TRIMETHYLGERMYL-METHANE AND -TRIFLUOROMETHANE-SULFONATES

JOHN E. DRAKE,* LAYLA N. KHASROU and ABDUL MAJID Department of Chemistry, University of Windsor Windsor, Ontario, Canada N9B 3P4

(Received 16 September 1980; received for publication 16 October 1980)

Abstract—Me₃GeOS(O₂)CH₃ and Me₃GeOS(O)₂CF₃ have been prepared and characterised by their 'H, ¹³C, ¹⁹F NMR, IR, Raman and mass spectra.

INTRODUCTION

Although several organotin and organosilicon derivatives of trifluoromethanesulfonic acid are known[1], only one example of an organogermanium trifluoromethanesulfonate has been cited [1, 2]. Its IR spectrum was reported briefly without a description of its synthesis. Because of our interest in the chemistry of germanium compounds, we have initiated studies into the synthesis and spectroscopic properties of trimethylgermyl-trifluoromethanesulfonate $Me_3GeOS(O_2)CF_3$ and -methanesulfonate $Me_3GeOS(O_2)CH_3$. In this paper we report their synthesis, N.M.R., IR, Raman and mass spectra.

EXPERIMENTAL

All reagents were obtained commercially and were used without further purification. Chloro- and bromotrimethylgermanes were obtained from Laramie Chemical Co., methane- and trifluoromethane- sulfonic acids and their silver salts from Aldrich Chemical Co., and lead cyanamide from ROC/RIC Chemical Co. Bis-trimethylgermanium carbodimide $[(CH_3)_3GeN:]_2C$ was prepared as described previously[3].

The ¹H and ¹⁹F NMR spectra of the neat liquids were recorded on a JEOL C-60 HL spectrometer while ¹³C NMR spectra were obtained using the Brucker CPX 100 multinuclear pulsed Fourier transform NMR spectrometer operating at 22.64 MHz at a probe temperature of 35°C. All ¹³C NMR spectra were recorded under ¹H noise-decoupling conditions. Samples were sealed in capillaries which were then placed in the 5 mm tubes containing TMS (as internal standard) and deuterochloroform (as lock for the ¹³C NMR spectra). ¹⁹F chemical shifts were measured relative to trifluoroacetic acid as external reference.

The IR spectra were recorded on a Beckman IR 12 (4000- 400 cm^{-1}) by placing a drop of the sample between two KBr windows. Raman spectra were recorded in the range 3000- 100 cm^{-1} on a Spectra-Physics 700 instrument, in conjunction with a 164 argon ion Laser and model 265 exciter. Mass spectra were obtained using a Varian MAT CH5 double focussing spectrometer equipped with an INCOS 2000 computer system at an ionizing energy of 70 eV. The ion clusters suggested in Table 2 were checked for "best fits" with the program (MASPEC).[†] A linear least-square iterative computer program (SMASBD)[†] was used to fit theoretical polyisotopic patterns. Typically, for isotopic distributions involving one species, e.g. Me₂GeOS(0₂)CF₃⁺ or Me₃GeOSO⁺, the average deviation was in the range 0.4–1.1. For a more complex cluster, such as that from m/e 115 to 125, the average deviation was still less than 2 for a distribution of the

ions Me_3Ge^+ , Me_2GeO^+ , Me_2GeF^+ and $HGeOS^+$ in the ratio of 10.0:0.4:5.6:4.0.

