Effects of NH₃ on ¹³C-Selective Infrared Multiple Photon Decomposition of CF₂HCl by a CO₂ Laser Kyoko Sugita* and Shigeyoshi Arai The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01 (Received March 30, 1987) The effects of NH₃ on product yields and 13 C enrichment factors have been examined for the IRMPD of CF₂HCl using a CO₂ TEA laser. The IRMPD of neat CF₂HCl yields only C₂F₄ and HCl as final products. The addition of NH₃ resulted in the formation of CF₃H and NH₄Cl in addition to C₂F₄, and enhanced significantly the decomposition of CF₂HCl. The enrichment factors of 13 C in C₂F₄ and CF₃H decreased with increasing NH₃, but the decreases were relatively small. The mechanism of the IRMPD in the presence of NH₃ is discussed on the basis of the observed results. It has been well-established that four-atom or larger molecules absorb numerous photons and undergo unimolecular decomposition when their resonant vibration modes are irradiated with high-fluence radiation from infrared lasers.¹⁾ The photochemical phenomenon is called infrared multiple photon decomposition (IRMPD in abbreviation). IRMPD frequently exhibits remarkable isotope effects, reflecting the relatively large isotope shifts on infrared absorption. A number of studies have been already published on isotope separation of elements from hydrogen to uranium.¹⁻³⁾ However, it is not easy to obtain practical amounts of enriched products in laser isotope separation by use of IRMPD, although selectivities are high. Recently, Kamioka et al. have succeeded in producing silicon isotopes on a practical scale using the IRMPD of Si₂F₆.4,5) Natural carbon consists of two isotopes, i.e., 98.9% of ¹²C and 1.1% of ¹³C. The IRMPD of CF₂Cl₂, CF₃X (X=Cl, Br, or I), and CF₂HCl has been extensively studied with the intention of ¹³C separation; most of the studies have been succinctly reviewed in the introductory section of the paper by Outhouse et al.⁶⁾ The IRMPD of CF₃Br was found to produce C₂F₆ with a ¹³C content of 80%, and that of CF2HCl to produce C2F4 with 90—96% under selected irradiation conditions.⁷⁻⁹⁾ However, the enrichment of ¹³C above 70% is attainable only with a great sacrifice of the yield. Outhouse et al. have demonstrated production rates of 0.23 g h⁻¹ for 50% 13 C and of 0.011 g h⁻¹ for 72% 13 C using a high power CO₂ TEA laser (10 J, 10 Hz)⁶⁾. Therefore, there is general agreement that practical ¹³C separation requires a two-stage process. For example, the first process is intended to increase a ¹³C content from 1.1% to 20-50% (enrichment factor, 23-90) and the following second process is the production of ¹³C above 90% (enrichment factor, 9-36). Since a high selectivity is not needed in each step, one can obtain a relatively large production rate of ¹³C by such a two-stage process. Abdushelishvili et al. have proposed the IRMPD of CF₃Br or CF₃I in the presence of NO, where NO scavenged CF₃ radicals produced from the first ¹³C-selective IRMPD.¹⁰⁾ The resulting product, i.e., CF₃NO was presumed to be converted into CF₃Br or CF₃I for the second IRMPD, where the chemical conversion could be easily achieved by heating CF₃NO in Br₂ or I₂ vapor. Arai and his coworkers found that the IRMPD of C₂F₆ in the presence of Br₂ formed CF₃Br with 20-30% ¹³C.