Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Enantioselective synthesis of decarestrictine J

Partha Sarathi Chowdhury, Priti Gupta, Pradeep Kumar*

Organic Chemistry Division, National Chemical Laboratory, Pune 411 008, India

ARTICLE INFO

ABSTRACT

Article history: Received 19 August 2009 Revised 6 October 2009 Accepted 8 October 2009 Available online 13 October 2009

Keywords: Decanolides

Hydrolytic kinetic resolution Yamaguchi esterification Ring-closing metathesis Epoxides

1. Introduction

Decanolides have attracted considerable attention over the last few years¹ of which an important class of compounds is the decarestrictine family. The decarestrictines are secondary metabolites that were isolated from various Penicillium strains and identified as bioactive compounds by chemical screening²⁻⁴ (Fig. 1). Decarestrictine J,⁴ a 10-membered lactone, has been isolated as a minor component of the decarestrictine family^{2,3} from a culture broth of Penicillium simplicissimum and was shown to inhibit the biosynthesis of cholesterol. The absolute stereochemistry of decarestrictine J itself has not been reported. However, because it coexisted with decarestrictine B, whose absolute configuration had been determined by an X-ray analysis, Yamada et al.⁵ suggested (7R,9R)-stereochemistry for natural (-)-decarestrictine J. Only one total synthesis of the proposed structure of (-)-decarestrictine [(1a) has been reported in the literature using a Sharpless asymmetric epoxidation and samarium(II) iodide-promoted Reformatsky reaction as the key steps.⁵

As a part of our research programme aimed at developing enantioselective synthesis of biologically active natural products based on hydrolytic kinetic resolution (HKR),⁶ we became interested in devising a simple and concise route to decarestrictine J. Herein we report our successful endeavours towards the total synthesis of **1a** employing HKR,⁷ Yamaguchi esterification⁸ and ring-closing metathesis (RCM)⁹ as the key steps.

The HKR method involves the readily accessible cobalt-based chiral salen complex as catalyst and water to resolve a racemic

An efficient total synthesis of decarestrictine J has been achieved using ring-closing metathesis and Yamaguchi esterification as key steps. The stereogenic centres were generated by means of iterative hydrolytic kinetic resolution (HKR) of racemic epoxides.

© 2009 Elsevier Ltd. All rights reserved.

epoxide into an enantiomerically enriched epoxide and diol, which serve as useful precursor in the synthesis of various compounds of biological importance.¹⁰

Our retrosynthetic analysis for the synthesis of decarestrictine J is based on convergent approach as outlined in Scheme 1. We envisioned that the ring-closing could be effected by ring-closing metathesis of diene **17**. Diene **17** could be prepared by intermolecular Yamaguchi esterification of the alcohol **10** and acid **16**. Alcohol **10** could be obtained from *rac*-propylene oxide (**2**) via iterative HKR, while acid fragment **16** could be prepared from 1,3-propane diol (**11**).

2. Synthesis of alcohol fragment 10

As shown in Scheme 2, synthesis of alcohol fragment **10** started with a Jacobsen's hydrolytic kinetic resolution of *rac*-epoxide **2**

Figure 1. Examples of 10-membered lactones.

^{*} Corresponding author. Tel.: +91 20 25902050; fax: +91 20 25902629. *E-mail address:* pk.tripathi@ncl.res.in (P. Kumar).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.10.035

Scheme 1. Retrosynthetic analysis of decarestrictine J.

Scheme 2. Reagents and conditions: (a) (*R*,*R*)-salen-Co-(OAc)(0.5 mol %), dist. H₂O (0.55 equiv), 0 °C, 14 h, (45% for (*R*)-2, 43% for 3); (b) vinyImagnesium bromide THF, Cul, -20 °C, 90%, 12 h; (c) TBDMSCI, imidazole, CH₂Cl₂, 4 h, 0 °C to rt, 95%; (d) *m*-CPBA, CH₂Cl₂, 0 °C to rt, 93%, 2 h; (e) (*S*,*S*)-salen-Co-(OAc) (0.5 mol %), dist. H₂O (0.55 equiv), 0 °C, 20 h, (70% for **7**, 22% for **8**); (f) (i) PivCl, Et₃N, cat. DMAP, rt, 2 h; (ii) MsCl, Et₃N, DMAP, 0 °C to rt, 1 h; (g) K₂CO₃, MeOH, rt, overnight (61% for three steps); (h) (CH₃)₃SI, 2 h, *n*-BuLi, THF, 70%; (i) (i) DIPEA, MEMCl, CH₂Cl₂, 0 °C to rt, 8 h; (ii) TBAF, THF, 0 °C to rt, 5 h, 80% from two steps.