All manipulations involved either the use of a dry box in a dry nitrogen atmosphere or standard vacuum line techniques

Reaction of Me₃GeX with AgOS(O₂)CF₃/CH₃. Typically, AgOS(O₂)CF₃/CH₃ (ca. 4 mmol) was placed into a reaction vessel (ca. 25 ml capacity) equipped with a high vacuum Teflon stopcock. The vessel, which was wrapped with aluminum foil to protect the silver salt from light, was then degassed. Me₃GeCl or Me₃GeBr (ca. 5 mmol) and CH₂Cl₂ (ca. 5 ml) were distilled into the vessel held at -196°C. The mixture was allowed to warm up to room temperature and kept at that temperature for 24 hr with occasional shaking. Unreacted silver salt and the silver halide that precipitated were then filtered in a dry nitrogen-atmosphere box, using Wattman filter paper No. 41. Volatiles from the filtrate removed under were then vacuum leaving Me₃GeOS(O₂)CF₃/CH₃ in the flask as a non-volatile liquid. The yield based on the amount of Me₃GeX was ≈10% for both chloride and bromide starting materials.

Reaction of $[Me_3GeN:]_2C$ with $HOS(O_2)CF_3/CH_3$. Bis-trimethylgermylcarbodiimide $[Me_3GeN:]_2C$ (ca. 6 mmol) was distilled into a reaction vessel (ca. 25 ml capacity) held at $-196^{\circ}C$ containing $HOS(O_2)CF_3/CH_3$ (ca. 5 mmol). The mixture was allowed to react (room temperature, 10 minutes). The ¹H NMR spectrum of the mixture indicated the existence of some unreacted $[Me_3GeN:]_2C$ but none of the acid. The polymeric (H₂NCN)_n[4] was obtained as a white solid and was filtered through a Wattman filter paper No. 41 in the nitrogen atmosphere box. The filtrate was pumped for 30 min to ensure the removal of volatiles from the product (yield ~50%).

RESULTS AND DISCUSSION

Our initial attempts to prepare trimethylgermyl trifluoromethane-sulfonate, $Me_3GeOS(O_2)CF_3$ and trimethylgermylmethanesulfonate, $Me_3GeOS(O_2)CH_3$ involved the reaction shown in eqn (1).

$$Me_{3}GeX + AgOS(O_{2})CF_{3}/CH_{3} \xrightarrow{CH_{2}CI_{2}} Me_{3}GeOS(O_{2})CF_{3}/CH_{3}$$
$$+ AgX(X = Cl \text{ or } Br).$$
(1)

Unfortunately, the yield (10%) is most unsatisfactory. The 'H NMR and IR spectra indicate the presence of unreacted germyl halide. Thus, an alternative route was developed as is indicated by eqn (2).

$$(Me_{3}GeN:)_{2}C + HOS(O_{2})CF_{3}/CH_{3} \xrightarrow{40 \text{ min}}$$
$$Me_{3}GeOS(O_{2})CF_{3}/CH_{3} + \frac{1}{2}(H_{2}NCN)_{n}.$$
(2)

^{*}Author to whom correspondence should be addressed.

[†]MASPEC and SMASBD were obtained from J. Miller of the Chemistry Department, Brock University.

The susceptibility of the Ge-N bond in germyl carbodiimides towards protic species has been investigated earlier [3]. The carbodiimide reaction appears to be quantitative, but recovery of Me₃GeOS(O₂)CF₃/CH₃ from this reaction is still only about 50%. In this relatively small-scale reaction, much of the product is lost during the filtration step. The compound $Me_3GeOS(O_2)CF_3$ is a yellowish viscous liquid, while $Me_3GeOS(O_2)CH_3$ is colourless. Both are sensitive to hydrolysis even on exposure to air and decompose on heating.

The ¹H, ¹³C and ¹⁹F NMR Chemical shifts for these compounds are given in Table 1. The assignments for Me(Ge) and Me(S) are based upon the ratio of the intensity of the two signals in the ¹H NMR spectra. The value of $\delta Me(S)$ in $Me_3GeOS(O_2)CH_3$ (2.93 ppm) is appreciably to low field of that in Me_3GeSMe (1.96 ppm)[5] but very close to the value in the acid, $HOS(O_2)CH_3$ (3.2 ppm). Thus, the substitution of the Me_3Ge -group for the proton has but a small effect on the chemical shift of the methyl group attached to sulfur.