¹¹⁾ The further IRMPD of the enriched CF₃Br resulted in the production of C₂F₆ with 90% ¹³C. On the other hand, Hackett et al. showed that the production of C₂F₄ with 95—99% ¹³C from equimolar mixtures of 50% 12CF2HCl and 50% 13CF2HCl was very efficient in energy expenditure. 6,12) They predicted the production rate of 1.7 g h⁻¹ for 99% ¹³C. assuming that equimolar mixtures were irradiated in a flow system with 10 J pulses at a repetition rate of 10 Hz. However, enriched CF₂HCl must be provided from other enrichment process. Recently, Ma et al. proposed the two-stage IRMPD of CF₂Cl₂-HI or CF₂ClBr-HI mixtures, where the first process was the production of CF₂HCl with ¹³C content of 30% and the second process was the further enrichment by the selective decomposition of the CF₂HCl.¹³⁾ In view of the efficient decomposition of CF2ClBr at low fluences, the IRMPD of CF₂ClBr-HI mixtures could be one of the most effective two-stage processes to the practical enrichment of ¹³C. IRMPD of several fluorocarbons has been examined in our group for the development of a practical two-stage ¹³C enrichment. In the course of the study we found that NH₃ significantly enhanced the decomposition yield in the IRMPD of CF₂HCl. The effect could be applied to an improvement of a ¹³C yield in separation processes involving IRMPD of CF₂HCl. The present paper describes detailed experimental results and decomposition mechanisms. ### **Experimental** The experimental apparatus and procedures are essentially the same as were described elsewhere. 14, 15) Laser beams from a Lumonics 103-2 CO₂ TEA laser were focussed on the center of a reaction cell by a BaF₂ lens with a focal length of 60 cm, where the resulting focus area was about 0.045 cm². The laser was operated without nitrogen gas at a repetition rate of 0.7 Hz. A typical pulse had a half width of about 80 ns and a triangle profile without a tail. Output energies were measured with a Scientech 362 energy power meter and a Scientech 360001 detector. The reaction cell was a 113 cm long and 2.0 cm diameter cylindrical Pyrex tube equipped with KBr windows at both ends. In addition, the cell has KBr side windows for infrared spectrophotometric analysis, where the optical path length was 5.0 cm. The total volume was 393 cm³. Formation amounts and isotopic compositions of products were determined by using a Shimadzu GC-7A gas chromatograph coupled with a NEVA quadrapole mass spectrometer, where a 3 mm ϕ and 3 m long VZ-10 column was mainly employed under programmed temperature variations. CF₂HCl purchased from Nitto Fluorochemical Co. was distilled repeatedly at low temperatures and the middle fractions were used as irradiation samples. We could not detect impurities such as C₂F₄ and CF₃H except for a trace amount of CF₂Cl₂. NH₃ from Suzuki Shokan Co. was also distilled repeatedly at low temperatures. #### Results The infrared absorption spectra of natural CF₂HCl and NH3 are shown in Fig. 1. The bands centered at 1105 and 1120 cm⁻¹ in CF₂HCl are assigned to CF₂ symmetric and antisymmetric stretching vibration modes, respectively. The bands at 932 and 968 cm⁻¹ in NH₃ are due to degenerate symmetric deformation modes, where their R branches are extending on the higher wavenumber side. A ¹³C isotope shift has been reported to be nearly 30 cm⁻¹ for CF₂HCl.