

Bioorganic & Medicinal Chemistry 8 (2000) 1183-1193

BIOORGANIC & MEDICINAL CHEMISTRY

Design, Synthesis and Structure–Affinity Relationships of 4-Methylidenepiperidine and 4-Aryl-1,2,3,6-tetrahydropyridine Derivatives as Corticotropin-Releasing Factor₁ Receptor Antagonists

Atsuro Nakazato,* Toshihito Kumagai, Taketoshi Okubo, Hideo Tanaka, Shigeyuki Chaki, Shigeru Okuyama and Kazuyuki Tomisawa

1st Laboratory, Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Ohmiya, Saitama 330-8530, Japan

Received 19 November 1999; accepted 8 February 2000

Abstract—Recently, various non-peptide corticotropin-releasing factor₁ (CRF₁) receptor antagonists have been reported. Structure–affinity relationships (SARs) of non-peptide CRF₁ antagonists suggest that such antagonists can be constructed of three units: a hydrophobic unit (Up-Area), a proton accepting unit (Central-Area), and an aromatic unit (Down-Area). Our interest focused on the Up-Area in deriving the novel methylidenepiperidine derivatives **8–10** and 4-aryl-1,2,3,6-tetrahydropyridine derivatives **11–13** as non-peptide CRF₁ receptor antagonists. Compounds **8a** and **11a** had moderate affinity for CRF₁ receptor, but compounds **9**, **10**, **12** and **13** did not exhibit CRF₁ receptor affinity. Modification of derivatives **11** afforded compounds **11i** (CRA1001) and **11x** (CRA1000), which had high affinity and selectivity for CRF₁ receptors with potent anxiolytic-like and antidepressant-like properties in some experimental animal models. These findings suggest that the hydrophonic unit (Up-Area) may be useful for design of CRF₁ antagonists. We report here the design, synthesis and SARs of the derivatives **8** and **11** and isosteres **9**, **10**, **12** and **13**. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Corticotropin-releasing factor (CRF), a 41-amino acid peptide originally isolated and characterized from ovine hypothalamic origin,¹ plays an essential role in regulating the activity of the hypothalamic–pituitary–adrenal (HPA) axis² and coordinates various physiological responses to sustained stress.^{3–7} CRF exerts physiological effect by binding to two subtypes of seventransmembrane G-protein-coupled CRF receptors, CRF₁ and CRF₂ receptors,^{8–11} and has higher affinity for CRF₁ receptors than CRF₂ receptors.¹⁰ Clinical data, including elevated concentrations of CRF in patients with depression¹² or chronic post-traumatic stress disorder¹³ and blunted corticotropin response to CRF in patients with depression,¹⁴ anxiety, anorexia nervosa, or posttraumatic stress disorder,¹⁵ suggest that CRF receptor antagonists may be useful for the treatment of depression, anxiety or other diseases related to

stress. This suggestion may be supported by the efficacy of selective non-peptide CRF₁ receptor antagonist, butyl[2,5-dimethyl-7-(2,4,6-trimethylphenyl)-7H-pyrrolo-[2,3-d]pyrimidin-4-yl]ethylamine (CP154,526),¹⁶ in modifying behavioral responses to stress.^{17–20} Various non-peptide CRF_1 receptor antagonists have recently been presented.^{16,21–30} Among them, typical selective non-peptide CRF₁ receptor antagonists are shown in Figure 1. Structure-affinity relationships (SARs) of these compounds suggest that non-peptide CRF₁ receptor antagonists are constructed of three parts, a hydrophobic unit (Up-Area), a proton accepting unit (Central-Area) and an aromatic unit (Down-Area) (Fig. 1). In the Down-Area, aryl moieties attached with 2- and/or 6and 4-positional substituents might yield high affinity for CRF₁ receptors, since 2- and/or 6-positional substituents might yield an orthogonal conformation of moieties in the Central-Area and Down-Area, and the 4-positional substituent might interact with a hydrophobic pocket of CRF₁ receptor. An aromatic and basic nitrogen in the Central-Area might be essential for hydrogen bonding between receptor and ligand, and the aromatized ring plays a role in maintaining the orthogonal conformation

^{*}Corresponding author. Tel.: +81-048-663-1111; fax: +81-048-652-7254; e-mail: ts10968@ccm.taisho.co.jp

^{0968-0896/00/\$ -} see front matter \odot 2000 Elsevier Science Ltd. All rights reserved. PII: S0968-0896(00)00045-6

Figure 1.

with the moiety in the Down-Area. N,N-Dialkylamino groups containing an alkoxyalkyl group may be typical moieties in the Up-Area. Notably, however, compound 5 containing a methyl group in the Up-Area exhibits a high affinity for CRF₁ receptors $(K_i = 12 \text{ nM})$.²⁸ The SARs of substituents in the Up-Area might not been fully elucidated. Our interest focused on the chemical modification of substituent in the Up-Area of compounds 3, 5 and 6 to derive novel methylidenepiperidine derivatives 8 and 4-aryl-1,2,3,6-tetrahydropyridine derivatives 11 as non-peptide CRF_1 receptor antagonists. Compound 8a and 11a had moderate affinity for CRF₁ receptors, but compounds 9, 10, 12 and 13 did not exhibit CRF₁ receptor affinity. The design, synthesis and SARs of the derivatives 8 and 11 and isosteres 9, 10, 12 and 13 are presented (Fig. 2).

Chemistry

The sequence of synthesis of methylidenepiperidinopyrimidine derivatives **8**, **9** and **10** is shown in Scheme 1. Dichloropyrimidine or dichlorotriazine derivative **14**, **15** or **16** was treated with methylidenepiperidine (4-($\mathbb{R}^4, \mathbb{R}^5\mathbb{C}=$) piperidine) in the presence of diisopropylethylamine to afford derivative **17**, **18** or **19**, respectively. In the case of 2,4-dichloropyrimidine **14**, the treatment produced a mixture of polar isomer **17** and less polar isomer **17**' (> 5:1). The substituted position of the methylidenepiperidino group on the pyrimidine ring was determined by NOEs analysis. Thus, as depicted in Figure 3, NOEs were observed between the 5-positional proton on the pyrimidine ring and 2- and 6-positional protons on the piperidine ring of isomer 17a, while no NOEs were observed between the 5-positional proton on the pyrimidine ring and 2-and 6-positional protons on the piperidine ring of isomer 17'a. Derivative 17 separated by chromatography, 18 or 19 was reacted with N-non-substituted aniline compound (X^1, X^2, X^3) -Ph-NH₂), and the resulting secondary amino group of 20, 21 or 22 was alkylated to the methylidenepiperidinopyrimidine derivative 8, 9 or 10, respectively (Method A). The methylidenepiperidinopyrimidine derivative 8 was prepared by condensation of 4-oxypiperidinopirimidine derivative 26 with Wittig reagent (Method C). Derivative 26 was provided by deprotecting the ethylene ketal of derivative 25, which was prepared from 1,4-dioxa-8-azaspiro[4,5]decane as in Method A (Method B). Compound 8h was prepared by treating derivative 26 with freshly distilled cyclopentadiene under basic conditions (Method D).

The procedure of synthesis of 4-aryl-1,2,3,6-tetrahydropyridinopyrimidine derivatives **11**, **12** and **13** is shown in Scheme 2. Treatment of dichloropyrimidine or dichlorotriazine derivative **14**, **15** or **16** with 4-aryl-1,2,3,6-tetrahydropyridine in the presence of diisopropylethylamine afforded derivative **27**, **28** or **29**, respectively. Treatment of 2,4-dicloropyrimidine yielded a mixture of polar isomer **27** and less polar isomer **27'** (5:1) separated easily

11a: Y¹=N, Y²=CH 12: Y¹=CH, Y²=N 13: Y¹=Y²=N

Scheme 1. Reagents and reaction conditions: (a) $4-(R^4, R^5C=)$ piperidine, isoPr₂NEt, EtOH; (b) $X^3, X^2, X^1-Ar-NH_2$, isoPr₂NEt, (CH₂OH)₂, reflux; (c) R³-l or -Br, NaH, DMF; (d) 4-(1,3-dioxolan2-yl) piperadine, isoPr₂NEt, EtOH; (e) 2-Br-4 isoPr-Ar-NH₂, isoPr₂NEt, (CH₂OH)₂, reflux; (f) Et-l, NaH, DMF; (g) 1 N Cl, THF; (h) R⁴, R⁵= PPh₃, THF; (i) cyclopentadiene, Et₃N. Method A: a, b, c; Method B: d, e, f, g; Method C: h; Method D: i.

by chromatography as well as a mixture of **17** and **17'** (Method E). The substituted position of the tetrahydropyridino group on the pyrimidine ring, and that of the methylidenepiperidino group, were determined by NOEs analysis. Derivative **27**, **28** or **29** was reacted with *N*-non-substituted aniline (X¹, X², X³-Ph-NH₂) and then with halide (R³-Br or-I) (Method F) or with *N*substituted aniline (X¹, X², X³-Ph-NHR³) (Method G) to afford the derivatives **11**, **12** or **13**, respectively. On the other hand, the 4-oxypiperidinopirimidine derivative **26** was transformed to the derivatives **11**, except for furan (Ar = furanyl) and thiophene (Ar = thienyl) derivatives, by treatment of Grignard reagent (ArMg-Br or-I) and then dehydration of the resulting hydroxyl group (Method H). The furan derivative **11d** or thiophene derivative **11e** was prepared by treatment of derivative **26** with the corresponding litio-salts followed by methanesulfonyl chloride under basic conditions (Method I) or formic acid (Method J), respectively.