The values of $\delta Me(Ge)$ in the two compounds change even less for substitution of CF₃ for CH₃ on sulfur, the change being appreciably less than that found when comparing trimethylgermyltrifluoroacetate (0.69 ppm)[6] and trimethylgermylacetate (0.53 ppm)[7]. The ¹³C NMR spectrum of Me₃GeOS(O₂)CF₃ shows a quartet centered at 118.98 for the C(F₃) resonance with $J_{CF} = 316.2$ Hz. This compares with a value of 132.3 ppm for the CF₃ resonance in Me_3GeSCF_3 , in which the value of J_{CF} is 306 Hz. The ¹³C chemical shift for the methyl carbon atoms is 2.77 and 3.18 ppm respectively for Me₃GeOS(O₂)CF₃ and Me₃GeOS(O₂)CH₃; both values being very close to that found in (Me₃Ge)₂O of 3.25 ppm [8]. Thus, the presence of the oxygen atom, rather than the $OS(O_2)$ grouping apparently predominates in determining these shifts. Similarly, the ¹³C chemical shift for the methyl group attached to sulfur (40.32) is close to that observed in Me₃GeSCMe₃ at 43.65[9]. The ¹⁹F NMR spectrum shows a chemical shift of 0.24 ppm relative to CF₃COOH. This value is close to that reported for Me₃SnN(Me)S(O₂)CF₃[10].

In the mass spectra of both species, Me₃GeOS(O₂)CX₃, X = F or H, there are no peaks corresponding to the parent ions. However, both do show distinct features corresponding to the ion resulting from the loss of one methyl group. The cluster of ions centered at m/e = 255 corresponding to the ion [Me₂GeOS(O₂)CF₃]⁺ accounts for 8.54% of the ion cur-

rent. The relative peak heights match the expected isodistribution as do those of the tonic ion [Me₂GeOS(O₂)CH₃]⁺ which account for 38.25% of the ion current of the methyl derivative. In view of the similarity between the two spectra of the analogues, it seems reasonable to assume that the loss of methyl is mainly, if not totally, from the germanium atom rather than the sulfur atom especially as there is no significant cluster in the fluoride spectrum corresponding to the loss of CF₃. Thus, the marked increased relative intensity of the $Me_2GeOS(O_2)Me^+$ ion may be due in part to the fact that the methyl analogue is a poorer leaving group so that the Ge-O bond is less readily broken. Both spectra show weak features centered at m/e 183. Given the poor statistics at this level of intensity, it is reasonable to assume that in both cases the ion is [Me₃GeOSO]⁺ arising from rearrangements resulting in the loss of CF₃O and CH₃O respectively. Again, both spectra show similar features around m/e 139 which apparently arise from the ion HGeOSO⁺. It is interesting to note that there is no indication of the ion Me₃GeO⁺. Thus, the initial fragmentation of the parent apparently results in the breaking of the Ge-O bond or the Ge-CH₃ bond, but not the O-S bond. Very weak features can be distinguished in both spectra centered at m/e 168 and 153, suggesting successive loss of two CH₃ radicals and one CH₂ from [Me₃GeOSO]⁺. The cluster of greatest intensity in the perfluoride derivative, and of major importance in the methyl analogue, is the cluster centered at m/e = 119which clearly corresponds to the Me₃Ge⁺ ion. However, the relative peak heights and extent of the cluster indicate the presence of a second ion containing a germanium atom centered at m/e = 123. The transfer of fluorine during the unimolecular dissociation of perfluorogermanes has been noted [11] and it is tempting to suggest that the ion corresponds in the perfluoro compound, to the ion Me_2GeF^+ . However, the ion is also present in the methyl derivative so it may well correspond to HGeOS⁺ in both cases. It is also possible that a small amounnt of Me₂GeO⁺ is present, centered at m/e 120. The best computer fit suggests that the ions present in the CF₃ compound are Me₃Ge⁺, Me₂GeO⁺, Me₂GeF⁺ and HGeOS⁺ in the ratio 10:0.4:5.6:4 and those of the CH₃ compound are Me₃Ge⁺, Me₂GeO⁺ and HGeOS⁺ in the ratio 10:0.7:3.4. Thus, in neither case is the contribution from Me₂GeO⁺ particularly significant and no ion was seen corresponding to Me₃GeO⁺. The relatively broad, but weak, cluster between m/e 99 and 109 is probably a mixture of several ions. The predominant species are Me₂GeH⁺ and

