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ABSTRACT: Hippolachnin A (1) is an antifungal polyketide 

that bristles with ethyl groups mounted onto a caged heterotricy-

clic core. It has shown potent activity against Cryptococcus 

neoformans, a yeast that can affect immunocompromised patients 

as an opportunistic pathogen. Herein we describe a concise, diver-

sifiable, and scalable synthesis of (±)-hippolachnin A (1). It fea-

tures a powerful photochemical opening step, a diastereoselective 

addition of an ethyl cuprate and an unusual strategy to install two 

additional ethyl groups that makes use of a thiocarbonyl ylide 

generated in situ. 

Opportunistic infections with ubiquitous fungi represent a ma-

jor challenge to the immunocompromised. The yeast Cryptococ-

cus neoformans, for instance, can cause life-threatening meningi-

tis and affect the lungs and skin of patients with advanced ac-

quired immunodeficiency syndrome (AIDS).[1] Indeed, cryptococ-

cosis is the second most common AIDS-related complication in 

sub-Saharan Africa. Although a combination of intravenously 

applied amphotericin and oral flucytosin provides an effective 

treatment, these drugs are associated with significant side effects, 

difficult administration regimes, high costs, and the emergence of 

resistance.[2] Therefore, the development of new drugs that target 

C. neoformans and related opportunistic fungal pathogens remains 

an important goal. 

Hippolachnin A (1) could provide an important lead in this search. 

It was recently isolated from the South China Sea marine sponge 

Hippospongia lachne[3] and proved to be highly potent against 

several pathogenic fungi, including C. neoformans (MIC = 0.41 

µM). Biosynthetically, it was identified as a polyketide of the 

gracilioether family. While it bears structural similarities to other 

members of this series, the 4-5-5 tricyclic core of hippolachnin A 

is unique.[4] Presumed to be of photochemical origin, it features 

six contiguous stereocenters and bears an unusual array of four 

ethyl groups on its convex face. 

Given its attractive molecular structure and potent bioactivity, it is 

no surprise that hippolachnin A has attracted the attention of 

several synthetic groups (Scheme 1). The first total synthesis was 

achieved by Carreira in 2015.[5] In this case, the cyclobutane core 

was formed via photochemical [2+2] cycloaddition of 3-hexyne 

(2) to cyclopentenone 3 and the heterocycle was installed using an 

ene-type cyclization. In 2016 Brown and Wood reported a collab-

orative synthesis in which the cyclobutane was formed through a 

[2+2+2] cycloaddition of quadricyclane (4) to either 5 or 6 and 

the heterocycle through a late-stage allylic C-H oxidation.[6]  

Scheme 1: Synthetic approaches to hippolachnin A 

The synthesis of a presumed biomimetic precursor, compound 7, 

which was isolated together with 1, was described by Ohira et al. 

in 2005[7] and by Wu et al. in 2017.[8] However, irradiation of 7 

with UV light did not yield 1 but only resulted in isomerization of 

the vinylogous ester moiety.[8] Possibly, the desired cyclization 

could be achieved using more biomimetic irradiation conditions, 

as has been recently demonstrated with other marine natural 

products.[9] 

We now report a concise synthesis of hippolachnin A that is 

also based on a photochemical key step, albeit a decidedly non-

biomimetic one. Our retrosynthetic analysis is shown in Scheme 

2. In a deviation from previous syntheses, we planned to close the 

heterocyclic ring in 1 by O-alkylation of an enolized β-keto ester 

8.[10] The two vicinal ethyl groups would be installed by three-

component coupling involving an ethyl nucleophile, an ethyl 

electrophile and the Michael acceptor 9. This key intermediate, in  

 

Scheme 2: Retrosynthetic analysis of hippolachnin A 
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Scheme 3: Total synthesis of hippolachnin A. KOt-Bu=potassium tert-butoxide, p-TSA= para-toluensulfonic acid, 

KHMDS=potassium hexamethyldisilazide, DMF=dimethylformamide, DMPU=1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-

pyrimidinone, DIBAL-H=diisobutylaluminium hydride, DMP=Dess-Martin periodinane, LDA=lithium diisopropylamide, 

TBAB=tetrabutylammonium bromide, DCE=1,2-dichloroethane. 

 

turn, could be traced back to the known bicyclo[3.2.0]heptadiene 

derivative 10, a photoisomer of the readily available tropolone 

ether 11. 