Results and Discussion

Derivatives 8–13 (Fig. 2) were evaluated for corticotropin-releasing factor₁ (CRF₁) receptor binding affinity in rat frontal cortex against radioligand [125 I]-ovine CRF;³¹ the obtained IC₅₀ values are shown in Tables 1 and 2. Compounds 8 and 11 did not exhibit corticotropin-releasing factor₂ (CRF₂) receptor binding affinity in rat heart against radioligand [125 I]-sauvagine.³²

Benzylidene derivative **8a** had moderate affinity at CRF_1 receptors but the isosteres **9** and **10** did not exhibit CRF_1 receptor affinity. This finding suggests that the steric repulsion between the 5-positional proton ($Y^2 = CH$) in the Central-Area and the 2-and/or 6-positional protons of piperidino group may be important in yielding the molecular conformation producing CRF_1 receptor affinity. Mono-alkyl-substituted methylidene derivatives **8b**, **8c** and **8d** and the smallest cyclic-alkyl-substituted methylidene derivatives **8g** have moderate affinity for CRF_1 receptors as does compound **8a**. Di-alkyl-subsutituted methylidene derivatives **8e** and **8f** exhibited reduced CRF_1 receptor affinity, as did compound **8h**

containing a larger cyclic moiety, compared with **8g**. This suggests that there may be steric restriction for the second substituent on the methylidene moiety.

In light of these findings, the 4-aryl-1,2,3,6-tetrahydropyridine derivative 11 and the isosteres 12 and 13 were selected as the next targets, since 4-phenyl-1,2,3,6-tetrahydropyridino moiety was slightly smaller than benzylidenepiperidino moiety and phenyl group of 4-phenyl-1,2,3,6-tetrahydropyridino moiety might show a subtly different conformation compared with phenyl group of benzylidenepiperidino moiety. Compound 11a exhibited higher CRF_1 receptor affinity than **8a**. The isosteres **12** and 13 did not have CRF1 receptor affinity, nor did 9 and 10, isosteres of 8a. The 5-positional proton $(Y^2 = CH)$ is essential for CRF₁ receptor affinity. A larger aryl group reduced CRF_1 receptor affinity (11b, **11c**), but substituents of the same size retained CRF_1 receptor affinity (11d, 11e), compared with the phenyl group of 11a. This dramatic result suggests that there may be steric restriction, with a very narrow space, around the phenyl group of **11a**. Of the phenyl groups with substituent(s) (11a-11s), the 3-chloro and 3-fluorophenyl group yielded the most binding affinity for CRF_1 receptors (11g, 11i). The 2-positional substituents, 2methyl and 2-methoxy groups, had lower CRF₁ receptor affinity than 3- or 4-methyl and methoxy groups (111

Scheme 2. Reagents and reaction conditions: (j) 4-Ar-1,2,3,6-tetrahydropyridine, $isoPr_2NEt$, EtOH; (k) X³, X², X¹-Ar-NH₂, $isoPr_2NEt$, (CH₂OH)₂, reflux; (l) R³-I or -Br, NaH, DMF; (m) X³, X², X¹-Ar-NHR³, $isoPr_2NEt$, (CH₂OH)₂, reflux; (n) ArMg-Br or -I, THF, and then TFA-CH₂Cl₂; (o) furanel, LDA, THF and then MsCl, Et₃N, DMAP, CH₂Cl₂; (p) thiophene, LDA, THF and then HCO₂H. Method E: j; Method F: k, l; Method G: m; Method H: n; Method I: o; Method J: p.

Table 1. 4-Methylidenepiperidine derivatives: physical and binding data

No.	\mathbf{Y}^1	\mathbf{Y}^2	R ²	R ³	R ⁴ R ⁵	X ¹	X ²	X ³	Salt	Method ^a	Mp (°C)	Analysis ^b	CRF_1 receptor $IC_{50} (nM)^c$
8a	Ν	CH	Me	Et	Ph	Br	<i>i</i> -Pr	Н	HCl	А	149–152 ^d	C ₂₈ H ₃₃ BrN ₄ ·HCl	280
9	CH	Ν	Me	Et	Ph	Br	<i>i</i> -Pr	Н	HCl	А	Amorphous	C ₂₈ H ₃₃ BrN ₄ ·HCl	>1000
10	Ν	Ν	Me	Et	Ph	Br	<i>i</i> -Pr	Н	_	А	Amorphous	$C_{27}H_{32}BrN_5$	> 1000
8b	Ν	CH	Me	Et	Me	Br	<i>i</i> -Pr	Н	HCl	B,C	181–184 ^e	C23H31BrN4·HCl	270
8c	Ν	CH	Me	Et	<i>n</i> -Pr	Br	<i>i</i> -Pr	Н	HCl	B,C	161-163 ^f	C25H35BrN4·HCl	250
8d	Ν	CH	Me	Et	<i>n</i> -Pen	Br	<i>i</i> -Pr	Н	HCl	B,C	167-170 ^d	C27H39BrN4·HCl	280
8e	Ν	CH	Me	Et	Ph	Br	<i>i</i> -Pr	Н	HCl	А	162-165 ^g	C34H37BrN4·HCl	> 1000
8f	Ν	CH	Me	Et	Me	Br	<i>i</i> -Pr	Н	HCl	B,C	183–186 ^g	C24H33BrN4·HCl	420
8g	Ν	CH	Me	Et	-CH ₂ -CH ₂	Br	<i>i</i> -Pr	Н	HCl	B,C	175–178 ^g	C24H31BrN4·HCl	160
8h	Ν	CH	Me	Et	-CH=CH-CH=CH-	Br	<i>i</i> -Pr	Η	HCl	B,D	Amorphous	C ₂₆ H ₃₁ BrN ₄ ·HCl	> 1000

^aMethods A–D are described in the text.

^bElemental analyses for all compounds are within $\pm 0.4\%$ of the theoretical values for the indicated formula. Analyses were performed for all elements except O.

^cIC₅₀ values from duplicate determination.

^d-gRecrystallization or crystallization solvents are depicted: *iso*PrOH-*iso*Pr₂O; ^eRecrystallization or crystallization solvents are depicted: AcOEt-hexanes; ^fRecrystallization or crystallization solvents are depicted: *iso*Pr₂O; ^gRecrystallization or crystallization solvents are depicted: AcOEt.

versus 11k, 11j and 11o versus 11n, 11m). This result might be due to the conformation of the phenyl group, since the 2-positional substituents have more steric hindrance against 3-and/or 5-positinal protons of the 1,2,3,6-terahydropyridino group than the 3-or 4-substituents on the phenyl group. Changing the 2-bromo-4-isopropylphenyl group of the aniline moiety to 2,4,6-trimethyl, 2,4-dimethoxy, or 2,4-dichlorophenyl decreased CRF₁ receptor affinity (11f-11i versus 11ac-11af, 11ag–11aj, 11al). However, displacement of the bromo group of the aniline moiety of **11f** with an iodo group retained CRF_1 receptor affinity (11t), while displacement with a methylthio group increased CRF_1 receptor affinity (11f-11i versus 11u-11x). Compound **11x** (CRA1000) had the highest CRF_1 receptor affinity among 4-aryl-1,2,3,6-tetrahydropyridine derivatives 11. The methylthio group might be a better substituent than a bromo or iodo group for obtaining orthogonal conformation between the pyrimidine ring and benzene ring of the anilino group and/or for elevating an electron density on the molecular for yielding high affinity for CRF_1 receptors. For the 4-positional substituent (X²) on aniline moiety, there may be steric restriction, since a dimethylamino and a bromo group each yielded the same CRF₁ receptor affinity as an isopropyl group (**11f**– 11i versus 11y-11ab, 11ak), but a smaller, longer or bigger group than an isopropyl group decreased CRF_1 receptor affinity (11u, 11g versus 11am-11ao, 11ap-11ar, respectively). On the other hand, the modification of ethyl group (\mathbb{R}^3) yielded lower \mathbb{CRF}_1 receptor affinity (11at-11ay), except for a propagyl group (11as). \mathbb{R}^3 might be important in yielding an orthogonal conformation between moieties in the Central-Area and Down-Area. Notably, however, there is steric restriction, with very narrow space, for the *N*-substituent of the anilino moiety (\mathbb{R}^3). Furthermore, the modification of methyl group (\mathbb{R}^2) on the pyrimidine ring decreased CRF₁ receptor affinity (**11f** versus **11az**, **11ba**). There might thus be narrow steric restriction for \mathbb{R}^2 . The methyl group may be essential for \mathbb{R}^2 to yield CRF₁ receptor affinity.

In vitro and in vivo pharmacological profiles of compounds **11i** (CRA1001) and **11x** (CRA1000), typical compounds among derivatives **8–13**, have already been presented.^{33,34} These findings suggest that compounds **11i** and **11x** are potent and selective antagonists of CRF₁ receptors with potent anxiolytic-like and antidepressant-like properties in various experimental animal models.

Conclusions

The characteristics of 4-aryl-1,2,3,6-tetrahydropyridinopirimidine derivatives **11**, which are selective CRF_1 receptor antagonists, suggest that the chemical modification on the Up-Area may be useful for design of CRF_1 antagonists. Notably, however, there is narrow steric restriction on the Up-Area.