Table 1. The nuclear magnetic resonance spectra of $Me_3GeOS(O_2)X$, (X = CH₃ and CF₃)

x	⁸¹ #		ð13, [*]		δ19 _F *
^	<u> δMe(Ge)</u>	<u> δMe(S)</u>	δ _c (G e)	δ _c (S)	,
снз	0.8 ^b	2.93 ^b	3.18	40.32	
CF3	0.85	-	2.77	118.98 [#]	0.24

 $^{^{\}star}$ $^{1}{\rm H}$ and $^{13}{\rm C}$ chemical shifts are in ppm with reference to TMS; positive values denote downfield shifts. The $^{19}{\rm F}$ chemical shift is in ppm to high field of CF_300H.

J_{CF} = 316.2 Hz.

Me₂Ge⁺, both of these having been noted in other trimethyl derivatives [12]. However, the cluster also apparently contains $MeGeCH_2^+$, $MeGeO^+$, and, in the case of the fluoride, MeGeHF⁺. The cluster around m/e = 89 is very similar to that found for Me₃GeNCNGeMe₃[13], where metastable studies confirmed the dissociation of Me₃Ge⁺ to $MeGe^+$ and $MeGeH_2^+$ in approximately equal amounts. The presence of small amounts of GeF⁺ are indicated in the fluoride, so there is an accumulation of weak evidence to support fluorine transfer to germanium. The germanium cluster around m/e 70-77 contains a little more GeH⁺ than Ge⁺, while the fluoride spectrum also contains a small amount of CF_3^+ (m/e = 69). Finally, the fragmentation patterns in the mass spectra confirmed the presence of monomeric compounds in contrast to those formed from reacting Me₃SnCl with (CF₃SO₃H), where bridging, bidentate fluoro-sulfonate ligands have been identified by X-ray diffraction[14] and Mössbauer spectra[15, 16].

The observed IR frequencies and Raman shifts and the descriptions of the fundamental frequencies of $Me_3GeOS(O_2)CX_3$, X = F or H are presented in Table 3. The molecules are assumed to have C_s symmetry leading to thirty-two a' modes (IR active and Raman polarized) and twenty-five a'' modes (IR active and Raman depolarized). The assignment of the vibrations associated with the Me_3Ge -moiety are based on the vibrational assignments of $Me_3GeX[17]$ (where X = halogen) and

(Me₃Ge)₂O[18]. Two distinct methyl vibrations are apparent in both species, corresponding to the asymmetric and symmetric CH₃ stretches as expected. Similarly, the corresponding CH₃ deformation and CH₃ rocking modes are assigned to the expected region of the spectrum. There are pronounced shoulders on the higher energy side of the CH₃ stretches of Me₃GeOS(O₂)CH₃ at ca. 3010 and 2940 cm⁻¹ which must correspond to the asymmetric and symmetric CH₃ stretches associated with the methyl group attached to sulfur. In Me₃GeSMe, the CH₃- symmetric stretches for the methyl group are assigned at 2921 cm⁻¹ for the CH₃S group and 2906 cm⁻ for those attached to germanium [19]. In the methyl deformation region, the spectra of the two compounds are again similar with the asymmetric CH₃(Ge) band at 1420 cm^{-1} having a shoulder for the Me₃GeOS(O₂)Me compound at 1435 cm⁻¹. However, in the methyl rocking region there is a distinct separation for the CH₃ groups attached to germanium (ca. 830 cm⁻¹) and that attached to sulfur $(ca. 950 \text{ cm}^{-1})$ as was found for the methylthiogermanes [20]. The (C-S) and (Ge-C) stretching assignments are largely based on the proposed assignment for Me₃GeSMe and Me₃SnSMe[19], as well as the previous IR data on the Me₃GeOS(O₂)CF₃[2] compound. A very strong band at 574 cm⁻¹, which is polarized in the Raman, and the medium intensity band at 625 cm⁻¹ are assigned as the symmetric and asym-

