Activated Lactams: A One-Step Synthesis of Azacycloalka[2,3-d]pyrimidine Derivatives using Ketene-S, N-acetals

Hiroki Takahata, Akira Tomiguchi, Masaharu Nakano, Takao Yamazaki*

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-01, Japan

As a continuation of our study on reactions with activated lactams¹, we now report a one-step synthesis of some 1,3-diaryl-2,4-dioxo-N-methylazacycloalka[2,3-d]pyrimidines (5a-d, 6a-d, 7a-d) by the reaction of ketene-S,N-acetals (1, 2, 3)² derived from N-methyl-thiolactams with aryl isocyanates (4a-d). The addition of two equivalents of 4a-d to 1, 2, 3 in boiling toluene gave 1,3-diaryl-2,4-dioxo-7-methyl-1,2,3,4,5,6-hexahydro-7H-pyrrolo[2,3-d]pyrimidines (5a-d), 1,3-diaryl-2,4-dioxo-8-methyl-1,2,3,4,5,6,7,8-octahydropyrido[2,3-d]pyrimidines (6a-d), and 1,3-diaryl-2,4-dioxo-9-methyl-1,2,3,4,5,6,7,8-octahydro-9H-pyrimido[4,5-b]azepines (7a-d), respectively. Compounds 5, 6, and 7 are of biological interest.

$$(H_{2}C)_{n}$$

$$SCH_{3}$$

$$CH_{3}$$

$$+ Ar-N=C=0$$

$$CH_{3}A_{r}$$

$$1_{n=1}$$

$$2_{n=2}$$

$$3_{n=3}$$

$$b_{Ar} = H_{3}C$$

$$C_{4}$$

$$C_{7} = CI$$

$$C_{7}$$

$$C_{8}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{4}$$

$$C_{1}$$

$$C_{4}$$

$$C_{4}$$

$$C_{4}$$

$$C_{4}$$

$$C_{5}$$

$$C_{5}$$

$$C_{7}$$

$$C_$$

The structures assigned to compounds 5, 6, and 7 were unambiguously confirmed by the mass-, I.R.-, U.V.-, and ¹H-N.M.R.-spectral data.

1,3-Diaryl-2,4-dioxo-N-methylazacycloalka[2,3-d]pyrimidines (5, 6, 7); General Procedure:

To a solution of the aryl isocyanate 4 (4 mmol) in toluene (20 ml) is added the semicyclic ketene S.N-acetal 1, 2, or 3 (2 mmol) and the mixture is refluxed for 15 h with stirring. The solvent is evaporated and the resultant oil is crystallized from diisopropyl ether to afford a solid. Recrystallization of the solid from dichloromethane/diisopropyl ether gives 5, 6, or 7, respectively.

0039-7881/82/0232-0156 \$ 03.00

Table. 1,3-Diaryl-2,4-dioxo-7-methyl-1,2,3,4,5,6-hexahydro-7*H*-pyrrolo[2,3-*d*]pyrimidines **(5),** 1,3-Diaryl-2,4-dioxo-8-methyl-1,2,3,4,5,6,7,8-octahydropyrido[2,3-*d*]pyrimidines **(6),** and 1,3-Diaryl-2,4-dioxo-9-methyl-1,2,3,4,5,6,7,8-octahydro-9*H*-pyrimido[4,5-*b*]azepines **(7)**

Prod- uct	Yield [%]	m.p. [°C]	Molecular ^{a, b} formula	I.R. (nujol) v [cm ⁻¹]	U.V. (ethanol) λ_{max} [nm] (log ε)	¹ H-N.M.R. (CD N—CH ₃	Cl ₃ /TMS) δ [ppm] Ar—CH ₃
5a	43	234-235°	C ₁₉ H ₁₇ N ₃ O ₂ (319.4)	1690, 1650, 1590	301 (9.44)	2.17 (s, 3 H)	
5b	46	218-220°	$C_{21}H_{21}N_3O_2$ (347.4)	1700, 1660, 1600	300 (10.1)	2.13 (s, 3 H)	2.33 (s, 3H); 2.40 (s, 3H)
5c	36	220-221°	$C_{19}H_{15}Cl_2N_3O_2^c$ (388.2)	1700, 1660, 1580	302 (9.81) 221 (9.98)	2.17 (s, 3 H)	,
5d	32	229-231°	$C_{19}H_{15}Br_2N_3O_2^d$ (477.2)	1700, 1660, 1590	303 (9.80) 226 (10.0)	2.20 (s, 3 H)	
6a	67	215-218°	$C_{20}H_{19}N_3O_2$ (333.4)	1700, 1640, 1605	298 (9.66)	2.32 (s, 3 H)	
6b	67	211-213°	$C_{22}H_{23}N_3O_2$ (361.4)	1705, 1645, 1610	298 (9.74)	2.27 (s, 3 H)	2.35 (s, 6 H)
6c	62	200203°	$C_{20}H_{17}CI_2N_3O_2$ (402.3)	1705, 1640, 1605	298 (9.58) 223 (9.92)	2.33 (s, 3 H)	
6d	78	214-216°	$C_{20}H_{17}Br_2N_3O_2$ (491.2)	1700, 1640, 1600	298 (9.70) 227 (10.0)	2.30 (s, 3 H)	
7a	62	273-276°	$C_{21}H_{21}N_3O_2$ (347.4)	1700, 1650, 1610	306 (9.25)	2.27 (s, 3 H)	
7b	71	222-223°	$C_{23}H_{25}N_3O_2$ (373.5)	1705, 1650, 1620	304 (9.69)	2.23 (s, 3 H)	2.40 (s, 6H)
7c	70	227-229°	$C_{21}H_{19}Cl_2N_3O_2$ (416.3)	1700, 1650, 1610	305 (9.53) 224 (9.90)	2.30 (s, 3 H)	
7 d	54	206-209°	$C_{21}H_{19}Br_2N_3O_2$ (505.2)	1700, 1640, 1605	306 (9.58) 227 (10.0)	2.23 (s, 3 H)	

The microanalyses were in good agreement with the calculated values: C, ±0.28; H, ±0.11; N, ±0.50, except if noted otherwise.

Received: June 23, 1981

^b The mass spectra of all products showed m/e: M^+ , $(M-ArN-CO)^+$.

^c The high-resolution mass spectrum of 5c proved the assigned structure. Exact mass calculated for C₁₉H₁₅Cl₂N₃O₂: 387.0540, 389.0513, 391.0481; found: 387.0494, 389.0561, 391.0547.

^d The high mass spectrum of **5d** proved the assigned structure. Exact mass calculated for C₁₉H₁₅Br₂N₃O₂: 474.9530, 476.9513, 478.9492; found: 474.9504, 476.9545, 478.9579.

^{*} Address for correspondence.

H. Takahata, A. Tomiguchi, T. Yamazaki, Heterocycles 16, 1569 (1981).

² R. Gompper, W. Elser, Justus Liebigs Ann. Chem. 725, 64 (1969).