Compounds 11i (CRA1001) and 11x (CRA1000), typical compounds among derivatives 8–13, may prove to be effective for treatment of anxiety-and/or depression-related disorders without the side effects observed for currently prescribed related medications.³⁴

Table 2. 4-Aryl-1,2,3,6-tetrahydropyridine derivatives: physical and binding data

No	\mathbf{Y}^1	Y^2	R ²	R ³	Ar	\mathbf{X}^1	X^2	X ³	Salt	Method ^a	Mp (°C)	Analysis ^b	CRF_1 receptor IC_{50} (nM) ^c
119	N	СН	Me	Ft	Ph	Br	i_Pr	н	HC1	ББ	124_127 ^d	CHBrNHCl.H-O	66
12	CH	N	Me	Et	Ph	Br	<i>i</i> -11	H	HCI	E F	Amorphous	CorHay BrN4 HCl-1 1HaO	> 1000
13	N	N	Me	Et	Ph	Br	<i>i</i> -Pr	H		E.F	Amorphous	$C_{26}H_{30}BrN_5$	890
11b	N	CH	Me	Et	2-Naph	Br	<i>i</i> -Pr	Н	HC1	B,H	177–178°	$C_{31}H_{33}BrN_4 \cdot HCl \cdot H_2O$	> 1000
11c	Ν	CH	Me	Et	3-Naph	Br	<i>i</i> -Pr	Н	HC1	B,H	129-130 ^e	C ₃₁ H ₃₃ BrN ₄ ·HCl·H ₂ O	> 1000
11d	Ν	CH	Me	Et	2-Fur	Br	<i>i</i> -Pr	Н	_	B,I	Amorphous	C ₂₅ H ₂₉ BrN ₄ O	44
11e	Ν	CH	Me	Et	2-Thio	Br	<i>i</i> -Pr	Η		B,J	Amorphous	$C_{25}H_{29}BrN_4S$	52
11f	Ν	CH	Me	Et	4-Cl-Ph	Br	<i>i</i> -Pr	Η	—	E,F	91–92 ^f	C ₂₇ H ₃₀ BrClN ₄	39
11g	Ν	CH	Me	Et	3-Cl-Ph	Br	<i>i</i> -Pr	Н	HCl	B,H	174–175 ^e	C27H30BrClN4·HCl·H2O	25
11h	Ν	CH	Me	Et	4-F-Ph	Br	<i>i</i> -Pr	Н	HCl	E,F	183–185 ^e	C ₂₇ H ₃₀ BrFN ₄ ·HCl·H ₂ O	79
11i	N	CH	Me	Et	3-F-Ph	Br	<i>i</i> -Pr	H		E,F	119–120 ^g	$C_{27}H_{30}BrFN_4$	22
11j	N	CH	Me	Et	4-Me-Ph	Br	<i>i</i> -Pr	H	HCI	B,H	161–164 ^e	$C_{28}H_{33}BrN_4 \cdot HCl \cdot H_2O$	63
	N	CH	Me	Et	3-Me-Ph	Br	<i>i</i> -Pr	H	HCI	B,H	162-165	$C_{28}H_{33}BrN_4 \cdot HCl \cdot H_2O$	66
111	IN N	CH	Me	Et Et	2-Me-Ph	Br D.	<i>i</i> -Pr	H	HCI	B,H	$1//-1/9^{\circ}$	$C_{28}H_{33}BrN_4 \cdot HCI \cdot 1.25H_2O$	130
11m 11m	IN N	СН	Me	El Et	4-MeO-Ph	Br Dr	l-PT	п	HCI	В,Н	134–135° 140–152°	$C_{28}H_{33}BFN_4O\cdot HCI\cdot I.1H_2O$	82
110	IN N	СН	Me	El Et	2 MeO Ph	DI Br	l-PI i Pr	п	HCI	р,п в ц	149-132 160 161°	$C_{28}\Pi_{33}BIIN_4O\cdot\Pi CI\cdot\Pi_2O$	240
110 11n	N	СН	Me	Et	3-CE=Ph	Br	i - 1 1 i - Pr	н	HCI	D,II F F	$127 - 130^{\circ}$	CasHasBrEaNuHCliHaO	240
11a	N	СН	Me	Et	3 4-Cl ₂ -Ph	Br	<i>i</i> -11	H	HCI	E F	127 - 130 $126 - 129^{e}$	CarHapBrClaN ₄ :HCl-0.9HaO	67
11r	N	CH	Me	Et	$3.4 - F_2 Ph$	Br	<i>i</i> -Pr	Ĥ	HCI	B.H	$173 - 174^{\circ}$	C ₂₇ H ₂₉ BrE ₂ N ₄ HCl·H ₂ O	50
11s	N	CH	Me	Et	3.5-F ₂ -Ph	Br	<i>i</i> -Pr	Н	HCl	E.F	126–131 ^h	$C_{27}H_{29}BrF_2N_4 \cdot HCl \cdot H_2O$	46
11t	Ν	CH	Me	Et	3-F-Ph	Ι	<i>i</i> -Pr	Н	H_2SO_4	E,F	248-249g	C ₂₇ H ₃₀ FlN ₄ ·H ₂ SO ₄	28
11u	Ν	CH	Me	Et	4-Cl-Ph	MeS	<i>i</i> -Pr	Н	ĤCI	E,F	134–135 ⁱ	C ₂₈ H ₃₃ ClN ₄ S·HCl·H ₂ O	22
11v	Ν	CH	Me	Et	3-Cl-Ph	Mes	<i>i</i> -Pr	Η	HCl	E,F	125-128e	C28H33ClN4S·HCl·H2O	20
11w	Ν	CH	Me	Et	4-F-Ph	Mes	<i>i</i> -Pr	Н	HCl	E,F	136–139 ^e	C ₂₈ H ₃₃ FN ₄ S·HCl·H ₂ O	81
11x	Ν	CH	Me	Et	3-F-Ph	Mes	<i>i</i> -Pr	Н		E,F	107-108 ^g	$C_{28}H_{33}FN_4S$	10
11y	Ν	CH	Me	Et	4-Cl-Ph	Br	Me_2N	Н	HCl	E,F	116–119 ^e	$C_{26}H_{29}BrClN_5 HCl \cdot 1.3H_2O$	45
11z	N	CH	Me	Et	3-Cl-Ph	Br	Me_2N	H	HCl	E,F	Amorphous	$C_{26}H_{29}BrClN_5 \cdot 2HCl \cdot 1.5H_2O$	56
11aa	N	CH	Me	Et	4-F-Ph	Br	Me_2N	H	HCI	E,F	122–124 ^e	$C_{26}H_{29}BrFN_5 HCl \cdot 1.2H_2O$	74
	N	CH	Me	Et	3-F-Ph	Br	Me_2N	H	HCI	E,F	116–119 ⁴	$C_{26}H_{29}BrFN_5 HCl H_2O$	39
11ac	IN N	CH	Me	Et Et	4-CI-Ph	Me	Me	Me	HCI	E,G	$125 - 127^{\circ}$	$C_{27}H_{31}CIN_4 \cdot HCI \cdot H_2O$	430
11au 11ao	IN N	СН	Me	El Et	3 - CI - PII	Me	Me	Me	HCI	E,G	120-125°	$C_{27}\Pi_{31}CIN_4 \cdot \Pi CI \cdot \Pi_2 O$	300
11ac 11af	N	СН	Me	Et	3-E-Ph	Me	Me	Me	HCI	E,O E G	127_120j	CarHarENrHCl.HaO	500 74
11ar	N	СН	Me	Et	4-Cl-Ph	MeO	MeO	H		E G	127 - 129 159 - 160 ^k	CacHaoClN (Oa	> 1000
11ah	N	СН	Me	Et	3-Cl-Ph	MeO	MeO	н	_	E G	$133-145^{k}$	$C_{26}H_{29}CIN_4O_2$	360
11ai	N	CH	Me	Et	4-F-Ph	MeO	MeO	Ĥ		E.G	$182 - 183^{i}$	$C_{26}H_{29}FN_4O_2$	> 1000
11aj	Ν	CH	Me	Et	3-F-Ph	MeO	MeO	Н		E,G	127-129 ^k	$C_{26}H_{29}FN_4O_2$	190
11ak	Ν	CH	Me	Et	4-Cl-Ph	Br	Br	Н	HC1	E,F	111-114 ^e	C24H23Br2CIN4·HCI·H2O	66
11al	Ν	CH	Me	Et	4-Cl-Ph	Cl	Cl	Η	HCl	E,F	112–114 ^e	C24H23Cl3N4·HCl·H2O	150
11am	Ν	CH	Me	Et	4-Cl-Ph	MeS	<i>n</i> -Pr	Η	HCl	E,F	125–128 ⁱ	C ₂₈ H ₃₃ ClN ₄ S·HCl·H ₂ O	480
11an	Ν	CH	Me	Et	4-Cl-Ph	MeS	<i>n</i> -Bu	Н	HCl	E,F	$120 - 123^{i}$	C ₂₉ H ₃₅ ClN ₄ S·HCl·H ₂ O	430
11ao	Ν	CH	Me	Et	4-Cl-Ph	MeS	c-Pen	Н	HCl	E,G	132–137 ^h	$C_{30}H_{35}ClN_4S\cdot HCl\cdot H_2O$	130
11ap	N	CH	Me	Et	3-Cl-Ph	Br	Me	H	HCl	E,F	140–141 ^e	$C_{25}H_{26}BrClN_4S\cdot HCl\cdot 1.5H_2O$	140
llaq	N	CH	Me	Et	3-Cl-Ph	Br	n-Pr	H	HCI	E,F	156–157 ^e	$C_{27}H_{30}BrClN_4 \cdot HCl \cdot H_2O$	360
Har	N	CH	Me	Et	3-Cl-Ph	Br	t-Bu	H	HCI	E,F	145–150 ^e	$C_{28}H_{32}BrClN_4 \cdot HCl \cdot H_2O$	≥1000
11as	IN N	CH	Me	$HC = C - CH_2$	4-CI-Ph	Br Dr	<i>l</i> -Pr	H	HCI	E,F	121-123	$C_{28}H_{28}BrClN_4 \cdot HCl \cdot H_2O$	31
11at	IN N	СЦ	Me	M_{P}	4-CI-FII 4-CI Ph	DI Br	<i>i</i> -FIE,F	п Ч	HCI	ц.г ББ	$109-112^{-1}$ $106-100^{i}$	$C_{28}\Pi_{30}$ BICIN ₄ · Π CI· Π_2 O	240
11au	IN N	СН	Me	N _r Pr	4-CI-PII 4-CI-Ph	Br	i-FT	п Н	HCI	ц.г ББ	$137 - 140^{i}$	$C_{26}H_{28}BrClN_{1}HCl_{1}HO$	140
11av	N	CH	Me	N-Pen	4-Cl-Ph	Br	<i>i</i> -1 1 <i>i</i> -Pr	н	HCI	E F	$118-121^{i}$	C ₂₈ H ₃₂ BrClNHCl.H.O	> 1000
11av	N	CH	Me	i-Bu	4-Cl-Ph	Br	<i>i</i> -Pr	Н	HCI	E F	$124 - 127^{i}$	C ₂₀ H ₂₄ BrClN ₄ ·HCl·H ₂ O	810
11av	N	CH	Me	Ph-CH ₂	4-Cl-Ph	Br	<i>i</i> -Pr	Ĥ	HCl	E.F	$137 - 139^{i}$	$C_{32}H_{32}BrClN_4 \cdot HCl \cdot H_2O$	> 1000
11az	N	CH	Н	Et	4-Cl-Ph	Br	<i>i</i> -Pr	Н		E,F	Amorphous	$C_{26}H_{28}BrCIN_4$	> 1000
11ab	Ν	СН	<i>i</i> -Pr	Et	4-Cl-Ph	Br	<i>i</i> -Pr	Н	—	É,F	Amorphous	$C_{29}H_{34}BrCIN_4$	>1000