Table 2. Mass spectra of $Me_3GeOS(O_2)CX_3$ where $X = CF_3$ and CH_3

		CF3			CH3
<u>m/e</u>	Int	Ion family (ZRA)	<u>m/e</u>	Int	Ion family (ZRA)
255	4.7		201	23.3	
254	1.1		200	5.8	
253	20,2	$Me_2GeOS(0_2)CF_3^+$	199	100.0	$Me_2GeOS(0_2)Me^+$
252	4.7	2 2 5	198	23.4	
251	16.2	(8.54)	197	74.5	(38.25)
250	0		196	2.5	
249	10.4		195	50.2	
185	3.7		185	3.8	
184	1.0		184	1.0	
183	4.5	Me ₃ GeOSO ⁺	183	6.0	Me ₃ GeOSO ⁺
182	1.0	2	182	1.0	-
181	3.1	(2.21)	181	4.9	(2.61)
180	0		180	0	
179	1.5		179	2.4	
141	8.1		141	3.2	
140	1.6		140	0.5	
139	16.9	HGeOS0 ⁺	139	5.9	HGeOSO ⁺
138	3.5		138	2.0	
137	13.4	(7.62)	137	5.3	(2.75)
136	0		136	0	
135	7.6		135	3.2	
125	15.4		125	2.4	
124	3.7		124	0	
123	67.9	Me ₂ GeF ⁺ (?)/HGeOS ⁺	123	11.5	HGe05 ⁺
122	19.8	-	122	2.9	
121	68.1		121	28.3	
120	60	Me ₂ Ge0 ⁺	120	6.4	Me ₂ GeO ⁺

CF ₃				CH ₃		
<u>n/e</u>	Int	Ion family (ZRA)	<u>m/e</u>	Int	Ion family (%RA)	
119	100.0	Ma ₃ Ga ⁺	119	54.9	Me ₃ Ge ⁺	
118	18.0	2	118	12.9	5	
117	46.7	(57.18)	117	36.2	(24.71)	
116	3.3		116	25		
115	34.6		115	22.7		
109	2.9		109	0		
108	0		108	0		
107	4.8	MeGeHF ⁺	107	4.2		
106	2.6		106	2.3		
105	6.3	Me ₂ GeH ⁺ /MeGeO ⁺	105	13.0	Me ₂ GeH ⁺ /MeGeO ⁺	
104	7.2	Me, Ge ⁺	104	6.5	Me ₂ Ge ⁺	
103	5.8	MeGeCH2+	103	13.8	MeGeCH2+	
102	4.0	-	102	4.9		
101	4.1	(6.31)	101	8.7	(8.03)	
100	3.2		100	3.0		
99	1.4		99	2.3		
95	0		95	0		
94	0	_	94	0		
93	5.5	GeF ⁺ ?	92	0		
91	13.8	MeGeH2 ⁺	91	16.6	MeGeH2+	
90	3.2		90	4.8		
89	22.7	MeGe ⁺	89	24.1	MeGe ⁺	
88	6.9		88	7.0		
87	16.5	(12.52)	87	18.0	(19.75)	
86	3.3		86	2.6		
85	9.3		85	9.3		
77	1.6		77	1.6		
76	1.0	_	76	1.0	_	
75	7.1	Gel	75	6.6	Ge H ⁺	
74	4.9	Ge ⁺	74	4.7	Ge ⁺	
73	5.6		73	5.6		
72	2.5	(4.14)	72	2.5	(3.91)	
71	3.3		71	5.0		
70	1.8		70	1.6		
69	9.9	CF3+	69	0		

Table 2.(b) (continued)

metric (Ge-C) stretching modes. The corresponding bands are seen at 581 cm^{-1} and 625 cm^{-1} in the IR spectra of both compounds.

