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The current interest in polyoxometalate chemistry is repre-
sentative of the diverse nature of this family of inorganic
clusters, which exhibit a wide variety of compositions and
have considerable structural versatility,!'!l as well as important
magnetic,?! optical,l! and catalytic properties.'l Much atten-
tion has been paid to heteropolyanions that contain tetrahe-
dral phosphate groups.?! While a number of research groups
have focussed on polyoxomolybdenum and vanadium phos-
phates, fewer studies have been carried out on polyoxoanions
that incorporate the pyramidal sulfite anion.[*! The sulfite
anion has C;, symmetry and contains a nonbonding, but
stereochemically active pair of electrons, and their metal
complexes may potentially display nonlinear optical (NLO)
properties,[! which are observed in the metal-selenites”] and
metal-iodates.’l Herein, we report the isolation, X-ray crystal
structures, and some properties of the first vanadium-sulfite
species  (nBuyN),[(VIVO)4(1y-0),(1s-OH),(15-SO5)4(H,0),]
(1),  (NHy),[(VVO)4(14-O)2(s-OH)o(p5-SO5)4(H,0),]  (2),
and (NH,)[VVO(S0;),5(H,0)]-2.5H,0 (3). Compounds 1
and 2 are polyoxovanadium(iv)-sulfite heteropolyanions that
exhibit a unique structural motif with a central cubic
{VYYO,(OH),} fragment and two vanadium(iv) ions located
at two of the corners of the cluster. Compound 3 exhibits an
open-framework structure. Open-framework materials have
recently received great interest because of their applications
in shape-selective catalysis, separation science, and ion-
exchange.!

The reaction of [VIVOCI,(thf),] in an HCI solution (37 %
HCI in water, 1:3 v/v, approximately pH 1) with an aqueous
solution (approximately pH9) containing Na,SO; and
Bu,NBr (final pH value of the solution was approximately
2.5) resulted in the formation of compound 1 [Eq. (1)].

6 [VIVOCL (thf),] + 4 NaSO, + 2 Bu,NBr + 6 H,0
— (Bu,N),[(VIVO)s0,(OH),(SO;),(H,0),] + 8NaCl + 4 HCl (1)
+2HBr + 12 THF

Compound 2 was isolated by replacing sodium sulfite and
tetra-n-butylammonium bromide in the above synthetic
procedure with ammonium sulfite. The synthesis of com-
pound 3 was achieved by treating NH,VYO;, in an HCI
solution (37% HCI in water, 1:4 v/v, approximately pH 1),
with (NH,),SO; in the presence of magnesium oxide (final
pH value was approximately 3) [Eq. (2)].
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Figure 1. a) Ball-and-stick representation of 1a. Average bond lengths
(A): V=0 1.577(6), V-O (1-OH") 2.202(3), V-O (1-O%) 2.073(4), V-O
(15-SO527) 2.024(3), V-O(H,0) 2.052(2), S-O (1,-SO;>") 1.532(8),
V(1)--V(1A) 2.933(1), V(2)--V(2A) 3.185(2); b) Ball-and-stick represen-
tation of the hydrogen-bonded dimer formed between two adjacent 1a
anions.

2NH, VYO, + 4 (NH,),SO,
+ 4H,0X92 NH, [(VVO)(SO5),5(H,0)] - 2.5H,0 3
+ (NH,),SO, + 6 NH; 2)

In the latter reaction, absence of MgO results in the
isolation of 2. The role of MgO in the formation of 3 remains
as yet unknown. Our reason for adding MgO to the reaction
was to attempt to replace the V(3) and V(3A) atoms in 2 (see
Figure 1) with Mg ions, to modify the complicated magnetic
properties of compound 2.