using (*R*,*R*)-salen-Co-(OAc) catalyst to give epoxide (*R*)-**2** as a single isomer which was easily isolated from diol **3** by distillation.^{7b}

Epoxide (R)-2 was treated with vinylmagnesium bromide in the presence of cuprous iodide to give homoallylic alcohol 4 in 90% yield.^{6e} Protection of the hydroxy group of **4** as a TBDMS ether followed by epoxidation with *m*-CPBA afforded epoxide 6. The epoxide thus obtained was found to be a mixture of two diastereomers (anti:syn/3:1). In order to improve the diastereoselectivity, we attempted the hydrolytic kinetic resolution (HKR) method as depicted in Scheme 2. Thus, the HKR was performed on epoxide 6 with (S,S)-salen-Co-(OAc) complex (0.5 mol %) and water (0.55 equiv) in THF (0.55 equiv) to afford the diastereomerically pure epoxide 7 in 70% yield (>95% ee) and diol 8 in 22% yield. As the HKR method provided the desired epoxide 7 along with unwanted diol **8**, we thought that it would be appropriate to convert diol 8 into the required epoxide 7 via internal nucleophilic substitution of a secondary mesylate.¹¹ Accordingly chemoselective pivalation of diol 8 with pivaloyl chloride followed by mesylation of the secondary hydroxyl and treatment of the crude mesylate with K₂CO₃ in methanol led to the deprotection of the pivalate ester. Concomitant ring closure via intramolecular S_N2 displacement of the mesylate furnished the epoxide **7** in 61% overall yield. Epoxide **7** on reaction with dimethylsulfonium methylide¹² afforded one-carbon homologated allylic alcohol **9** in 70% yield, which was protected as its MEM ether followed by TBDMS removal to furnish the alcohol fragment **10** in 80% yield (Scheme 2). It may be noted that the alcohol fragment **10** could be synthesised in eight steps employing iterative HKR method, while our previous method involving Sharpless asymmetric dihydroxylation required three additional steps to prepare the same alcohol fragment.^{6h}

3. Synthesis of acid fragment

As shown in Scheme 3, synthesis of acid fragment **16** started from 1,3-propanediol (**11**). Selective monoprotection of hydroxy group with *p*-methoxybenzyl bromide (PMBBr) in the presence of NaH afforded compound **12** in 89% yield, which was subjected to Swern oxidation¹³ followed by the reaction of the resulting aldehyde with allylmagnesium bromide to furnish the homoallyllic alcohol **13** in 80% yield.

Protection of the hydroxy group of **13** as its TBDMS ether followed by removal of the PMB group¹⁴ by DDQ resulted in the primary alcohol **15** with 94% yield. The alcohol **15** was oxidised to the aldehyde using 2-iodoxybenzoic acid (IBX) followed by subsequent oxidation using NaClO₂ to give the required acid fragment **16**¹⁵ in 80% yield.

4. Coupling of acid and alcohol fragments

With substantial amount of both the fragments in hand the coupling of alcohol **10** and acid **16** was achieved by using the

Scheme 3. Reagents and conditions: (a) PMBBr, NaH, THF, 0 °C to rt, 5 h, 89%; (b) (i) (COCl)₂, DMSO, -78 °C to -60 °C, Et₃N, CH₂Cl₂; (ii) allylmagnesium bromide, THF, 80%; (c) TBDMSCl, imidazole, CH₂Cl₂, 0 °C to rt, 90%; (d) DDQ, CH₂Cl₂/H₂O (1:1), rt, 1 h, 94%; (e) (i) IBX, EtOAc, reflux; (ii) NaClO₂, NaH₂PO₄, DMSO, overnight, 80% from two steps.