¹⁶⁾ In comparison to usual infrared absorption spectra, the band shapes become broader and the peaks shift to the red side in multiple-photon absorption spectra, depending on a laser fluence. The previous study of the IRMPD of CF₂HCl has shown that the decomposition probability of ¹³C bearing molecules is considerably larger than that of ¹²C bearing molecules in a wavenumber region from 1030 cm⁻¹ to 1060 cm⁻¹.9) Since this study was concerned with ¹³C enrichment, we employed mainly the 9P (20) line at 1046.85 cm⁻¹ and the 9P (22) line at 1045.02 cm⁻¹ for irradiation of the mixtures. Although NH3 also absorbed some of the laser radiation, neat NH3 did not decompose at all under the present irradiation conditions, probably because of insufficient fluences for decomposition of a simple four-atom molecule.¹⁷⁾ The IRMPD of neat CF₂HCl gives only C₂F₄ and HCl as stable final products; these are the same products as in homogeneous gas-phase thermolysis.^{18,19)} The addition of NH₃ causes the formation of a new product, which can be definitely identified as CF₃H on the basis of its retention time on gas chromatography, a peak wavenumber in infrared spectroscopy, and a cracking pattern in mass spectrometry. In addition, we observed thick deposition of a white solid on the cell walls. The element analysis of the solid showed C, 1.04; H, 7.39; N, 25.7% in weight; the composition was consistent with NH₄Cl. No fluorocarbons containing Cl, (for example, CFH₂Cl, CFHCl₂, C₂F₂Cl₂) were detected on gas chromatography. Fig. 1. Infrared absorption spectra of CF₂HCl (lower) and NH₃ (upper). Fig. 2. Effects of pulse number n on yields Y (lower) and enrichment factors β (upper) for IRMPD of CF₂HCl-NH₃ mixtures at 5 Torr and 5 Torr. O, $Y(C_2F_4)$ or $\beta(C_2F_4)$; Δ , $Y(CF_3H)$ or $\beta(CF_3H)$; \square , $Y(C_2F_4)/Y(CF_3H)$. Laser wavenumber, 1046.85 cm^{-1} ; laser fluence at focus, about 27 J cm⁻². Figure 2 shows the effects of pulse number on yields and enrichment factors for the IRMPD of $CF_2HCl-NH_3$ mixtures at 5 Torr plus 5 Torr (1 Torr=133.322 Pa). The yield for C_2F_4 , $Y(C_2F_4)$ is defined as a total amount of C_2F_4 produced, while that for CF_3H , $Y(CF_3H)$ has a similar definition. The enrichment factors for C_2F_4 and CF_3H are as follows. $$\begin{split} \beta(C_2F_4) = &\{[^{13}C]/[^{12}C] \text{ in } C_2F_4\}/\{[^{13}C]/[^{12}C] \text{ in natural}\}\\ \beta(CF_3H) = &\{[^{13}C]/[^{12}C] \text{ in } CF_3H\}/\{[^{13}C]/[^{12}C] \text{ in natural}\} \end{split}$$ Ratios of [13 C] to [12 C] in C_2F_4 were determined from ion intensities of 12 CF $_2$ ⁺ at m/z=50 and those of 13 CF $_2$ ⁺ at m/z=51 for the C_2F_4 peak in GC-MS. On the other hand, we obtained similar ratios in CF $_3$ H from ion intensities at m/z=50 (12 CF $_2$ ⁺), m/z=51 (12 CF $_2$ H⁺ and Fig. 3. Logarithmic plots of [CF₂HCl]_n/[CF₂HCl]_o vs. number of pulses for IRMPD of CF₂HCl-NH₃ mixtures at 5 Torr and 5 Torr. [CF₂HCl]_n and [CF₂HCl]_o, see text. Laser wavenumber, 1046.85 cm⁻¹; laser fluence at focus, about 27 J cm⁻². ¹³CF₂⁺), and