^aMethods B, E–J are described in the text.

^bElemental analyses for all compounds are within ±0.4% of the theoretical values for the indicated formula. Analyses were performed for all elements except 0.

 cIC solvents are depicted: Et₂O-AcOEt; ^eRecrystallization or crystallization solvents are depicted: Et₂O-AcOEt; ^eRecrystallization or crystallization solvents are depicted: *iso*PrOH-*iso*Pr₂O; ^aRecrystallization or crystallization solvents are depicted. Et₂O ACOET, Recrystallization or crystallization solvents are depicted: EtOH; ^bRecrystallization or crystallization solvents are depicted: EtOH-*iso*Pr₂O; ⁱRecrystallization or crystallization solvents are depicted: AcOET; ^jRecrystallization or crystallization solvents are depicted: AcOET-isoPr₂O; ^kRecrystallization or crystallization solvents are depicted: Et₂O.

Experimental

Chemistry

Melting points (mp) were determined on a Yanaco MP-500D mp apparatus and are uncorrected. Infrared (IR) spectra were obtained on a Perkin-Elmer 1760 spectrometer. Proton nuclear magnetic resonance (NMR) spectra were obtained using a Varian VXR-200 spectrometer. Chemical shifts are reported in parts per million relative to tetramethylsilane as an internal standard. Mass spectra (MS) were obtained on a Simazu/Kratos HV-300. Elemental analyses were performed by a Perkin-Elmer 240C (for carbon, hydrogen and nitrogen), or Yokokawa-Denki IC7000P (for halogen and sulfur). Analytical thin-layer chromatography was conducted on precoated silica gel 60 F254 plates (Merck). Chromatography was performed on silica gel C-200, 100–200 mesh (Wako Pure Chemical), using the solvent systems (volume ratios) indicated below.

Method A. 4-(4-Benzylidenepiperidino)-2-(N-ethyl-2bromo-4-isopropylanilino)-6-methylpyrimidine 8a. To a stirred mixture of diisopropylethylamine (5.30 g, 41.0 mmol) and 4-benzylidenepiperidine HCl (4.20 g, 20.0 mmol) in EtOH (60 mL), cooled in an ice-bath, was added 2,4-dichloro-6-methylpyrimidine 14 (3.33 g, 20.0 mmol). After 2 h, the mixture was stirred for 15 h at room temperature and then concentrated in vacuo. The residue was partitioned between AcOEt and water. The separated organic phase was washed with saturated brine, dried (Na₂SO₄), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:10–1:3) afforded 5.13 g (85%) of 4-(4-benzylidenepiperidino)-2chloro-6-methylpyrimidine 17a as a light yellow oil and 0.84 g (14%) of 2-(4-benzylidenepiperidino)-4-chloro-6methylpyrimidine 17'a as light yellow oil.

17a: ¹H NMR (CDCl₃) δ 2.35 (3H, s, CH₃), 2.47 (2H, br t, *J*=5.8 Hz, CCH₂C), 2.59 (2H, br t, *J*=5.8 Hz, CCH₂C), 3.66 (2H, br t, *J*=5.8 Hz, NCH₂), 3.76 (2H, br t, *J*=5.8 Hz, NCH₂), 6.28 (1H, s, PhCH=), 6.44 (1H, s, H of pyrimidine), 7.15–7.42 (5H, m, ArH); MS (FAB) *m*/*z* 302 (M⁺⁺3, 33%), 300 (M⁺⁺1, 100%).

17′a: ¹H NMR (CDCl₃) δ 2.31 (3H, s, CH₃), 2.42 (2H, br t, *J*=5.9 Hz, CCH₂C), 2.55 (2H, br t, *J*=5.9 Hz, CCH₂C), 3.83 (2H, br t, *J*=5.9 Hz, NCH₂), 3.93 (2H, br t, *J*=5.9 Hz, NCH₂), 6.38 (1H, s, PhCH=), 6.41 (1H, s, H of pyrimidine), 7.18–7.40 (5H, m, ArH); MS (FAB) *m*/*z* 302 (M⁺ + 3, 33%), 300 (M⁺ + 1, 100%).

A mixture of **17a** (3.00 g, 10.0 mmol), 2-bromo-4-isopropylaniline HCl (2.51 g, 10.0 mmol) and diisopropylethylamine (1.42 g, 11.0 mmol) in ethylene glycol (20 mL) was heated at reflux for 1.5 h. The mixture was partitioned between AcOEt and 1 N aqueous NaOH. The separated organic phase was washed with saturated brine, dried (Na₂SO₄), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:7) afforded 3.25 g (68%) of 4-(4-benzylidenepiperidino)-2-(2-bromo-4-isopropylanilino)-6-methylpyrimidine **20a** as a yellow oil: ¹H NMR (CDCl₃) δ 1.23 (6H, d, J = 7.0 Hz, CH₃ of *iso*Pr), 2.30 (3H, s, CH₃ of pyrimidine), 2.45 (2H, br t, J = 5.8 Hz, CCH₂C), 2.58 (2H, br t, J = 5.8 Hz, CCH₂C), 2.76–2.95 (1H, m, CH of *iso*Pr), 3.60–3.80 (4H, m, NCH₂), 5.99 (1H, s, PhCH =), 6.42 (1H, br s, H of pyrimidine), 7.09–7.41 (7H, m, ArH), 8.39 (1H, d, J = 8.6 Hz, ArH); MS (FAB) m/z 479 (M⁺ + 3, 100%), 477 (M⁺ + 1, 98%).

To a stirred solution of 20a (2.67 g, 5.59 mmol) in dry N,N-dimethylformamide (DMF) (26 mL) was added 60% NaH in oil (0.91 g, 7.28 mmol). After 30 min at room temperature, to the stirred mixture was added ethyl iodide (1.22 g, 7.82 mmol). After 15 h at room temperature, the mixture was poured into water and extracted with AcOEt. The extract was washed with water and saturated brine, dried (Na₂SO₄), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:9), treatment with 4 N HCl in AcOEt and recrystallization from AcOEt afforded 2.37 g (78%) of 8a as a light yellow crystal: mp 149–152 °C; ¹H NMR (CDCl₃) δ 1.19–1.41 (9H, m, CH₃ of *iso*Pr and CH₃ of Et), 2.77 (3H, br s, CH₃ of pyrimidine), 2.10-3.75 (9H, m, CCH₂CH₂N and CH of *iso*Pr), 4.04–4.74 (2H, m, CH_2 of Et), 5.94 (1H, br s, PhCH=), 6.41 (1H, br s, H of pyrimidine), 7.08-7.40 (7H, m, Ar), 7.54 (1H, br s, ArH); MS (CI) m/z (M⁺ + 3, 100%), (M⁺ + 1, 98%).