Scheme 4. Reagents and conditions: (a) 2,4,6-trichlorobenzoyl chloride, DMAP, Et₃N, THF, 0 °C-rt, 20 h, 89%; (b) TBAF, THF, 6 h, 75%; (c) (PCy₃)₂ Ru(Cl)₂ = CH-Ph (20 mol %), CH₂Cl₂, reflux, 14 h, 82%; (d) 10% Pd/C, H₂ (balloon), ethanol, rt, 90%, 2 h; (e) DMP, CH₂Cl₂, rt, 80%, 1 h; (f) TiCl₄, CH₂Cl₂, 0 °C-rt, 30 min, 78%.

intermolecular Yamaguchi esterification protocol to afford the diene ester 17¹⁵ in 89% yield. Ring-closing metathesis of 17 under various conditions using Grubbs' 1st and 2nd generation catalysts failed to provide the required 10-membered lactone 18. In order to circumvent the problem, we thought that it would be appropriate to first remove the TBDMS group and then use the ring-closing metathesis for macrocyclisation. Thus the TBDMS group of diene 17 was removed to give the alcohol 19 which on ring-closing metathesis by using Grubbs 1st generation catalyst furnished the cyclised product **20** as a mixture of E/Z isomers in 82% yield. Compound 20 was subjected to hydrogenation using 10% Pd/C to give 21¹⁵ in 90% yield, which was oxidised using Dess-Martin periodinane (DMP) to afford compound 22 in 80% yield. Finally removal of the MEM group using TiCl₄ afforded the target compound **1a** in 78% yield. $[\alpha]_D^{25} = -152.4$ (*c* 0.1, MeOH) [Ref. 5 $[\alpha]_D^{23} = -154.0$ (*c* 0.1, MeOH)]. The physical and spectroscopic data of **1a** were in full agreement with the literature data (Scheme 4).⁵

In conclusion, a convergent and efficient total synthesis of decarestrictine J with high enantioselectivities has been accomplished in which the stereocentres were generated by means of iterative Jacobsen's hydrolytic kinetic resolution, and cyclisation was achieved by ring-closing metathesis. This approach could be used for the synthesis of other members of decarestrictine family for structure-activity relationship. Currently work is in progress in this direction.

Acknowledgements

P.S.C. and P.G. thank CSIR, New Delhi, for the award of senior research fellowship and research associateship, respectively. Financial support for the project (Grant No. SR/S1/OC-40/2003) from the Department of Science & Technology, New Delhi, is gratefully acknowledged."