Accordingly, our synthesis opens with the photochemical con-

version of 11 into methoxy bicyclo[3.2.0]heptadienone 10 

(Scheme 3). This unusual photochemical reaction has been stud-

ied in detail by Dauben et al. and proceeds via disrotatory 4π-

electrocyclization of 11 to yield 12, which then undergoes an 

excited state rearrangement to afford 10.[11] Stereoselective conju-

gate addition of ethyl cuprate[12] from the convex side to 10, fol-

lowed by Wittig olefination[13] and hydrolysis of the enol ether,[14] 

gave rise to ketone 14 as a 10:1 mixture of Z- and E-isomers 

(major isomer shown). Homologation of ketone 14 was then 

achieved by formation of the vinyl triflate [15] and subsequent 

carbomethoxylation.[16] 

The stage was now set for the introduction of the two remaining 

ethyl groups. As outlined in our retrosynthesis (Scheme 1), we 

planned to achieve this by addition of an ethyl nucleophile, fol-

lowed by alkylation with an ethyl electrophile. Ethyl cuprate 

addition to unsaturated ester 9 indeed occurred with complete 

regio- and stereoselectivity at C10. However, the subsequent 

deprotonation and alkylation with iodoethane only afforded a 1:2 

mixture of diastereoisomers in favor of the desired isomer (see 

Supporting Information).[17] Although the major isomer could be 

easily converted into an advanced intermediate of the Wood-

Brown synthesis,[6]  we felt that such a low level of selectivity was 

not acceptable for an efficient synthesis of 1. 

To overcome this issue, we turned to a cycloaddition chemistry. 

We reasoned that the 1,3-dipolar addition of thiocarbonyl ylide 16 

to the more reactive double bond of 9, followed by reductive 

desulfurization of the resulting tetrahydrothiophene, would deliver 

both ethyl groups to the convex side.[18] To this end, we synthe-

sized the sulfoxide 15 as a precursor of the highly reactive 16. 

Compound 15 is a homologue of the parent reagent introduced by 

Achiwa and was prepared in two steps from sodium sulfide and  

1-chloroethyl trimethylsilane (see Supporting Information).[19] 

Indeed, heating of 15 in the presence of 9 afforded tetrahydrothio-

phene 17 as a single diastereomer. Single crystal X-ray structure 

analysis showed that the methyl groups adopt a trans-

configuration with respect to the tetrahydrothiophene ring, which 

can be explained by the stepwise nature of thiocarbonyl ylide 

cycloadditions.[20] 

The final phase of our synthesis required the elongation of the 

methyl ester into a β-keto ester and its closure to a tetrahydrofuran 

to obtain the full carbon skeleton of hippolachnin A. Unfortunate-

ly, all attempts at a crossed Claisen condensation or even hydroly-

sis of 17 failed, presumably due to steric hindrance.[21]. However, 

a reduction-oxidation sequence gave rise to aldehyde 18 in good 

yield. Aldol addition[22] of methyl acetate then afforded the corre-

sponding β-hydroxy ester, which could easily be oxidized to yield 

β-keto ester 19. Formation of the tin enolate followed by chela-

tion-controlled trapping of the simultaneously generated tertiary 

carbocation[10] gave rise to (Z)-configured vinylogous carbonate 

20.[23] Desulfurization with Raney nickel in THF[24] then provided 

hippolachnin A. Overall, the synthesis proceeds in 12 steps from 

the known bicyclo[3.2.0]heptane 10 and provides 1 on a 100 mg 

scale.  
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Our synthesis will serve as a platform for the development of 

more potent and more soluble antifungal agents as well as molec-

ular probes with which to identify the biological target(s) of hip-

polachnin A. It relies on a photoisomerization of a tropolone to 

construct the bicyclic carbon core of the natural product. Asym-

metric variants of this rearrangement have been described.[25] The 

distinctive four ethyl substituents of 1 are introduced by a cuprate 

conjugate addition, a Wittig olefination, followed by etherifica-

tion, and a thiocarbonyl ylide cycloaddition, followed by eventual 

reductive desulfurization. The latter amounts to the addition of an 

alkane over an (electron poor) alkene. Despite its high strategic 

value, this sequence has been rarely used in synthesis.[26] This 

may be because, apart from the parent system, precursors of the 

requisite thiocarbonyl ylides have not been widely available. 

Future studies will expand on this chemistry and explore its use-

fulness in the synthesis of hippolachnin A derivatives as well as 

other complex natural products. Biological investigations of ana-

logs of hippolachnin A, in particular compound 20 and its oxida-

tion products, are currently ongoing and will be reported in due 

course. 
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