X-ray structural analysis of 11%] revealed the presence of
the [(VVO)s(s-0)a(1s-OH)1(p5-8O5)4(H,0),]*~ anion (1a;
Figure 1a) as well as two Bu,N* counterions. The core of
the hexanuclear anion 1a consists of a distorted cubane unit,
{VIYO,(OH),}, which is comprised of four, triply edge-sharing
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VIVO, octahedra, each having an oxo group (V=0 1.58 A) in a
position trans to a long V—O bond (2.36 A); the four
equatorial V—O bonds are similar in length, at approximately
2.02 A. The two square-pyramidal Os—V'V units are coordi-
nated to the vanadium ions of the core through one p,-O*
and two ;-SO,*~ bridges. The two p,-oxygen atoms O(4) and
O(4A) connect the network of six vanadium(iv) ions and
possess almost a trigonal pyramidal geometry. There are
moderate-to-strong hydrogen bonds between the two hydro-
gen atoms of O(12)!''4) and the sulfite oxygen atoms O(7’) and
0O(9), along with the symmetry-related interactions between
the hydrogen atoms of O(12') and the sulfite oxygen atoms
O(7) and O(9) (Table 1). These combine to form a hydrogen-
bonded dimer of two adjacent anions about a center of
symmetry (Figure 1b). There is further bonding between the
hydrogen atoms of O(12A) and O(7")/O(9") and, by symme-
try, the hydrogen atoms of O(12'A) with O(7"")/O(9"), etc.,
which links the dimeric units in 1D chains along the a axis. In
addition, the hydroxylic hydrogen atoms H(O(5)) and
H(O(5A)) form weak hydrogen bonds with the sulfite oxygen
atoms O(6) and O(6A), respectively (Table 1). Although the
{M,(14-O),(p13-OH),} cubane core has been reported in the
literature,”?! the connection of the {V}'(u-O),(us-OH),} unit
with two other metals through the oxygen atoms of the core
represents a novel motif, not only for vanadium species, but
for any metal. In addition, there are no known examples
where the {M,0,} cubane core is connected to two other
metals.

The structure of 2[' is similar to that of 1. However, 2
crystallizes in the noncentrosymmetric space group P2, while
1 crystallizes in the centrosymmetric [2/a space group. This
demonstrates the crucial role of the counterion concerning
the formation of noncentrosymmetric structures.® The NLO
properties of compound 2 were studied in aqueous solution
using 1 cm- and 1 mm-thick glass cells. Under laser irradiation
at 590 nm, with a 5 ns pulse duration, the NLO properties of 2
were found to be limited; experiments using lasers in the
picosecond time domain are underway. Compound 3 crystal-
lizes in the orthorhombic space group Pbcml'®) and exhibits a
two-dimensional open-framework structure. The crystallo-
graphically unique vanadium ion of 3 resides in a distorted
octahedron comprised of four equatorial sulfite oxygen
atoms, as well as an oxygen atom from a water molecule
and an oxo group, which occupy the axial positions (Figure 2).
The 2D structure of 3 can be described as a layered net of
isolated VOg octahedra, each sharing four corners with four
adjacent SOj trigonal pyramids. The connectivity between the
VOjg octahedra and the SO; pyramids creates eight- and four-
ring “windows”. Each eight-ring results from four VOq
octahedra linked by four SO;>~ pyramids. In contrast, the
four-rings are formed from two VOy octahedra that are
connected through two SO; pyramidal units. To the best of

Table 1: Hydrogen bonds for 1.

D—H--A d(D-H)  d(H-A)  d(D--A) X (DHA)
O12-H(12D)--07'  0.976(5)  1.794(15)  2.702(3)  153(3)
O12-H(12E)--09  0.976(5) 1.916(16)  2.825(3)  154(3)
05—H--06 0.976(5)  2.33(4) 2675(2)  100(2)
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Figure 2. Structural building unit of 3 and the atomic numbering
scheme. Selected interatomic distances (A): V(1)-O(1) 1.580(7), V(1)-
O(5) 1.984(6), V(1)-O(4A) 2.024(5), V(1)-O(2) 2.029(6), V(1)-O(3A)
2.057(5), V(1)-0(7) 2.280(7), S(1)-O(4) 1.548(6), S(1)-O(3) 1.548(6),
S(1)-0(2) 1.551(7), S(2)-0(6) 1.506(11), S(2)-O(5) 1.549(6).

our knowledge, the preparation of 3 represents the first
example of the isolation of an open-framework compound
under mild conditions.