The (C-S) stretching vibration is assigned at ca. 770 cm^{-1} for both species, which agrees with the previous studies on FXeOS(O₂)CF₃[21], Me₃GeOS(O₂)CF₃ and I(OSO₂CF₃)₃[2] but is in contrast to the assignment in the compounds Me₃SnOS(O₂)CF₃ and Me₃SnOS(O₂)CH₃ which placed the (C-S) stretches at 347 and 425 cm⁻¹ respectively[22]. It is interesting to note that in other studies on C-S containing compounds the (C-S) stretch has been assigned either in the 750 cm⁻¹ region (where a methyl group is attached to sulfur as in CH₃SO₂Cl)[23] or to the 470 cm^{-1} region (where CF₃ is attached to sulfur as in CF₃SH[24] and N(SCF₃)₃[25]. The spectrum of the 450 cm⁻¹ region of Me₃GeOS(O₂)CF₃ shows no distinct peaks and looks very similar to the spectrum of Me₃GeOS(O₂)Me. The intensity of the peaks is rather high, relative to other C-S containing compounds and it

is proposed that there is an accidental overlap with the Me_3Ge rocking modes, which are typically also found in this region.

The assignment of the Ge-O stretching vibration in the two compounds is more difficult since there is mixing with the SO₃ stretching modes and CH₃ rocking modes. A literature survey on germyl oxides such as (H₃Ge)₂O, H₃GeOMe[26], MeH₂GeOAc[27] and (Me₃Ge)₂O,[18], reveals a similar difficulty in assigning the Ge-O stretching band which has been rationalized to be anywhere within a region from 900 to 500 cm⁻¹. A further complication that increases the ambiguity of vibrational assignments arises from the fact that sulfur-oxygen (OSO₂) and carbon-fluorine (CF₃) vibrations of identical symmetry are found in the same spectral range. The above confusion was not resolved by the Raman spectra because only very fragmentary Raman data could be obtained due to strong scattering over the whole spectral range. Thus, the assignment of the $OS(O_2)CF_3$ vibrations

.×e₃Ge	$\cos(o_2) CF_3$	Me ₃ Ge		
IR(liquid)	Raman (liquid)	IR(liquid)	Raman (liquid)	Description
		3011 mw	3005 mw,dp	CH3 (S) st(a)
2995w	2998 mw,dp	2999 mw	3000 mw,dp	CH ₃ (Ge)st(a)
		2940 m	2937 ms,p	CH ₃ (S) st(s)
2920 w	2921 s,p	2920 m	2925 s,p	$CH_3(Ge) st(s)$
		1435 sh	1423 vw	CH ₃ (S)def(a)
1415 sh	1409 w,dp	1420 m	1417 w,dp	CH ₃ (Ge)def(a)
1365 m,sh	1346 w,dp	1351 m,sh	1379 vw	SO_2 st(a)
		1332 } s 1320 [}] m,sh	1334 } vw 1320 [}] vw,sh	CH ₃ (S)def(s) CH ₃ (Ge)def(s)
1290 s				
1275 m		1286 w,sh	1275 w	SO ₂ st(a)
1245 s	1248 w,dp	-	-	CF ₃ st(a)
		1235 s		
1200 sh	1193 w,dp	1210 vs	1200 vw	SO ₃ st(s)
		1196 vs	1182 vw	+
1175 s	1081 mw,p	-	1155 m,p	CF ₃ st(s)
1032 vs	1028 m,p	1062 vs	1072 vw	-
980 m,sh	975 w	990 m	982 w,p	S-0(Ge)st· +(Ge-0)st
		952 w,sh 945 m	} 950 vw } 931 vw }	CH ₃ (S) rock
831 m	831 w	833 s,br	837 vw	CH ₃ (Ge) rock
800 sh,sh	-	-	777 sh	CH ₃ (Ge) rock
769 m	762 m,p	787 s	768 m,p	(C-S) st
690 sh,w				
652 s	668 W	-	-	CF ₃ def(a)
	630 vw	636 m	629 m,p	SO ₂ Scissor
625 m,sh 581 m	625 m,dp	625 } m 580 m,sh		GeC ₃ st(a)
570 sh	576 vs,p	569 w	574 vs,p	GeC ₃ st(s)
530 w	534 v,p	542 m.s	540 ms,p	SO2 wag
		528 m	527 ms,sh	50 ₂ twist
515 m	494 w	-		CF3def(S)
-	360 w,dp	-	377 w,dp	SO ₂ rock
-	323 m,dp	-	-	CF ₃ rock
	260 } mw, dp 245 } mw, dp	-	265 } mw,dp 244	SO3 rock
	185 m,dp		190 _} m,dp 182 m,sh	GeC ₃ def(a)
	172 sh		170 sh,dp	GeC ₃ def (s)
	120 w,p		122 w,p	Ge-O-S bend

