June 1992 SYNTHESIS 533

A Facile and Convenient Synthetic Method for N- β -Trifluoroacetylvinyl Amino Acid Esters, α -Aminoacetophenones and Aminoacetonitriles as Potentially Useful Precursors of Fluorine-Containing Pyrroles

Etsuji Okada, Ryoichi Masuda, Masaru Hojo,* Ryohei Inoue Department of Industrial Chemistry, Faculty of Engineering, Kobe University, Kobe 657, Japan

Received 15 July 1991; revised 24 September 1991

N-(4,4,4-Trifluoro-3-oxo-1-butenyl) amino acid esters, α -aminoace-tophenones and aminoacetonitriles 3 and 4 are easily obtained in excellent yields by O-N exchange reaction of 4-alkoxy-1,1,1-trifluoro-3-alken-2-ones 1 and 2 with some amino acid esters, α -aminoacetophenone and aminoacetonitrile. Cyclodehydration of some resultant products into fluorine-containing pyrroles is also described.

In the course of our extensive investigations on the nucleophilic substitutions at olefinic carbon atoms, 1-4 it was found that 4-alkoxy-1,1,1-trifluoro-3-alken-2-ones 1 and 2 readily undergo O-N exchange reactions with various amines to give the corresponding (4,4,4-trifluoro-3-oxo-1-butenyl)amines in high yield. As an extension of this work we have studied the synthesis of the title compounds 3 and 4 by nucleophilic substitution of 1 and 2 with various amino acid esters, α-aminoacetophenone and aminoacetonitrile. In recent years much attention has been paid to the development of new methods for the synthesis of fluorine-containing heterocycles because of their importance in medicinal and agricultural scientific fields. 5-7 Utility of pyrrole synthesis for nonfluorinated $N-\beta$ -acylvinyl amino acids, α -aminoacetophenones and aminoacetonitriles is now recognized and several synthetic methods have been described in the literature.8-12 Possibly, these new compounds 3 and 4 can serve as useful precursors of pyrroles and 4,5-dihydropyrroles bearing a trifluoromethyl group, which may be expected to show interesting biological activities.

Nucleophilic O-N exchange reaction of 4-ethoxy-1,1,1-trifluoro-3-buten-2-one (1), which can be easily prepared¹³ by trifluoroacetylation of ethyl vinyl ether, with hydrochlorides of amino acid esters occurred readily at room temperature. In the presence of triethylamine in acetonitrile for 4 hours, the reaction afforded N-(4,4,4-trifluoro-3-oxo-1-butenyl) amino acid esters 3a-d in 71-95% yield. Very recently, Gerus and co-workers reported about the use of the β -trifluoroacetylvinyl group as a N-protective group of amino acids, 14 as an application of our O-N exchange reaction.² The hydrochlorides of α-aminoacetophenone and aminoacetonitrile also reacted cleanly to yield the corresponding N-(4,4,4-trifluoro-3-oxo-1-butenyl) compounds 3e and 3f in 100 % and 88 % yield, respectively. This type of substitution was successfully extended to 1,1,1-trifluoro-4-methoxy-3-penten-2-one (2), synthesized from 2,2-dimethoxypropane and trifluoroacetic anhydride, 15 to give the expected O-N exchanged products 4a-f in 72-100% yield.

The stereochemistry of products 3 and 4 was confirmed by 1 H NMR spectra. The small magnitude of the coupling constant (7 Hz) for the olefinic protons and/or the much deshielded peak ($\delta = 9.40-12.13$) of amino protons by

hydrogen bonding between NH and C=0 show the cis and Z configurations.

đ

CO₂Et

COPh

CN

Ph

Н

Η

CO₂Et

CO₂Et

CO₂Me

Η

CH2CH2SMe

a

b

c

The compound 4e derived from α -aminoacetophenone could be converted into pyrrole 5 in 92 % yield by heating at reflux temperature for 8 hours in mesitylene. The ¹³C NMR spectrum obtained for 5 showed two diagnostic signals, which enabled discrimination between 2-acylpyr-