References and notes

- 1. (a) Dräger, G.; Kirschning, A.; Thiericke, R.; Zerlin, M. Nat. Prod. Rep. 1996, 13, 365–375; (b) Collins, I. J. Chem. Soc., Perkin Trans. 1 1999, 1377–1395; (c) Longo Júnior, L. S.; Bombonato, F. I.; Ferraz, H. M. C. Quim. Nova 2007, 30, 415-424; (d) Riatto, V. B.; Pilli, R. A.; Victor, M. M. Tetrahedron 2008, 64, 2279-2300.
- 2 Grabley, S.; Granzer, E.; Hütter, K.; Ludwig, D.; Mayer, M.; Thiericke, R.; Till, G.; Wink, J.; Philipps, S.; Zeeck, A. J. Antibiot. **1992**, 45, 56–65. Göhrt, A.; Zeeck, A.; Hütter, K.; Kirsch, R.; Kluge, H.; Thiericke, R. J. Antibiot.
- 3 1992. 45. 66-73
- Grabley, S.; Hammann, P.; Hütter, K.; Kirsch, R.; Kluge, H.; Thiericke, R.; Mayer, 4 M.; Zeeck, A. J. Antibiot. 1992, 45, 1176-1181.
- Yamada, S.; Tanaka, A.; Oritani, T. Biosci., Biotechnol., Biochem. 1995, 59, 1657-5. 1660
- (a) Gupta, P.; Naidu, S. V.; Kumar, P. Tetrahedron Lett. 2004, 45, 849-851; (b) 6. Gupta, P.; Naidu, S. V.; Kumar, P. Tetrahedron Lett. 2005, 46, 6571-6573; (c) Pandey, S. K.; Kumar, P. Tetrahedron Lett. 2005, 46, 6625-6627; (d) Kumar, P.; Naidu, S. V. J. Org. Chem. 2006, 71, 3935-3941; (e) Kumar, P.; Gupta, P.; Naidu, S. V. Chem. Eur. J. 2006, 12, 1397–1402; (f) Pandey, S. K.; Kumar, P. Synlett 2007, 2894-2896; (g) Naidu, S. V.; Kumar, P. Tetrahedron Lett. 2007, 48, 3793-3796; (h) Gupta, P.; Kumar, P. Eur. J. Org. Chem. 2008, 1195-1202; (i) Pandey, S. K.; Pandey, M.; Kumar, P. Tetrahedron Lett. 2008, 49, 3297-3299.
- 7. (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936–938; (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307-1315.
- Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 8. 1979, 52, 1989-1993.
- 9 For reviews on ring-closing metathesis see: (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413-4450; (b) Prunet, J. Angew. Chem., Int. Ed. 2003, 42, 2826-2830.
- 10. For various application of HKR in synthesis of bioactive compounds, see review: (a) Kumar, P.; Naidu, S. V.; Gupta, P. Tetrahedron 2007, 63, 2745-2785; Account (b) Kumar, P.; Gupta, P. Synlett 2009, 1367-1382.
- 11. (a) Nicolaou, K. C.; Webber, S. E. Synthesis 1986, 453-461; (b) Takao, K.; Ochiai, H.; Yoshida, K.; Hashizuka, T.; Koshimura, H.; Tadano, K.; Ogawa, S. J. Org. Chem. 1995, 60, 8179-8193.
- Alcaraz, L.; Harnett, J. J.; Mioskowski, C.; Martel, J. P.; Le Gall, T.; Dong-Soo, S.; 12. Falck, J. R. Tetrahedron Lett. 1994, 35, 5449-5452
- 13. For reviews on the Swern oxidation, see: (a) Tidwell, T. T. Synthesis 1990, 857-870; (b) Tidwell, T. T. Org. React. 1990, 39, 297-572.
- 14. Ulrike, K.; Schmidt, R. R. Synthesis 1985, 1060-1061.
- Spectral data of 16: IR (CHCl₃): v 3310, 3078, 2856, 1714, 1642, 1515, 1361, 1091, 939, 837, 776 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz): δ 5.82-5.73 (m, 1H), $\begin{array}{l} \text{5.09-5.06 (m, 2H), 4.20-4.16 (m, 1H), 2.53-2.43 (m, 2H), 2.30-2.28 (m, 2H), 0.87 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H); ^{13}\text{C NMR} (\text{CDCl}_3, 50 \text{ MHz}); \delta$ 177.2, 133.7, 118.1, 68.9, 41.9, 41.7, 25.7, 17.9, - 4.5, -4.9; Anal. Calcd for $C_{12}H_{24}O_3Si$ (244.403): C, 58.97; H, 9.90. Found: C, 58.82; H, 10.08. Spectral data of 17: $[\alpha]_{25}^{25} = -36.17$ (c 3.19, CHCl₃), IR (CHCl₃): ν 2926, 2855, 1735, 1647, 1463, 1258, 1096, 837, 759 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz): δ 5.89–5.55 (m, 2H), 5.28-5.05 (m, 4H), 5.02-4.91 (m, 1H), 4.80-4.71 (m, 1H), 4.63-4.56 (m, 1H), 4.24- 4.00 (m, 2H), 3.83-3.67 (m, 1H), 3.65-3.58 (m, 1H), 3.55- 3.46 (m, 2H), 3.35 (s, 3H), 2.48-2.38 (m, 2H), 2.02-1.83 (m, 2H), 1.79-1.69 (m, 2H), 1.18 (d, J = 6.32 Hz, 3H), 0.84 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 50 MHz): δ 173.4, 137.6, 134.2, 127.9, 117.6, 92.7, 74.2, 71.7, 68.7, 67.8, 58.9, 42.1, 41.9, 41.8, 25.7, 20.6, 17.9, -4.6, -4.8; Anal. Calcd for C22H42O6Si (430.651): C, 61.36; H, 9.83. Found: C, 61.19; H, 9.97; Spectral data of 21: $(a_{12}^{25} = -32.92 (c 0.40, CHCl_3), IR (CHCl_3): v 3459, 3015, 2932, 1729, 1462, 1378, 1253, 1179, 1042 cm^{-1}; ¹H NMR (CDCl_3, 200 MHz): <math>\delta$ 5.11–5.02 (m, 1H), 4.75–4.63 (m, 2H), 4.08–3.89 (m, 1H), 3.76–3.66 (m, 2H), 3.63–3.56 (m, 1H), 3.53-3.49 (m, 2H), 3.36 (s, 3H), 2.44-2.35 (m, 2H), 1.88-1.63 (m, 2H), 1.61-1.34 (m, 6H), 1.24 (d, J = 6.19 Hz, 3H); ¹³C NMR (CDCl₃, 50 MHz): δ 172.7, 94.7, 71.7, 68.4, 67.9, 67.3, 59.0, 42.1, 40.4, 36.4, 27.1, 20.6, 9.06; Anal. Calcd for C14H26O6 (290.353): C, 57.91; H, 9.03. Found: C, 57.95; H, 9.19.