m/z=52 (¹³CF₂H⁺), taking the cracking pattern of CF₃H into consideration. Figure 2 includes plots of $Y(C_2F_4)/Y(CF_3H)$ vs. number of pulses. $Y(C_2F_4)$ predominates over $Y(CF_3H)$ at small pulse numbers, but $Y(C_2F_4)$ decreases to about a half of $Y(CF_3H)$ at 2000 pulses. For pulse numbers less than 1000, logarithmic plots of [CF₂HCl]_n/[CF₂HCl]₀ vs. number of pulses give a good straight line, as shown in Fig. 3, where [CF₂HCl]₀ and [CF₂HCl]_n are the amounts of CF₂HCl before and after n-pulse irradiation, respectively. The slope corresponds to a so-called specific decomposition rate in IRMPD, which is 2.1×10^{-4} pulse⁻¹ in this case. Figure 4 shows the laser line dependences of yields and enrichment factors for the IRMPD of 10 Torr CF₂HCl and 10 Torr NH₃, where the number of laser pulses is 1000 at each line. In these irradiations, fluences at the focus were adjusted to fall within 20.8±2.8 I cm⁻² by inserting polyethylene films into the beam path. However, that for the 9P(34) line at 1033.49 cm⁻¹ was 12.5 J cm⁻² at a maximum output. Although $Y(C_2F_4)$ and $Y(CF_3H)$ decrease with decreasing wavenumber, $\beta(C_2F_4)$ and $\beta(CF_3H)$ have maxima at the 9P (26) line, i.e., 1041.28 cm⁻¹ and the 9P (30) line, i.e., 1037.43 cm⁻¹. In addition, the parallel relations between C₂F₄ and CF₃H in yield and enrichment factor suggest that both compounds have the same origin, which must be a CF₂ radical produced in the ¹³C selective IRMPD of mixtures. There seems to be a structure in the wavenumber dependences of $\beta(C_2F_4)$ and $\beta(CF_3H)$. The structure may originate from the nar- Fig. 4. Laser line dependences of yields Y and enrichment factors β for IRMPD of CF₂HCl-NH₃ mixtures at 10 Torr and 10 Torr. O, $Y(C_2F_4)$; Δ , $Y(CF_3H)$; \blacksquare , $\beta(C_2F_4)$; \triangle , $\beta(CF_3H)$; pulse number, 1000. Fluences, see text. row resonance of the laser radiation with rotation-vibration transition energy in the discrete energy-level region. In the IRMPD of neat CF₂HCl for different irradiation frequencies at 1053.92, 1046.85, 1041.28, and 1035.47 cm⁻¹, the enrichment factor increased rapidly with decreasing wavenumber. We consider that a non-selective thermal process may contributes to the formation of both C₂F₄ and CF₃H in mixtures of 10 Torr CF₂HCl and 10 Torr NH₃. The contribution becomes more significant with decreasing wavenumber, resulting in a rapid decrease in β (C₂F₄) or β (CF₃H) below 1035 cm⁻¹. In order to obtain standard data for comparison, we examined briefly the IRMPD of neat CF₂HCl under the same experimental conditions as the CF₂HCl-NH₃ mixtures. Figure 5 shows the pressure dependences of $Y(C_2F_4)$ and $\beta(C_2F_4)$, where the laser was adjusted to the 9P (22) line and the fluences were set at about 30 J cm⁻². As NH₃ is added to 1.0 Torr CF₂HCl, $Y(C_2F_4)$ decreases rapidly and, after passing through a minimum, increases gradually with increasing NH₃ (see Fig. 6). $Y(CF_3H)$ increases simply with increasing NH₃, while both $\beta(C_2F_4)$ and $\beta(CF_3H)$ decrease. Hereafter, we define a total carbon yield, Y(C) as 2 $Y(C_2F_4)$ for neat CF₂HCl or $Y(CF_3H)+2$ $Y(C_2F_4)$ for Fig. 5. Pressure dependences