534 Short Papers SYNTHESIS

Table. Compounds 3-5, 8, 9 Prepared

Prod- uct	Yield ^a (%)	mp (°C) (solvent) or bp (°C)/mbar ^b	Molecular Formula ^c	IR (KBr) ^d ν (cm ⁻¹)	¹ H NMR (CDCl ₃ /TMS) ^e δ , J (Hz)
3a	71	105-106 (hexane/CHCl ₃)	C ₈ H ₁₀ F ₃ NO ₃ (225.2)	3210, 1748, 1662, 1608	1.28 (t, 3H, $J = 7$, CH ₃), 3.97–4.37 (m, 4H, CH ₂ CH ₃ , NCH ₂), 5.36 (d, 1H, $J = 7$, =CHCO), 6.96 (dd, 1H, $J = 7$, 14, NCH=), 9.40–10.44 (br, 1H, NH)
3b	88	120/5	C ₉ H ₁₂ F ₃ NO ₃ (239.2)	3255, 1746, 1650, 1590 ^f	1.28 (t, 3 H, $J = 7$, CH ₂ CH ₃), 1.55 (d, 3 H, $J = 7$, CHCH ₃), 3.76–4.41 (m, 3 H, CH ₂ CH ₃ , CHN), 5.42 (d, 1 H, $J = 7$, =CHCO), 7.20 (dd, 1 H, $J = 7$, 14, NCH=), 9.81–10.80 (br, 1 H, NH)
3c	94	155/4	C ₁₀ H ₁₄ F ₃ NO ₃ S (285.3)	3279, 1771, 1672, 1609 ^f	2.06–2.27 (m, 5H, SCH ₃ , SCH ₂ CH ₂), 2.43–2.67 (m, 2H, SCH ₂ CH ₂), 3.72 (s, 3H, OCH ₃), 4.04–4.40 (m, 1H, CHN), 5.34 (d, 1H, $J=7$, =CHCO), 7.05 (dd, 1H, $J=7$, 13, NCH=), 9.70–10.39 (br, 1H, NH)
3d	95	140/6	$C_{14}H_{14}F_3NO_3$ (301.3)	3300, 1771, 1680, 1611 ^f	1.18 (t, 3 H, $J = 7$, CH ₃), 4.16 (q, 2 H, $J = 7$, CH ₂), 5.09 (d, 1 H, $J = 6$, CHN), 5.36 (d, 1 H, $J = 7$, =CHCO), 7.00 (dd, 1 H, $J = 7$, 13, NCH=), 7.27 (s, 5 H _{arom}), 10.47–11.20 (br, 1 H, NH)
3e	100	138-139 (hexane/benzene)	$C_{12}H_{10}F_3NO_2$ (257.2)	3300, 1708, 1671, 1609	4.88 (d, 2 H, $J = 6$, CH ₂), 5.41 (d, 1 H, $J = 7$, =CHCO), 7.05-8.12 (m, 6H, 5 H _{arom} , NCH=), 9.95-10.72 (br, 1 H, NH) ^g
3f	88	84-85 (hexane/benzene)	$C_6H_5\hat{F}_3N_2O$ (178.1)	3263, 2270, 1663, 1618	4.22 (d, $2H$, $J = 6$, CH_2), 5.49 (d, $1H$, $J = 7$, =CHCO), 7.02 (dd, $1H$, $J = 7$, 13, NCH=), 9.66-10.69 (br, $1H$, NH)
4a	72	126-127 (hexane/CHCl ₃)	$C_9H_{12}F_3NO_3$ (239.2)	3180, 1740, 1617, 1589	1.30 (t, 3 H, J = 7, CH ₂ CH ₃), 2.05 (s, 3 H, CH ₃), 3.77 – 4.46 (m, 4 H, NCH ₂ CO ₂ CH ₂ CH ₃), 5.35 (s, 1 H, =CH), 10.63 – 11.63 (br, 1 H, NH)
4b	98	130/4	$C_{10}H_{14}F_3NO_3$ (253.2)	3210, 1744, 1620, 1588 ^f	1.27 (t, 3 H, J = 7, CH ₂ C \underline{H} ₃), 1.51 (d, 3 H, J = 7, CHCH ₃), 2.05 (s, 3 H, CH ₃ C=), 3.96 – 4.53 (m, 3 H, C \underline{H} CH ₃ , C \underline{H} ₂ CH ₃), 5.20 (s, 1 H, =CH), 10.90 – 11.44 (br, 1 H, NH) ^h
4c	93	160/6	C ₁₁ H ₁₆ F ₃ NO ₃ S (299.3)	3210, 1750, 1622, 1591 ^f	2.06-2.37 (m, 8 H, SCH ₃ , CH ₃ C=, SCH ₂ CH ₂), 2.43-2.70 (m, 2 H, SCH ₂ CH ₂), 3.72 (s, 3 H, OCH ₃), 4.31-4.67 (m, 1 H, CHN), 5.30 (s, 1 H, =CH), 10.90-11.47 (br, 1 H, NH)
4d	99	200/4	$C_{15}H_{16}F_3NO_3$ (315.3)	3170, 1766, 1643, 1594 ^f	1.20 (t, 3H, $J = 7$, CH ₂ CH ₃), 1.95 (s, 3H, CH ₃ C=), 4.19 (q, 2H, $J = 7$, CH ₂ CH ₃), 5.27 (d, 1H, $J = 7$, CHN), 5.38 (s, 1H, =CH), 7.35 (s, 5H _{arom}), 11.62–12.13 (br, 1H, NH)
4e	100	165-166 (hexane/CHCl ₃)	$C_{13}H_{12}F_3NO_2$ (271.2)	3225, 1704, 1629, 1601	2.09 (s, 3H, CH ₃), 4.78 (d, 2H, J = 5, CH ₂), 5.37 (s, 1H, =CH), 7.28-8.07 (m, 5H _{arom}), 11.22-11.81 (br, 1H, NH)
4f	89	88-89 (hexane/benzene)	$C_7H_7F_3N_2O$ (192.1)	3195, 2250, 1620, 1595	2.21 (s, 3H, CH ₃), 4.23 (d, 2H, $J=7$, CH ₂), 5.45 (s, 1H, =CH), 10.50–11.41 (br, 1H, NH)
5	92	101-102 (pentane)	$C_{13}H_{10}F_3NO$ (253.2)	3306, 1617	2.25 (s, 3H, CH ₃), 6.19 (d, 1H, $J = 2$, H-4), 7.13-7.65 (m, 5H _{arom}), 9.89-10.62 (br, 1H, NH)
8	100	55/5	C ₉ H ₁₄ F ₃ NO ₃ (241.2)	3210, 1622, 1590 ^f	2.07 (s, 3 H, CH ₃ C=), 3.38-3.52 (m, 8 H, OCH ₃ , NCH ₂), 4.42 (t, 1 H, $J = 5$, NCH ₂ CH), 5.25 (s, 1 H, =CH), 10.73-11.38 (br, 1 H, NH)
9	100	108-109 (hexane/CHCl ₃)	$C_7H_6F_3NO$ (177.1)	3330, 1650	2.58 (s, 3H, CH ₃), 6.56-6.64 (m, 2H, H-4, -5), 8.35-10.28 (br, 1H, NH)