Method B. 4-(4-Oxopiperidino)-2-(*N*-ethyl-2-bromo-4isopropylanilino)-6-methylpyrimidine 26. By the same procedure as in the first step of Method A, treatment of 2,4-dichloro-6-methylpyrimidine 14 (10.55 g, 64.7 mmol) with 1,4-dioxa-8-azaspiro[4,5]decane (9.27 g, 64.7 mmol) and diisopropylethylamine (8.78 g, 68.0 mmol) in EtOH (200 mL) afforded 13.71 g (79%) of 2-chloro-4-(1,4dioxa-8-azaspiro[4,5]decan-8-yl)-6-methylpyrimidine 23 as colorless crystal and 2.92 g (17%) of 4-chloro-2-(1,4dioxa-8-azaspiro[4,5]decan-8-yl)-6-methylpyrimidine 23' as a colorless crystal.

23: mp 127–128°; ¹H NMR (CDCl₃) δ 1.75 (4H, br t, J = 5.9 Hz, CCH₂C), 2.33 (3H, s, CH₃), 3.75 (4H, br t, J = 5.9 Hz, NCH₂), 4.01 (4H, s, (CH₂O)₂), 6.29 (1H, s, H of pyrimidine); MS (CI) m/z 272 (M⁺ + 3, 34%), 270 (M⁺ + 1, 100%).

23': mp 102–105 °C; ¹H NMR (CDCl₃) δ 1.72 (4H, br t, J = 5.8 Hz, CCH₂C), 2.30 (3H, s, CH₃), 3.94 (4H, br t, J = 5.8 Hz, NCH₂), 4.00 (4H, s, (CH₂O)₂), 6.38 (1H, s, H of pyrimidine); MS (CI) m/z 272 (M⁺ + 3, 31%), 270 (M⁺ + 1, 100%).

Compound **23** (15.03 g, 55.7 mmol) was treated with 2bromo-4-isopropylaniline HCl (13.96 g, 55.7 mmol) and diisopropylethylamine (7.92 g, 61.3 mmol) in ethylene glycol (60 mL) using the same procedure as in the second step of Method A to afford 19.43 g (78%) of 2-(2bromo-4-isopropylanilino)-4-(1,4-dioxa-8-azaspiro[4,5]decan-8-yl)-6-methylpyrimidine **24** as a yellow oil: ¹H NMR (CDCl₃) δ 1.23 (6H, d, J=6.8 Hz, CH₃ of *iso*Pr), 1.75 (4H, br t, J=5.8 Hz, CCH₂C), 2.29 (3H, s, CH₃), 2.75–2.93 (1H, m, CH of *iso*Pr), 3.74 (4H, br t, J = 5.8 Hz, NCH₂), 4.01 (4H, s, (CH₂O)₂), 5.99 (1H, s, H of pyrimidine), 7.13 (1H, d d, J = 2.0, 8.6 Hz, ArH), 7.18 (1H, s, NH), 7.38 (1H, d, J = 2.0 Hz, ArH), 8.37 (1H, d, J = 8.6 Hz, ArH); MS (CI) m/z 449 (M⁺ + 3, 96%), 447 (M⁺ + 1, 100%).

Compound **24** (18.11 g, 40.5 mmol) was treated with ethyl iodide (10.10 g, 64.8 mmol) and 60% NaH in oil (2.43 g, 60.7 mmol) in dry DMF (100 mL) using the same procedure as in the third step of Method A to afford 14.63 g (76%) of 2-(*N*-ethyl-2-bromo-4-iso-propylanilino)-4-(1,4-dioxa-8-azaspiro[4,5]decan-8-yl)-6-methylpyrimidine **25** as a yellow oil: ¹H NMR (CDCl₃) δ 1.20 (3H, t, *J*=7.0 Hz, CH₃ of Et), 1.26 (6H, d, *J*=7.0 Hz, CH₃ of *iso*Pr), 1.54–1.69 (4H, m, CCH₂C), 2.20 (3H, s, CH₃), 2.81–2.99 (1H, m, CH of *iso*Pr), 3.39–3.61 (4H, m, NCH₂), 3.68–4.23 (2H, m, CH₂ of Et), 3.96 (4H, s, (CH₂O)₂), 5.82 (1H, s, H of pyrimidine), 7.13–7.19 (2H, m, ArH), 7.48 (1H, br s, ArH); MS (CI) *m*/*z* 477 (M⁺ + 3, 91%), 475 (M⁺ + 1, 100%).

To a solution of **25** (14.25 g) in tetrahydrofurane (THF) (75 mL) was added 4 N aqueous HCl (75 mL) and the solution was stirred for 6h at room temperature. The reaction mixture was concentrated in vacuo to remove THF and the residue was partitioned between AcOEt and saturated aqueous NaHCO₃. The separated organic phase was washed with saturated brine, dried (Na₂SO₄), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:7-1:6) afforded 11.69 g (90%) of 26 as a yellow oil: ¹H NMR (CDCl₃) δ 1.22 (3H, t, J=7.1 Hz, CH₃ of Et), 1.26 (6H, d, J=7.0 Hz, CH₃ of *iso*Pr), 2.26 (3H, s, CH₃), 2.20–2.48 (4H, m, C(O)CH₂), 2.83-3.00 (1H, m, CH of isoPr), 3.48-4.28 (6H, m, NCH₂) and CH_2 of Et), 5.91 (1H, s, H of pyrimidine), 7.15 (1H, d, J=8.1 Hz, ArH), 7.19 (1H, d d, J=1.5, 8.1 Hz, ArH), 7.49 (1H, d, J = 1.5 Hz, ArH); MS (CI) m/z 433 (M⁺ + 3, 100%), 431 (M⁺ + 1, 100%).

Method C. 4-(4-Ethylidenepiperidino)-2-(N-ethyl-2-bromo-4-isopropylanilino)-6-methylpyrimidine hydrochloride 8b. To a stirred suspension of ethyltriphenylphosphonium bromide (1.90 g, 5.11 mmol) in dry THF (6 mL), cooled to -20 °C, was added dropwise 1.6 M solution of *n*butyllithium in hexane (3.0 mL, 4.9 mmol). After 30 min, the mixture was warmed to 0 °C and to the stirred mixture was added dropwise a solution of compound 26 (0.40 g, 0.93 mmol) in dry THF (3 mL). After 30 min, the mixture was warmed to room temperature and stirring was continued for 1.5 h. The reaction mixture was partitioned between AcOEt and water. The separated organic phase was washed with saturated brine, dried (Na_2SO_4), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:8-1:6) and treatment with 4 N HCl in AcOEt in a mixture of AcOEt and hexanes afforded 0.28 g (62%) of 8b as a yellow crystal: mp 181–184 °C; ¹H NMR (CDCl₃) δ 1.28 $(6H, d, J = 7.0 \text{ Hz}, CH_3 \text{ of } isoPr), 1.33 (3H, t, J = 7.1 \text{ Hz},$ CH₃ of Et), 1.59 (3H, d, J = 6.4 Hz, CH₃ of ethylidene), 1.86–2.44 (4H, m, CCH₂C), 2.76 (3H, s, CH₃ of pyrimidine), 2.86-3.04 (1H, m, CH of isoPr), 3.04-3.64

(4H, m, NCH₂), 4.00–4.84 (2H, m, CH₂ of Et), 5.24– 5.44 (1H, m, C=CH), 5.91 (1H, s, H of pyrimidine), 7.06–7.36 (2H, m, ArH), 7.53 (1H, br s, ArH); MS (EI) m/z 444 (M⁺+2), 442 (M⁺), 363 (M⁺- Br, 100%); IR (KBr) 3435, 2960, 2710, 1651, 1609, 1589, 1555 cm⁻¹; anal. (C₂₃H₃₁BrN₄·HCl) C, H, N, Br, Cl.

Method D. 4-(4-Cyclopentadienylidenepiperidino)-2-(Nethyl-2-bromo-4-isopropylanilino)-6-methylpyrimidine 8h. To a stirred solution of 26 (208 mg, 0.48 mmol) and freshly distilled cyclopentadiene (80 mg, 1.21 mmol) in dry MeOH (0.9 mL) was added pyrrolidine (51 mg, 0.72 mmol). After 3 h at room temperature, the mixture was concentrated in vacuo, chromatographed on silica gel using a mixture of AcOEt and hexanes (1:8), and then treated with 4 N HCl in AcOEt in AcOEt to afford 140 mg (56%) of **8h** as a yellow amorphous solid: 1 H NMR (DMSO- d_6) δ 1.16 (3H, t, J = 6.0 Hz, CH₃ of Et), 1.26 (6H, d, J = 7.5 Hz, CH₃ of *iso*Pr), 2.27 (3H, br s, CH₃ of pyrimidine), 2.64-3.16 (5H, m, =CCH₂C and CH of isoPr), 3.40–4.35 (6H, m, CH₂NCH₂ and CH₂ of Et), 6.45–6.81 (4H, m, H of cyclopentadiene), 6.51 (1H, s, H of pyrimidine), 7.31-7.60 (2H, m, ArH), 7.72 (1H, br s, ArH); MS (EI) m/z 480 (M⁺+2), 478 (M⁺), 399 (M⁺- Br, 100%); IR (KBr) 1651, 1610, 1590, 1546, 1494, 1365, 1257 cm⁻¹. Anal. (C₂₆H₃₁BrN₄·HCl) C, H, N, Br, Cl.