of $Y(C_2F_4)$ and $\beta(C_2F_4)$ for IRMPD of neat CF₂HCl. Laser wavenumber, $1045.02 \, \text{cm}^{-1}$; laser fluence at focus, about 29 J cm⁻²; pulse number, 1000. Fig. 6. Effects of NH₃ pressure on yields Y and enrichment factors β for IRMPD of CF₂HCl (1.0 Torr)-NH₃ mixtures. O, Y(C₂F₄) or β(C₂F₄); Δ, Y(CF₃H) or β(CF₃H). Laser wavenumber, 1045.02 cm⁻¹; laser fluence at focus, about 29 J cm⁻²; pulse number, 1000. Fig. 7. Effects of CF₂HCl pressure on yields Y and enrichment factors β for IRMPD of CF₂HCl-NH₃ (1.0 Torr) mixtures. O, $Y(C_2F_4)$ or $\beta(C_2F_4)$; Δ , $Y(CF_3H)$ or $\beta(CF_3H)$. Laser wavenumber, $1045.02 \, \mathrm{cm}^{-1}$; laser fluence at focus, about 29 J cm⁻²; pulse number, 1000. Fig. 8. Effects of total pressure on yields Y and enrichment factors β for IRMPD of equimolar CF₂HCl-NH₃ mixtures. O, Y(C₂F₄) or β(C₂F₄); Δ, Y(CF₃H) or β(CF₃H). Laser wavenumber, 1045.02 cm⁻¹; laser fluence at focus, about 28 J cm⁻²; pulse number, 1000. mixtures. Y(C) for the mixture of 1.0 Torr CF_2HCl and 1.0 Torr NH_3 was found to be 5.8×10^{-7} mol, while Y(C) for 1.0 Torr neat CF_2HCl was only 6.8×10^{-8} mol; the former yield is about 8 times as large as the latter. The corresponding enrichment factors were $\beta(CF_3H)=20$ for the mixture and $\beta(C_2F_4)=30$ for the neat CF_2HCl . Fluence effects on yields and enrichment factors were examined for mixtures of 1.0 Torr CF₂HCl and 5.0 Torr NH₃ in the range from 12 to 30 J cm⁻². For examples, $Y(\text{CF}_3\text{H})$ and β (CF₃H) at 12 J cm⁻² were 1.96×10^{-7} mol and 26, respectively, while those at 30 J cm⁻² were 1.40×10^{-6} mol and 9.0, respectively. $Y(\text{C}_2\text{F}_4)$ was much less than $Y(\text{CF}_3\text{H})$ at either fluence. An increase in fluence enhances product yields and reduces enrichment factors. When CF₂HCl was added to 1.0 Torr NH₃, we observed an increase in $Y(\text{C}_2\text{F}_4)$ or $Y(\text{CF}_3\text{H})$ and a decrease in $\beta(\text{C}_2\text{F}_4)$ or $\beta(\text{CF}_3\text{H})$ with increasing CF₂HCl, as shown in Fig. 7. Similar results were also obtained with total pressure effects on equimolar mixtures of CF₂HCl and NH₃, as shown in Fig. 8. #### **Discussion** The IRMPD of neat CF₂HCl has been explained satisfactorily in terms of the initial photochemical decomposition of CF₂HCl into CF₂ and HCl, and the subsequent combination between two carbene radicals.^{9,18)} $$CF_2HCl + nh\nu \rightarrow CF_2 + HCl$$ (1) $$2 \operatorname{CF}_2 \to \operatorname{C}_2 \operatorname{F}_4 \tag{2}$$ The same products, i.e., C_2F_4 and HCl have been obtained with the thermal decomposition of CF_2HCl , and the activation energy for the initial decomposition has been found to be 56 kcal mol⁻¹ (1 cal=4.184 J) at pressures above 100 Torr.¹⁹⁾ Since the addition of HCl results in a decrease in decomposition rate, the following back reaction is considered to occur in thermolysis. $$HCl + CF_2 \rightarrow CF_2HCl$$ (3) The heat of formation for CF_2 , $\Delta H_f(CF_2)$ show large divergence among several determinations.^{19,20)} The enthalpy change of the initial decomposition is calculated to be 41 kcal mol⁻¹ on the basis of $\Delta H_f(CF_2)$ = -49.5 kcal mol⁻¹.