^a Yield of isolated products.

role 5 and its possible 3-acyl isomer 6. The carbonyl carbon of the benzoyl group was observed at $\delta=186.7$ (s) and the pyrrole-ring carbon (C-3) bearing the trifluoromethyl group appeared at $\delta=120.5$ (q, $J_{\rm CF}=36.6$ Hz). It seems of much interest to note that the present cyclization proceeds regiospecifically to give exclusively 2-acylpyrrole 5 without any formation of the regioisomer 6, in striking contrast to the reported case of nonfluorinated compound 7 (at reflux temperature for 4 hours in mesitylene), which gave a mixture of 5 (CH₃ in place of CF₃) and 6 (CH₃ in place of CF₃) (ratio, 44:56). According to this two-step process, a combination of O-N exchange and cyclodehydration, 2-methyl-3-trifluoroacetylpyrrole (9) was also synthesized regioselecti-

vely and quantitatively without any formation of its 2-formyl isomer 10 via intermediate 8 from β -acylvinyl ether 2 and aminoacetaldehyde dimethyl acetal.

In summary, the present method provides a facile and convenient access to N-(4,4,4-trifluoro-3-oxo-1-butenyl) amino acid esters, α -aminoacetophenones and aminoacetonitriles 3 and 4, which are potentially useful precursors of fluorine-containing pyrroles and 4,5-dihydropyrroles.

N-(4,4,4-Trifluoro-3-oxo-1-butenyl) Amino Acid Esters, α -Aminoacetophenones and Aminoacetonitriles 3 and 4; General Procedure: To a suspension of 1^{13} or 2^{15} (10 mmol) and hydrochlorides of amino acid ester, α -aminoacetophenone or aminoacetonitrile (10 mmol) in MeCN (40 mL) was added Et₃N (10 mmol), and the

^b Oven temperature of Kugelrohr distillation.

[°] Satisfactory microanalyses obtained: C \pm 0.29, H \pm 0.14, N \pm 0.27, F \pm 0.30; exception: **3a**, F + 0.48: **4e**, C - 0.41: **8**, C - 0.43; **3c**, **d**, **4a**-**d**, F not analyzed.

Recorded on a Hitachi Model EPI-G3 grating spectrophotometer.

Measured using a JEOL PMX-60SI spectrometer.

f Measured as film.

