_2)) by exposure to catalytic I₂ in hexane (76% yield from <u>9</u>). Treatment of <u>12</u> with 2 equiv. of LiCH₂PO(OMe)₂ in THF at -78°C set the stage for introduction of the dienophile via a modified Horner-Wadsworth-Emmons reaction (MeO₂CCHO, diisopropylethylamine, LiCl, CH_3CN , 23°C, 5 min).¹³ Triene <u>2</u> thus prepared cyclized smoothly at 110°C in toluene (22 h), providing cycloadduct <u>4</u> ($[\alpha]^{25}_{D}$ - 10.7° (c 1.1, CH_2Cl_2)) as the only detected product in 78% overall yield from <u>12</u>.

The stereochemistry of <u>4</u> was assigned following conversion to lactone <u>13</u> $([\alpha]_{D}^{25} + 18.0^{\circ} (c 2.5, CH_{2}Cl_{2}))$. Homonuclear decoupling experiments established

the ring fusion to be cis $(J_{7,12} - 5 \text{ Hz})$ while difference NOE studies showed strong interactions between H(13), H(8) and the C(10)-methyl group. Similarly, H(9), H(11) and H(12) were shown to be cis by the NOE technique (irradiation of H(11)). These data are uniquely consistent with the stereostructure depicted here for <u>13</u>, requiring in turn that the Diels-Alder reaction of <u>2</u> proceeded via B rather than A.


Studies designed to probe the generality of this result are in progress. Hand in hand with these efforts we hope to uncover a selective pathway to nargenicin precursors such as $\underline{3}$.

<u>Acknowledgement</u>. This research was supported by grants from the National Institutes of Health (GM 26782 and Training Grant CA 09112).


References

- 1. Fellow of the Alfred P. Sloan Foundation, 1982-86.
- After February 1, 1987, address correspondence to this author at the Department of Chemistry, Indiana University, Bloomington, Indiana 47405.

- (a) Celmer, W.D.; Chmurny, G.N.; Moppett, C.E.; Ware, R.S.; Watts, P.C.; Whipple, E.B. J. Am. Chem. Soc. 1980, 102, 4203. (b) Whaley, H.A.; Chidester, C.G.; Mizask, S.A.; Wnuk, R.J. <u>Tetrahedron Lett</u>. 1980, 21, 3659.
 (c) Cane has suggested that the biosynthesis may involve an intramolecular Diels-Alder reaction: Cane, D.E.; Yang, C.-C. J. Am. Chem. Soc. 1984, 106, 784.
- For previous studies on the synthesis of <u>1</u>, see: (a) Kallmerten, J. <u>Tetrahedron Lett</u>. <u>1984</u>, <u>25</u>, 2843. (b) Jones, R.C.F.; Tunnicliffe, J.H. <u>Ibid</u>. <u>1985</u>, <u>26</u>, 5845.
- 5. Hirama, M.; Uei, M. J. Am. Chem. Soc. 1982, 104, 4251.
- The intramolecular Diels-Alder reaction of <u>i</u> provides cis-fused <u>ii</u> with 10:1 selectivity (Roush, W.R.; Coe, J.W., unpublished research).

- 7. Taber, D.F.; Gunn, B.G. J. Am. Chem. Soc. 1979, 101, 3992.
- (a) Brown, F.K.; Houk, K.N. <u>Tetrahedron Lett</u>. <u>1985</u>, <u>26</u>, 2297. (b) Marshall, J.A.; Audia, J.E.; Grote, J. <u>J. Org. Chem</u>. <u>1986</u>, <u>51</u>, 1155.
- 9. Roush, W.R.; Halterman, R.L. J. Am. Chem. Soc. 1986, 108, 296.
- (a) Spectroscopic properties of all new compounds are fully consistent with the assigned structures. (b) A satisfactory combustion analysis (±0.3% for C, H) was obtained for compounds <u>2</u>, <u>4</u>, <u>7</u>, <u>8</u>, <u>12</u>, and <u>13</u>.
- 11. Munsco, A.J.; Swern, D. <u>Synthesis</u> 1981, 165.
- 12. Ylid 11 was prepared as summarized below.

 Blanchette, M.A.; Choy, W.; Davis, J.T.; Essenfeld, A.P.; Masamune, S.; Roush, W.R.; Sakai, T. <u>Tetrahedron Lett</u>. <u>1984</u>, <u>25</u>, 2183.

(Received in USA 4 December 1986)