Method E. 2-Chloro-4-(4-phenyl-1,2,3,6-tetrahydropyridino)-6-methylpyrimidine 27a. By the same procedure as in the first step of Method A, treatment of 2,4-dichloro-6-methylpyrimidine 14 (419 mg, 2.57 mmol) with 4-phenyl-1,2,3,6-tetrahydropyridine HCl (503 mg, 2.57 mmol) and diisopropylethylamine (664 mg, 5.14 mmol) in EtOH (4 mL) afforded 491 mg (67%) of 27a as light yellow crystal and 95 mg (13%) of 4-chloro-2-(4-phenyl-1,2,3,6-tetrahydropyridino)-6-methylpyrimidine 27'a as a light yellow crystal.

27a: mp 128–130 °C; ¹H NMR (CDCl₃) δ 2.37 (3H, s, CH₃ of pyrimidine), 2.58–2.73 (2H, m, = CCH₂C), 3.94 (2H, t, *J*=5.6 Hz, NCH₂), 4.11–4.28 (2H, m, NCH₂), 6.05–6.17 (1H, m, C=CH), 6.28 (1H, s, H of pyrimidine), 7.22–7.47 (5H, m, ArH); MS (CI) *m*/*z* 288 (M⁺ + 3, 32%), 286 (M⁺ + 1, 100%).

27'a: mp 89–90 °C; ¹H NMR (CDCl₃) δ 2.34 (3H, s, CH₃ of pyrimidine), 2.55–2.68 (2H, m, =CCH₂C), 4.08 (2H, t, *J* = 5.7 Hz, NCH₂), 4.41 (2H, d d, *J* = 2.8, 6.0 Hz, NCH₂), 6.10–6.20 (1H, m, C=CH), 6.42 (1H, s, H of pyrimidine), 7.20–7.50 (5H, m, ArH); MS (CI) *m*/*z* 288 (M⁺ + 3, 33%), 286 (M⁺ + 1, 100%).

Method F. 4-(4-Phenyl-1,2,3,6-tetrahydropyridino)-2-(*N*-ethyl-2-bromo-4-isopropylanilino)-6-methylpyrimidine 11a. Compound 27a (466 mg, 1.63 mmol) was treated with 2-bromo-4-isopropylaniline HCl (408 mg, 1.63 mmol) and diisopropylethylamine (232 mg, 1.79 mmol) in ethylene glycol (5 mL) using the same procedure as in the second step of Method A to afford 453 mg (61%) of 2-(2-bromo-4-isopropylanilino)-4-(4-phenyl-1,2,3,6-tetra-hydropyridino)-6-methylpyrimidine **30a** as a yellow oil: ¹H NMR (CDCl₃) δ 1.24 (6H, d, *J*=6.8 Hz, CH₃ of *iso*Pr), 2.32 (3H, s, CH₃ of pyrimidine), 2.58–2.73 (2H, m, = CCH₂C), 2.78–2.94 (1H, m, CH of *iso*Pr), 3.91 (2H, t, J = 5.7 Hz, NCH₂), 4.21 (2H, d d, J = 2.5, 5.6 Hz, NCH₂), 5.98 (1H, s, H of pyrimidine), 6.11–6.20 (1H, m, C = CH), 7.11–7.49 (8H, m, ArH and NH), 8.45 (1H, d, J = 8.6 Hz, ArH); MS (CI) m/z 465 (M⁺ + 3, 99%), 463 (M⁺ + 1, 100%).

Compound **30a** (453 mg, 0.98 mmol) was treated with ethyl iodide (214 mg, 1.37 mmol) and 60% NaH in oil (51 mg, 1.27 mmol) in dry DMF (5 mL) using the same procedure as in the third step of Method A to afford 325 mg (61%) of **11a** as a light yellow crystal: mp 124–127 °C; ¹H NMR (DMSO-*d*₆) δ 1.19 (3H, d, *J*=7.0 Hz, CH₃ of Et), 1.26 (6H, t, *J*=7.0 Hz, CH₃ of *iso*Pr), 2.28 (3H, br s, CH₃ of pyrimidine), 2.55–2.80 (2H, m, = CCH₂C), 2.93–3.09 (1H, m, CH of *iso*Pr), 3.30–4.68 (6H, m, NCH₂ and CH₂ of Et), 6.26 (1H, br s, H of pyrimidine), 6.51–6.86 (1H, m, C=CH), 7.23–7.63 (7H, m, ArH), 7.73 (1H, br s, ArH); MS (CI) *m*/*z* 493 (M⁺+3, 99%), 491 (M⁺+1, 100%); IR (KBr) 3505, 2960, 1652, 1609, 1588, 1546, 1493, 1379, 1255 cm⁻¹. Anal. (C₂₇H₃₁BrN₄·HCl·H₂O) C, H, N, Br, Cl.

Method G. 4-(4-(4-Chlorophenyl)-1,2,3,6-tetrahydropyridino)-2-(N-ethyl-2,4-dimethoxyanilino)-6-methylpyrimidine 11ag. A mixture of 4-(4-(4-chlorophenyl)-1,2,3,6-tetrahydropyridino)-2-chloro-6-methylpyrimidine (500 mg, 1.55 mmol), which was prepared by treatment of 2,4dichloro-6-methylpyrimidine 14 with 4-(4-chlorophenyl)-1,2,3,6-tetrahydropyridine HCl using the same procedure as in Method E, and N-ethyl-2,4-dimethoxyaniline (281 mg, 1.55 mmol) in ethylene glycol (2 mL) was heated at reflux for 1.5h. The mixture was partitioned between AcOEt and saturated aqueous NaHCO₃. The separated organic phase was washed with saturated brine, dried (Na₂SO₄), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:4) and recrystallization from Et₂O afforded 360 mg (50%) of **11ag** as a light yellow crystal: mp 159–160 °C; ¹H NMR (CDCl₃) δ 1.19 $(6H, d, J = 7.0 \text{ Hz}, CH_3 \text{ of } isoPr), 1.15 (3H, t, J = 7.0 \text{ Hz},$ CH₃ of Et), 2.20 (3H, br s, CH₃ of pyrimidine), 2.41–2.57 (2H, m, = CCH₂C), 3.61–4.12 (6H, m, NCH₂ and CH₂ of Et), 3.73 (3H, s, CH₃O), 3.84 (3H, s, CH₃O), 5.77 (1H, s, H of pyrimidine), 6.02–6.12 (1H, m, C=CH), 6.45–6.58 (2H, m, ArH), 7.10 (1H, d, J = 8.4 Hz, ArH), 7.26-7.35(4H, m, ArH), 7.73 (1H, br s, ArH); MS (EI) m/z 466 $(M^+ + 2, 3\%), 464 (M^+, 8\%), 433 (M^+ - CH_3O, 100\%);$ IR (KBr) 2954, 2836, 1586, 1438, 1412, 1160 cm⁻¹. Anal. (C₂₆H₂₉ClN₄O₂) C, H, N, Cl.

Method H. 4-(4-(3-Chlorophenyl)-1,2,3,6-tetrahydropyridino)-2-(*N*-ethyl-2-bromo-4-isopropylanilino)-6-methylpyrimidine hydrochloride 11h. A stirred suspension of 3bromochlorobenzene (427 mg, 2.23 mmol), magnesium (27 mg, 1.12 atoms) and trace iodine in dry THF (5 mL) was heated at reflux under a nitrogen atmosphere, and then cooled in an ice-bath. To the stirred solution was added dropwise a solution of compound **26a** (321 mg, 0.74 mmol). After 1 h, the mixture was warmed to room temperature and stirred for 1 h. The mixture was recooled in an ice-bath, and to the mixture was added dropwise a saturated aqueous NH₄Cl. After 10 min, the mixture was extracted with AcOEt. The extract was washed with saturated aqueous NaHCO₃ and saturated brine, dried (Na_2SO_4) , filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:4) afforded 238 mg (59%) of 4-(4-(3-chlorophenyl)-4-hydroxypiperidino)-2-(N-ethyl-2-bromo-4-isopropylanilino)-6methylpyrimidine as a yellow amorphous solid: ¹H NMR (CDCl₃) δ 1.22 (3H, t, J = 7.1 Hz, CH₃ of Et), 1.24 (6H, d, J=7.0 Hz, CH₃ of *iso*Pr), 1.53–1.75 (2H, m, H of CCH₂C), 1.82–2.10 (2H, m, H of CCH₂C), 2.23 (3H, s, CH₃ of pyrimidine), 2.80-3.01 (1H, m, CH of isoPr), 3.08-3.35 (2H, m, H of NCH₂), 3.58-4.35 (4H, m, H of NCH₂ and CH₂ of NEt), 5.86 (1H, s, H of pyrimidine), 7.13-7.21 (2H, m, ArH), 7.21-7.35 (3H, m, ArH), 7.43–7.53 (2H, m, ArH); MS (CI) m/z 545 $(M^+ + 3, 100\%), 543 (M^+ + 1, 82\%).$