¹⁹⁾ In the presence of NH₃, one can consider the following bimolecular decomposition with an enthalpy change much less than that of Reaction 1. $$CF_2HCl + nh\nu \rightarrow CF_2HCl^*$$ (4) $$CF_2HCl^* + NH_3 \rightarrow CF_2 + NH_4Cl \Delta H = -1 \text{ kcal mol}^{-1}$$ (5 Therefore, the activation energy of Reaction 5 may be considerably smaller than the 56 kcal mol⁻¹ observed for Reaction 1. The reduction in activation energy means that a certain fraction of the excited molecules, which cannot decompose without NH₃, undergo Reaction 5 in the IRMPD of mixtures, where excited CF₂HCl originates from ¹³C-selective multiple-photon absorption. We conclude that the observed large increases in product yields are caused by the contribution of such excited parent molecules into laser-induced decomposition via Reaction 5. The formation of C_2F_4 is explained simply by dimerization of two CF_2 radicals in mixtures. However, the rapid decrease of $Y(C_2F_4)$ by adding NH_3 suggests that CF_2 radicals react directly with NH_3 to form a key product, which is responsible for the formation of CF_3H via some subsequent process. The reaction and subsequent process may be as follows. $$CF_2 + NH_3 \rightarrow HCF_2NH_2 \tag{6}$$ $$CF_2 + HCF_2NH_2 \rightarrow CF_3H + HCFNH$$ (7) A further reaction of CF₂ with HCFNH will give CF₃H and HCN. $$CF_2 + HCFNH \rightarrow CF_3H + HCN$$ The relative yield of CF₃H to the yield of C₂F₄ tends to increase with increasing pulse number, as shown in Table 1. IRMPD of CF2HCl-NH3 Mixtures | - | CF ₂ HCl
Torr | NH ₃ | Pulse
number | Fluence ^{a)} J cm ⁻² | $Y(C_2F_4)$ | Y(CF ₃ H) | $\beta(C_2F_4)$ | β(CF ₃ H) | Y(C)
per pulse | |---|-----------------------------|-----------------|-----------------|--|----------------------|----------------------|-----------------|----------------------|-----------------------| | | 1.0 | 0 | 1000 | 31 | 3.4×10 ⁻⁸ | 0 | 30 | | 6.8×10 ⁻¹¹ | | | 1.0 | 1.0 | 200 | 25 | 4.2×10^{-8} | Small | 19 | b) | 4.2×10^{-10} | | | 5.0 | 0 | 1000 | 30 | 1.7×10^{-6} | 0 | 21 | | 3.4×10^{-9} | | | 5.0 | 5.0 | 100 | 28 | 4.0×10^{-7} | 3.5×10^{-8} | 18 | b) | 8.4×10^{-9} | | | 10.0 | 0 | 1000 | 26 | 5.0×10^{-6} | 0 | 17 | _ | 1.0×10^{-8} | | | 10.0 | 10.0 | 30 | 19 | 4.9×10^{-7} | 2.6×10^{-7} | 12 | 9 | 4.2×10^{-8} | | | 10.0 | 10.0 | 100 | 26 | 2.1×10^{-6} | 9.8×10^{-7} | 8 | 8 | 5.1×10^{-8} | | | 10.0 | 10.0 | 200 | 27 | 3.9×10^{-6} | 2.1×10^{-6} | 7 | 8 | 5.0×10^{-8} | a) Fluence at focus. b) Selectivity could not be determined because of a small yield of CF₃H. Fig. 2. This fact seems to indicate that the accumulation of a certain compound during pulse irradiation causes the observed preferential formation of CF₃H in a late period. However, we failed to detect directly HCF₂NH₂ by gas chromatography. CF₂HCl is one of the most promising working molecules in ¹³C separation by IRMPD. Gauthier et al. have reported that the irradiation of 100 Torr natural CF₂HCl with the CO₂ laser radiation at 1046.9 cm⁻¹ and 3.5 J cm⁻² yields C₂F₄ containing 50% ¹³C at the efficiency that an absorption of 140 photons produces one carbon atom.9) Therefore, a 100-watt CO2 TEA laser can produce carbon at rate of 1.3 g h⁻¹, if 50% of the laser radiation is absorbed