Table 3. Vibrational frequencies from 3010 to 100 cm⁻¹

is based largely on comparisons with similar molecules Ag(SO₃CF₃)₂[28], FXOSO₂CF₃[21], such as I(OSO₂CF₃)₃ Me₃SnSO₃CF₃/CH₃[22], and Me₃GeOSO₂CF₃[2], and also with other molecules such as CsOCF₃[29], CF₃SF₃[30], N(SCF₃)₃[25]. In spite of the extensive mixing, it seems reasonable to assume that peaks that only occur in the fluoride correspond to the CF₃ modes while the common features arise from OSO₂ stretching and bending vibrations. The most intense envelope observed in the IR spectra occurs between 1150 and 1350 cm⁻¹ in both compounds. This region is expected to contain the SO_2 asymmetric (1365 mm⁻¹) and symmetric (1275 cm⁻¹) stretches, as well as the SO_3 symmetric (1195 cm⁻¹) stretch in agreement with the frequency assignments in CH₃SO₂Cl and CD₃SO₂Cl which were supported by calculation [23]. According to some reports published on compounds containing the CF₃ group [25, 30], the vibrational activity of the latter (i.e. its stretching mode) falls in a narrow range between 1275 and 1072 cm⁻¹ and this fits this proposal. The OSO₂ skeletal bends are found in a region that overlaps with the CF₃ bends, as well as the GeC₃ stretches. The ν_s (GeC₃) stretching mode is assigned to the most intense and highly polarized bands in the Raman at (CH₃) 574 and 576 cm⁻¹ (CF₃), while the ν_{as} (GeC₃) stretching modes are assigned at 580 cm⁻¹ in both compounds. The GeC₃ deformations and rocks are assigned in the region under 200 cm⁻¹ which is basically isolated from the SO₃ and CF₃ rocking deformation modes. These were assigned with respect to the reported literature values and are displayed in Table 3.

In summation, the preparation of organogermanium derivatives of methane or trifluoromethanesulfonic acid is achieved either by the silver salt method which has been known for quite some time in the preparation of silvl and germylacetates and trifluoroacetates [31, 32], or by the acid solvolysis of organogermanium derivatives. The former method gives very poor yields but the latter method, which gives much better yields, involves the reaction of bis-germylcarbodiimide with the protic reagent [HOS(O₂)CF₃/CH₃], similar to that used for the preparation of Me₃GeO(CO)CF₃[6]. The advantage of this reaction is that the secondary product dicyano diamide is a white involatile solid which can be easily separated from the other products, but the disadvantage is that it involves the use of a relatively corrosive acid and therefore needs careful handling.

Acknowledgements—We thank the Natural Sciences and Engineering Research Council of Canada for financial support, and K. Gorzelska for her help in running the mass spectra computer programme.