The temperature dependence of the susceptibility data for
compound 1 is shown in Figure 3 in the form of %7 versus 7,
where an overall ferromagnetic behavior is revealed. The T
value of 2.24 cm*mol~! K at room temperature is higher than
the value expected for six uncorrelated S=1/2 spins, and
increases with decreasing temperature to a maximum value of
3.1 cm®*mol'K at 2 K.
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Figure 3. Temperature dependence of magnetic susceptibility given by
measurements of y, T at 0.1 T over a temperature range of 2-300 K

Experimental Section

1: An aqueous solution (approximately 10 mL, pH9) containing
Na,SO; (1.5 g, 12.0 mmol) and Bu,NBr (7.5 g, 24.0 mmol) was added
in one portion to a stirred solution of [VIVOCL(thf),]?l (1.5¢,
5.5 mmol) in an HCI solution (37% HCI in water, 1:4 v/v, 15 ml,
pH~1). Upon addition of Na,SO; and Bu,NBr the light-blue color of
the solution immediately changed to dark blue and the pH value of
the solution changed to approximately 2.5. Blue-green orthogonal
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crystals of 1 were isolated from the resulting solution after one day.
Yield: 0.48 g (40 % based on V). IR: # = 2964 [v(Cy,—H)], 1000, 1021,
987, 953 [»(V=0)], 823, 636, 508 cm~! [v(SO;*")]; UV/Vis (H,O):
Amm (e/dm3>mol~'cm!) =238(sh, 14258) 862 (547); TGA: percent-
age weight loss (temperature (°C)) = 6.8 (187, assigned to H,0), 36.5
(208, assigned to C,H, and NH;), 3.6 (306, assigned to SO, ); elemental
analysis caled (%) for C5,H;4N,0,,S,V (1308.83): C 29.37, H 6.00, N
2.14, S 9.80, V 23.35; found: C 29.68, H 6.04, N 2.17, S 9.63, V 23.50.

2: Compound 2 was prepared in 60 % yield in a similar fashion to
1, except that (NH,),SO; was used instead of Na,SO; and Bu,NBr.
IR: #=3239 [»(N-H)], 1019, 989, 953 [v(V=0)], 895, 644, 492 cm"!
[»(SOs*)]; UV/Vis (H,0): /nm (¢/dm’ mol~' em~') =380 (1757), 266
(9034), 889 (580); TGA: percentage weight loss (temperature (°C)):
6.2 (170, assigned to H,0), 3.9 (352, assigned to NHj), 24.1 (501,
assigned to SO,); elemental analysis caled (%) for H;,N,0,,S,V,
(860.01): H 1.64, N 3.26, S 14.92, V 35.54; found: H 1.75, N 3.10, S
15.10, V 35.85.

3: Solid MgO (7.0 g, 174 mmol) was added in one portion to a
stirred solution of NH,VO; (1.5 g, 12.8 mmol) in diluted HCI (37 %
HCI in water, 1:4 v/v, 20 mL, pH ~1.5). Upon addition of MgO, the
yellow color of the solution did not change. Solid (NH,),SO; (1.5 g,
15.3 mmol) was then added to the solution, the color of which
immediately turned blue, and the pH value changed to approximately
3.0. Blue hexagonal crystals of 3 were precipitated from the solution
after 2 days. Yield: 2.06 g (60 % based on V). IR: 7 =3262 [v(NH,")],
1019, 987, 953 [v(V=0)], 904 cm™! [»(SO:2")]; UV/Vis (H,0): A/nm
(¢/dm*mol~tem') =896 (2230), 235(sh, 6750); TGA: percentage
weight loss (temperature (°C)): 26.8 (270, assigned to H,0), 6.3 (361,
assigned to NH;) 35.8 (519.9, assigned to SO,); elemental analysis
caled (%) for HyNOS, 5V (268.13): H 4.13, N 5.22, S 17.94, V 19.00;
found: H 4.20, N 5.10, S 18.05, V 18.80.
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