A solution of 4-(4-(3-chlorophenyl)-4-hydroxypiperidino)-2-(N-ethyl-2-bromo-4-isopropylanilino)-6-methylpyrimidine (170 mg, 0.31 mmol) in trifluoroacetic acid (1.25 mL) was stirred at room temperature for 2 days. The solution was concentrated in vacuo and then partitioned between AcOEt and saturated aqueous NaHCO₃. The separated organic phase was washed with saturated aqueous NaHCO₃ and saturated brine, dried (Na₂SO₄), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:7), treatment with 4 N HCl in AcOEt in MeOH and recrystallization from a mixture of isopropanol and diisopropyl ether afforded 131 mg (75%) of **11h** as a light yellow crystal: mp 183–185°C; ¹H NMR (CDCl₃) δ 1.29 (6H, d, J=7.0 Hz, CH₃ of *iso*Pr), 1.34 (3H, t, *J* = 6.8 Hz, CH₃ of Et), 2.20–2.88 (2H, m, $C = CCH_2C$), 2.80 (3H, br s, CH_3 of pyrimidine), 2.88-3.05 (1H, m, CH of isoPr), 3.30-4.75 (6H, m, NCH₂ and CH₂ of Et), 5.88 (1H, br s, H of pyrimidine), 5.94– 6.08 (1H, m, C=CH), 7.00–7.61 (7H, m, ArH); MS (CI) m/z 527 (M⁺+3, 100%), 525 (M⁺+1, 84%); IR (KBr) 3504, 2960, 1654, 1610, 1588, 1546, 1492 cm⁻¹. Anal. $(C_{27}H_{30}BrClN_4 \cdot HCl) C, H, N, Br, Cl.$

Method I. 4-(4-Furan-2-yl-1,2,3,6-tetrahydropyridino)-2-(N-ethyl-2-bromo-4-isopropylanilino)-6-methylpyrimidine **11d.** To a stirred solution of furan (136 mg, 2.00 mmol) in dry THF (1 mL), cooled to -15 °C, was added dropwise 1.63M solution of *n*-butyllithium in hexane (0.9 mL, 1.47 mmol) over 10 min. After 20 min at 5 °C, to the stirred mixture, cooled to -15 °C, was added dropwise a solution of 26 (432 mg, 1.00 mmol) in dry THF over 10 min. After 30 min at -15 °C to 0 °C and then 1 h at room temperature, to the stirred mixture, cooled in an ice-bath, was added dropwise a saturated aqueous NH₄Cl. After 10 min, the mixture was extracted with AcOEt. The extract was washed with saturated aqueous NaHCO₃ and saturated brine, dried (Na₂SO₄), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:3) afforded 279 mg (56%) of 4-(4-furan-2-yl-4-hydroxypiperidino)-2-(N-ethyl-2-bromo-4-isopropylanilino)-6-methylpyrimidine as a yellow oil: ¹H NMR (CDCl₃) δ 1.20 (3H, t, J = 7.0 Hz, CH₃ of Et),

1.26 (6H, d, J = 6.8 Hz, CH₃ of *iso*Pr), 1.77–2.05 (4H, m, H of CCH₂C), 2.21 (3H, s, CH₃ of pyrimidine), 2.81–3.01 (1H, m, CH of *iso*Pr), 3.30–3.58 (2H, m, H of NCH₂), 3.60–4.21 (4H, m, H of NCH₂ and CH₂ of NEt), 5.83 (1H, s, H of pyrimidine), 6.20 (1H, d, J = 3.2 Hz, ArH), 6.33 (1H, d d, J = 1.8, 3.2 Hz, ArH), 7.15–7.18 (2H, m, ArH), 7.37 (1H, d d, J = 0.8, 1.8 Hz, ArH), 7.49 (1H, br s, ArH); MS (CI) m/z 501(M⁺ + 3, 98%), 499 (M⁺ + 1, 100%).

To a stirred solution of 4-(4-furan-2-yl-4-hydroxypiperidino)-2-(N-ethyl-2-bromo-4-isopropylanilino)-6methylpyrimidine (104 mg, 0.21 mmol), triethylamine 0.84 mmol) and 4-dimethylaminopyridine (85 mg, (13 mg, 0.11 mmol) in dichloromethane (1.0 mL), cooled in an ice-bath, was added dropwise a solution of methanesulfonyl chloride (48 mg, 0.42 mmol) in dichloromethane (0.5 mL). After 15 min, the mixture was warmed to room temperature and stirred for 2h. The reaction mixture was poured into saturated aqueous NaHCO₃ and extracted with AcOEt. The extract was washed with saturated aqueous NaHCO₃ and saturated brine, dried (Na₂SO₄), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:9) afforded 70 mg (70%) of **11d** as a yellow amorphous solid: 1 H NMR (CDCl₃) δ 1.21 (3H, t, J = 7.0 Hz, CH₃ of Et), 1.28 (6H, d, J=6.8 Hz, CH₃ of *iso*Pr), 2.21 (3H, s, CH₃ of pyrimidine), 2.31-2.47 (2H, m, CCH₂C), 2.84-3.00 (1H, m, CH of isoPr), 3.55-4.30 (6H, m, H of NCH₂ and CH2 of Et), 5.79 (1H, s, H of pyrimidine), 6.13-6.25 (2H, m, ArH and C=CH), 6.37 (1H, d d, J=1.8, 3.3 Hz, ArH), 7.13–7.20 (2H, m, ArH), 7.37 (1H, d, J = 1.8 Hz, ArH), 7.51 (1H, br s, ArH); MS (FAB) m/z $483(M^+ + 3, 99\%), 481 (M^+ + 1, 100\%); IR (CHCl_3)$ 2963, 2928, 1656, 1577, 1493, 1451, 1413, 1376 cm⁻¹. Anal. (C₂₇H₃₀BrN₄O) C, H, N, Br.

Method J:. 4-(4-Thiophen-2-yl-1,2,3,6-tetrahydropyridino) -2-(N-ethyl-2-bromo-4-isopropylanilino)-6-methylpyrimidine 11e. Treatment of 26 (432 mg, 1.00 mmol) with thiophene (163 mg, 2.00 mmol) and 1.63 M solution of *n*-butyllithium in hexane (0.9 mL, 1.47 mmol) in dry THF using the same procedure as in the first step of Method I afforded 228 mg (44%) of 4-(4-thiophen-2-yl-4hydroxypiperidino) - 2 - (N - ethyl - 2 - bromo - 4 - isopropylanilino)-6-methylpyrimidine as a yellow oil: ¹H NMR $(CDCl_3) \delta 1.21 (3H, t, J = 7.0 Hz, CH_3 of Et), 1.26 (6H, d, d)$ J = 6.8 Hz, CH₃ of *iso*Pr), 1.81–2.15 (4H, m, H of CCH₂C), 2.22 (3H, s, CH₃ of pyrimidine), 2.82-2.98 (1H, m, CH of isoPr), 3.20-3.38 (2H, m, H of NCH₂), 3.62-4.18 (4H, m, H of NCH₂ and CH₂ of NEt), 5.84 (1H, s, H of pyrimidine), 6.96-7.00 (2H, m, ArH), 7.16-7.20 (2H, m, ArH), 7.21–7.26 (1H, m, ArH), 7.49 (1H, br s, ArH); MS (CI) m/z 517 (M⁺+3, 100%), 515 (M⁺+1, 99%).

A solution of 4-(4-thiophen-2-yl-4-hydroxypiperidino)-2-(*N*-ethyl-2-bromo-4-isopropylanilino)-6-methylpyrimidine (166 mg, mmol) in 99% formic acid (0.5 mL) was stirred for 2 h at room temperature. The reaction mixture was poured into saturated aqueous NaHCO₃ and extracted with AcOEt. The extract was washed with saturated aqueous NaHCO₃ and saturated brine, dried (Na₂SO₄), filtered, and then concentrated in vacuo. Chromatography of the residue on silica gel using a mixture of AcOEt and hexanes (1:9) afforded 132 mg (90%) of **11e** as a yellow amorphous solid: ¹H NMR (CDCl₃) δ 1.21 (3H, t, *J*=7.1 Hz, CH₃ of Et), 1.28 (6H, d, *J*=6.8 Hz, CH₃ of *iso*Pr), 2.21 (3H, s, CH₃ of pyrimidine), 2.43–2.60 (2H, m, CCH₂C), 2.85–3.02 (1H, m, CH of *iso*Pr), 3.60–4.30 (6H, m, NCH₂ and CH₂ of Et), 5.80 (1H, s, H of pyrimidine), 6.03–6.15 (1H, m, C=CH), 6.92–7.00 (2H, m, ArH), 7.10–7.20 (3H, m, ArH), 7.51 (1H, br s, ArH); MS (CI) *m/z* 499(M⁺ + 3, 99%), 497 (M⁺ + 1, 100%) ; IR (CHCl₃) 2962, 2928, 1661, 1577, 1493, 1450, 1414, 1375 cm⁻¹. Anal. (C₂₇H₃₀BrN₄S) C, H, N, Br, S.

Binding study

Rats were decapitated and the frontal cortex and heart were rapidly dissected. Tissues were homogenized with 50 mM Tris–HCl buffer (pH 7.0) containing 10 mM MgCl₂ and 2 mM ethylenediaminetetraacetic acid (EDTA), and centrifuged at $48,000 \times g$ for 20 min at 4 °C. The pellet was washed twice with the buffer, and the final pellet was suspended in the assay buffer (50 mM Tris– HCl buffer, pH 7.0, containing 10 mM MgCl₂, 2 mM EDTA, 0.1% bovine serum albumin (BSA) and 100 KU/ mL aprotinin), and used as crude membrane preparation for binding studies. Protein concentration was determined using a described method.³⁵

Binding assays for [¹²⁵I]-ovine CRF and [¹²⁵I]-sauvagine were performed according to reported procedures^{31,32} but with slight modifications. The reaction was initiated by incubating 0.5 mL of membrane preparation with 0.2 nM [¹²⁵I]-ovine CRF or 0.2 nM [¹²⁵I]-sauvagine. The reaction mixture was incubated for 2h at 25 °C (for [¹²⁵I]-ovine CRF binding) or at 23 °C (for [¹²⁵I]-sauvagine binding), and reaction was terminated by rapid filtration through Whatman GF/C glass fiber filters presoaked with 0.3% polyethyleneimine, after which the filters were washed three times with 3 mL of phosphatebuffered saline (PBS) containing 0.01% Triton X-100. Radioactivity was quantified in a gamma-counter. Nonspecific binding was determined in the presence of unlabeled 1 µM ovine CRF (for [125I]-ovine CRF binding) or $1 \mu M$ sauvagine (for $[^{125}I]$ -sauvagine binding). Specific binding was determined by subtracting nonspecific binding from total binding. In the competitionbinding assay, the concentration of the test compound that caused 50% inhibition of specific radiolabeled ligand binding (IC₅₀ values) was determined from each concentration-response curve.