REFERENCES

- 1. R. D. Howell and J. D. McCown, Chem. Rev. 77, 69 (1977).
- 2. J. R. Dalziel and F. Aubke, Inorg. Chem. 12, 2707 (1973).
- J. E. Drake, R. T. Hemmings and H. E. Henderson, J. C. S. Dalton 366 (1976).
- J. K. Tyler, L. F. Thomas and J. Sheridan, J. Opt. Soc. Am. 52, 581 (1962).
- 5. E. W. Abel and D. B. Brady, J. Organomet, Chem. 11, 145 (1968).
- J. E. Drake, H. E. Henderson and R. T. Hemmings, *Inorg. Chem.* 16, 1682 (1977).
- J. E. Drake, R. T. Hemmings and H. E. Henderson, Inorg. Nucl. Chem. Lett. 12, 563 (1976).

- J. E. Drake, B. M. Glavinčevski, R. Humphries and A. Majid, Can. J. Chem. 57, 3253 (1979).
- J. E. Drake, B. M. Glavinčevski, R. E. Humphries and A. Majid, Can. J. Chem. 57, 1426 (1979).
- 10. H. W. Roesky and H. Wiezer, Chem. Ber. 104, 2258 (1971).
- 11. J. M. Miller, J. Chem. Soc.(A) 828 (1967).
- G. F. Lanthier, J. M. Miller, S. C. Cohen and A. G. Massey, Org. Mass Spectrom. 8, 235 (1974).
- J. E. Drake, B. M. Glavinčevski, H. E. Henderson and C. Wong, *Can. J. Chem.* 57, 1162 (1979).
- F. A. Allen, J. Lerbscher and J. Trotter, J. Chem. Soc.(A) 2507 (1971).
- P. A. Yeats, B. F. E. Ford, J. R. Sams and F. Aubke, *Chem. Commun.* 791 (1969).
- P. A. Yeats, J. R. Sams, and F. Aubke, *Inorg. Chem.* 11, 2634 (1972).
- J. W. Anderson, G. K. Barker, J. E. Drake and R. T. Hemmings, Can. J. Chem. 49, 2931 (1971).
- T. N. Srivastava and M. Onyszchuk, Can. J. Chem. 141, 1244 (1963).
- D. F. Van de Vondel, E. V. Van den Berghe and G. P. Van der Kelen, J. Organomet. Chem. 23, 105 (1970).
- 20. L. N. Khasrou, Ph.D. Thesis, Univ. of Windsor, 1980.
- M. Wechsberg, P. A. Bulliner, F. O. Sladky, R. Mews and N. Bartlett, Inorg. Chem. 11, 3063 (1972).
- P. A. Yeats, J. R. Sams and F. Aubke, *Inorg. Chem.* 10, 1877 (1971).
- K. Hanai, T. Okuda and K. Machida, Spectrochim. Acta 31(A), 1227 (1975).
- 24. M. Pertitila, Spectrochim. Acta 32A, 1011 (1976).
- H. Burger, G. Pawelke, A. Haas, H. Willner and A. J. Downs, Spectrochim. Acta 34A, 287 (1978).
- 26. S. Cradock, J. Chem. Soc. (A) 1426 (1968).
- J. E. Drake and R. T. Hemmings, Can. J. Chem. 51, 302 (1973).
- P. C. Leung, K. C. Lee, and F. M. Aubke, Can. J. Chem. 57, 326 (1979).
- K. O. Christie, E. C. Curtis and C. J. Schack, Spectrochim. Acta 31A, 1035 (1975).
- D. A. Coe and J. M. Shreeve, Spectrochim. Acta 33A, 965 (1977).
- H. H. Anderson, J. Organic. Chem. 20, 536 (1955); J. Am. Chem. Soc. 73, 5800 (1951).
- 32. P. C. Angus and S. R. Stobart, J. C. S. Dalton 2, 342 (1975).