by CF₂HCl. Although the production rate is sufficiently high in their experiment, the ¹³C content must be increased to 90% or higher for practical purposes. In the previous paper we have proposed the two-stage IRMPD separation of ¹³C using CF₂Cl₂-HI and CF₂ClBr-HI mixtures, where the first IRMPD gives CF₂HCl with a ¹³C content of about 30% and the second IRMPD of the CF₂HCl is expected to result in the production of highly enriched ¹³C. Since CF₂ClBr decomposes at low laser fluences, one can obtain a relatively high yield of CF2HCl in the CF₂ClBr-HI mixture. The production of 90% ¹³C from the CF₂HCl with a ¹³C content of about 30% corresponds to a separation process with an enrichment factor of only 21. Table 1 tabulates yields and enrichment factors for the IRMPD of CF₂HCl in the presence of NH₃. The results clearly demonstrate that a total carbon yield per pulse increases significantly by adding NH₃ without a large loss of selectivity. The effect may be useful for the second stage in the IRMPD separation of ¹³C using a CF₂ClBr-HI mixture. ## References - 1) V. S. Letokhov, "Nonlinear Laser Chemistry," Springer-Verlag, New York (1983), Chaps. 5 and 6. - 2) T. Ooyama and S. Arai, Rev. Laser Eng., 10, 173 (1982). - 3) S. Arai, Y. Ishikawa, and T. Ooyama, *Rev. Laser Eng.*, 13, 707 (1985). - 4) M. Kamioka, S. Arai, Y. Ishikawa, S. Isomura, and N. Takamiya, *Chem. Phys. Lett.*, 119, 357 (1985). - 5) M. Kamioka, Y. Ishikawa, H. Kaetsu, S. Isomura, and S. Arai, *J. Phys. Chem.*, **90**, 5727 (1986). - 6) A. Outhouse, P. Lawrence, M. Gauthier, and P. A. Hackett, Appl. Phys., B, 36, 63 (1985). - 7) M. Drouin, M. Gauthier, R. Pilon, P. A. Hackett, and C. Willis, *Chem. Phys. Lett.*, **60**, 16 (1978). - 8) T. Watanabe, T. Ooyama, O. Hayashi, Y. Ishikawa, T. Ishii, and S. Arai, Nippon Kagaku Kaishi, 1984, 1517. - 9) M. Gauthier, C. G. Cureton, P. A. Hackett, and C. Willis, *Appl. Phys. B*, **28**, 43 (1982). - 10) G. I. Abdushelishvili, O. N. Avatkov, V. N. Bagratashvili, V. Yu. Baranov, A. B. Bakhtadze, E. P. Velikhov, V. M. Vetsko, I. G. Gverdtsiteli, V. S. Dolzhikov, G. G. Esadze, S. A. Kazakov, Yu. R. Kolomiiskii, V. S. Letokhov, S. V. Pigul'skii, V. D. Pis'mennyi, E. A. Ryabov, and G. I. Tkeshelashvili, Sov. J. Quantum Electron, 12, 459 (1982). - 11) S. Arai, T. Watanabe, Y. Ishikawa, T. Ooyama, O. Hayashi, and T. Ishii, *Chem. Phys. Lett.*, 112, 224 (1984). - 12) M. Gauthier, A. Outhouse, Y. Ishikawa, K. O. Kutschke, and P. A. Hackett, Appl. Phys., B, 35, 173 (1984). - 13) P. Ma, K. Sugita, and S. Arai, Chem. Phys. Lett., 137, 590 (1987). - 14) K. Sugita, Y. Ishikawa, and S. Arai, *J. Phys. Chem.*, **87**, 3469 (1983). - 15) K. Sugita, Y. Ishikawa, and S. Arai, *Appl. Phys. B*, **36**, 111 (1985). - 16) A. V. Evseeu, V. S. Letokhov, and A. A. Puretzky, *Appl. Phys.*, *B*, **36**, 93 (1985). - 17) N. Bloembergen and A. H. Zewail, *J. Phys. Chem.*, **88**, 5459 (1984). - 18) E. Grunwald, K. J. Olszyna, D. F. Dever, and B. Knishkowy, J. Am. Chem. Soc., 99, 6515 (1977). - 19) G. R. Barnes, R. A. Cox, and R. F. Simmons, J. Chem. Soc. B, 1971, 176. - 20) J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, and K. Drax, NSRDS-NBS26, Nat. Bur. Stand. (U.S.), 1969.