References

1. Vale, W.; Spiess, J.; Rivier, C.; Rivier, J. Science 1981, 213, 1394.

- 2. Rivier, C. L.; Plotsky, P. M. Annu. Rev. Physiol. 1986, 48, 475.
- 3. Koob, G. F.; Bloom, F. E. Federation Proc. 1985, 44, 259.
- 4. Nemeroff, C. B.; Owens, M. J.; Bissette, G.; Andorn, A. C.;
- Stanley, M. Arch. Gen. Psychiatry 1988, 45, 557.

- 5. Dunn, A. J.; Berridge, C. W. Brain Res. Rev. 1990, 15, 71.
- 6. Turbull, A. V.; Rivier, C. Proc. Soc. Exp. Biol. Med. 1997, 215, 1.
- 7. Bonaz, B.; Rivest, S. Am. J. Physiol. 1998, 275, (5 Pt 2)-R1438.
- 8. Chen, R.; Lewis, K. A.; Perrin, M. H.; Vale, W. W. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8967.
- 9. Perrin, M. H.; Donaldoson, C. J.; Chen, R.; Lewis, K. A.; Vale, W. W. *Endocrinology* **1993**, *133*, 3058.
- 10. Lovenberg, T. W.; Liaw, C. W.; Grigoriadis, D. E.; Clevenger, W.; Chalmers, D. T.; DeSouza, E. B.; Oltersdorf, T.
- Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 836.
- 11. Chang, C. P.; Pearse, R. V., II; O'Connell, S.; Rosenfeld, M. G. Neuron. **1993**, 11, 1187.
- 12. Nemeroff, C. B.; Widerlov, E; Bissette, G.; Wallens, H.; Karlsson, I.; Eklund, K.; Kilts, C. D.; Loosen, P. T.; Vale, W. *Science* **1342**, *226*.
- 13. Darnell, A.; Bremner, J. D.; Licinio, J.; Krystal, J.; Nemeroff, C. B.; Owens, M.; Erdos, J.; Charnev, D. S. Soc. Neurosci. Abstr. **1994**, 20, 17.
- 14. Holsboer, F.; Von Bardeleben, U.; Gerken, A.; Stella, G.
- K.; Muller, O. A. N. Engl. J. Med. **1984**, 311, 1127. 15. Taylor, A. L.; Fishman, L. M. N. Engl. J. Med. **1984**, 319,
- 13. Taylor, A. L.; Fishman, L. M. N. Engl. J. Med. 1984, 519, 213.
- 16. Chen, Y. L.; Mansbach, R. S.; Winter, S. M.; Brooks, E.;
- Collins, J.; Corman, M. L.; Dunaiskis, A. R.; Faraci, W. S.; Gallaschun, R. J.; Schmidt, A.; Schulz, D. W. J. Med. Chem. **1997**, 40, 1749.
- 17. Schulz, W. D.; Mansbach, R. S.; Sprouse, J.; Braselton, J. P.; Collins, J.; Corman, M.; Dunaiskis, A.; Faraci, S.; Schmidt, A.; Seeger, T.; Seymour, P.; Tingley, F. D., III; Winston, E. N.; Chen, Y. L.; Heym, J. *Proc. Natl. Acad. Sci. U.S.A.* **1996**, *93*, 10477.
- 18. Lundkvist, J.; Chai, Z.; Teheranian, R.; Hasanvan, H.; Bartfai, T.; Jenck, F.; Widmer, U.; Moreau, J. *Eur. J. Pharmacol.* **1996**, *309*, 195.
- 19. Mansbach, R. S.; Winston, E. N.; Chen, Y. L. Eur. J. Pharmacol. 1997, 323, 21.
- 20. Shaham, Y.; Erb, S.; Leung, S.; Buczek, Y.; Stewart, J. *Psychopharmacology* **1998**, *137*, 184.
- 21. Whitten, J. P.; Xie, Y. F.; Erickson, P. E.; Webb, T. R.; De Souza, E. B.; Grigoriadis, D. E.; McCarthy, J. R. *J. Med. Chem.* **1996**, *39*, 4354.
- 22. Chen, C.; Dagnino, R.; De Souza, E. B.; Grigoriadis, D. E.; Huang, C. Q.; Kim, K.; Liu, Z.; Moran, T.; Webb, T. R.; Whitten, J. P.; Xie, Y. F.; McCarthy, J. R. *J. Med. Chem.* **1996**, *39*, 4358.
- 23. Gilligan, P. J.; Hartig, P. R.; Robertson, D. W.; Zaczek, R.

Annual Reports in Medicinal Chemistry, Vol. 32 (Robertson, ed.), Academic, CA, 1997, 41.

- 24. Beck, J. P.; Arvanitis, A. G.; Cocuzza, A. J.; Chidester, D. R.; Curry, M. A.; Rescinito, J. T.; Fizgerald, L. W.; Zaczek, R.; Calabrese, J. C. *214th ACS National Meeting* **1997** (7–11 September), Las Vegas, (abstract MEDI094)
- 25. Bakthavatchalam, R.; Arvanitis, A. G.; Gilligan, P. J.; Olson, R. E.; Robertson, D. W.; Trainor, G. L.; Smith, S. C.; Fitzgerald, L. W.; Zaczek, R.; Shen, H.; Christ, D. D. *216th ACS National Meeting* **1998** (23–27 August), Boston, (Abstract MEDI 134).
- 26. Gilligan, P. J.; Baldauf, C.; Cocuzza, A.; Chidester, D.; Fitzgerald, L.; Zaczek, R.; Shen, H. *216th ACS National Meeting* **1998** (23–27 August), Boston, (Abstract MEDI 135).
- 27. Beck, J. P.; Curry, M. A.; Folmer, B. K.; Gilligan, P. J.; Robertson, D. W.; Fitzgerald, L. W.; Zaczek, R.; Calabrese, J. C. 216th ACS National Meeting **1998** (23–27 August), Boston, (Abstract MEDI 136)
- 28. Arvanitis, A. G.; Gilligan, P. J.; Chorvart, R. J.; Cheeseman, R. S.; Christos, T. E.; Bakthavatchalam, R.; Beck, J. P.; Cocuzza, A. J.; Hobbs, F. W.; Wilde, R. G.; Arnold, C.; Chidester, D.; Curry, M.; He, L.; Hollis, A.; Klaczkiewicz, J.; Krenitsky, P. J.; Rescinito, J. P.; Scholfield, E.; Culp, S.; De Souza, E. B.; Fitzgerald, L.; Grigoriadis, D.; Tam, S. W.; Wong, Y. N.; Huang, S.-M.; Shen, H. L. J. Med. Chem. **1999**, *42*, 805.
- 29. Hodge, C. N.; Aldrich, P. E.; Wasserman, Z. R.; Fernandez, C. H.; Nemeth, G. A.; Arvanitis, A.; Chorvart, R. J.; Cheeseman, R. S.; Christos, T. E.; Scholfield, E.; Krenitsky, P.; Gilligan, P. J.; Ciganek, E.; Strucely, P. J. Med. Chem. **1999**, 42, 819.
- 30. Chorvat, R. J.; Bakthavatchalam, R.; Beck, J. P.; Gilligan, P. J.; Wilde, R. G.; Cocuzza, A.; Hobbs, F. W.; Cheeseman, R. S.; Curry, M.; Rescinito, J. P.; Krenitsky, P.; Chidester, D.; Yarem, J.; Klackewicz, J. D.; Hodge, C. N.; Aldrich, P. E.; Wasserman, Z. R.; Fernandez, C. H.; Zaczek, R.; Fitzgerald, L.; Huang, S.-M.; Shen, H. L.; Wong, Y. N.; Chien, B. M.; Quon, C. Y.; Arvanitis, A. J. Med. Chem. **1999**, *42*, 833.
- 31. De Souza, E. B. J. Neurosci. 1985, 5, 3189.
- 32. Grigoriadis, D. E.; Liu, X. J.; Vaughn, J.; Palmer, S. F.; True, C. D.; Vale, W. W.; Ling, N.; De Souza, E. B. *Mol. Pharmacol.* **1996**, *50*, 679.
- 33. Chaki, S.; Okuyama, S.; Nakazato, A.; Kumagai, T.; Okubo, T.; Ikeda, Y.; Oshida, Y.; Hamajima, Y.; Tomisawa, K. *Eur. J. Pharmacol.* **1999**, *371*, 205.
- 34. Okuyama, S.; Chaki, S.; Kawasima, N.; Suzuki, Y.; Ogawa, S.; Nakazato, A.; Kumagai, T.; Okubo, T.; Tomisawa, K. J. P. E. T. **1999**, 289, 926.
- 35. Bradford, M. M. Anal. Biochem. 1976, 72, 248.