⁸ In CD₃CN/CDCl₃.

h In CCl₄.

June 1992 SYNTHESIS 535

mixture was stirred at r.t. for 4 h. Most of the solvent was evaporated and CH₂Cl₂ (200 mL) was then added. The whole mixture was washed with 1 N HCl (200 mL) and H₂O (200 mL), and the organic layer was separated and dried (Na₂SO₄). After removal of the solvent pure product 3 or 4 was obtained (Table).

2-Benzoyl-5-methyl-3-trifluoromethylpyrrole (5):

A solution of 4e (2.712 g, 10 mmol) in mesitylene (40 mL) was refluxed for 8 h with stirring. The solvent was removed in vacuo to afford 5; yield: 2.329 g (92%).

 $^{13}\mathrm{C}$ NMR (CDCl₃/TMS): $\delta=12.6$ (q), 109.8 (q, $J_{\mathrm{CF}}=4.9$ Hz), 120.5 (q, $J_{\mathrm{CF}}=36.6$ Hz), 123.0 (q, $J_{\mathrm{CF}}=267.3$ Hz), 127.2 (s), 128.2 (d), 128.9 (d), 132.4 (d), 134.7 (s), 138.8 (s), 186.7 (s).

4-(2,2-Dimethoxyethylamino)-1,1,1-trifluoro-3-penten-2-one (8):

To a solution of 2 (1.681 g, 10 mmol) in MeCN (40 mL) was added aminoacetaldehyde dimethyl acetal (1104 mg, 10.5 mmol). The mixture was stirred at r.t. for 4 h and the solvent was removed in vacuo to give practically pure product 8; yield: 2.410 g (100%).

2-Methyl-3-trifluoroacetylpyrrole (9):

A solution of 8 (965 mg, 4 mmol) in $CF_3CO_2H (4 \text{ mL})$ was stirred at r.t. for 4 h and evaporated in vacuo to afford 9; yield: 705 mg (100 %).

¹³C NMR (CDCl₃/TMS): $\delta = 176.6$ (q, $J_{\rm CF} = 34.3$ Hz),142.2 (s), 117.7 (d), 117.4 (q, $J_{\rm CF} = 290.5$ Hz), 113.6 (s), 111.0 (d), 14.2 (q).

(1) Kamitori, Y.; Hojo, M.; Masuda, R.; Fujitani, T.; Kobuchi, T.; Nishigaki, T. Synthesis 1986, 340.

- (2) Hojo, M.; Masuda, R.; Okada, E.; Sakaguchi, S.; Narumiya, H.; Morimoto, K. Tetrahedron Lett. 1989, 30, 6173.
- (3) Hojo, M.; Masuda, R.; Okada, E.; Yamamoto, H.; Morimoto, K.; Okada, K. Synthesis 1990, 195.
- (4) Hojo, M.; Masuda, R.; Okada, E. Chem. Lett. 1990, 2095.
- (5) Filler, R. In Organofluorine Chemicals and Their Industrial Applications; Banks, R. E. Ed.; Ellis Horwood: London, 1979; p 123.
- (6) Biomedicinal Aspect of Fluorine Chemistry; Filler, R., Kobayashi, Y. Eds.; Kodansha & Elsevier Biomedical: Tokyo, 1982; p 1.
- (7) Welch, J. T. Tetrahedron 1987, 43, 3123.
- (8) Cohnen, E.; Dewald, R. Synthesis 1987, 566.
- (9) Walizei, G. H.; Breitmaier, E. Synthesis 1989, 337.
- (10) Alberola, A.; Andres, J.M.; Gonzaleg, A.; Pedrosa, R.; Vicente, M. Heterocycles 1989, 29, 1973.
- (11) Hombrecher, H.K.; Horter, G. Synthesis 1990, 389.
- (12) Alberola, A.; Andres, J.M.; Gonzaleg, A.; Pedrosa, R.; Vincente, M. Heterocycles 1990, 31, 1049. Alberola, A.; Andres, J.M.; Gonzaleg, A.; Pedrosa, R.; Vincente, M. J. Chem. Soc., Perkin Trans. 1 1990, 2681.
- (13) Hojo, M.; Masuda, R.; Kokuryo, Y.; Shioda, H.; Matsuo, S. *Chem. Lett.* **1976**, 499.
- (14) Gorbunova, M. G.; Gerus, I.I.; Galushko, S. V.; Kukhar, V.P. Synthesis 1991, 207.
- (15) Hojo, M.; Masuda, R.; Okada, E. Synthesis 1986, 1013.