UNCATALYZED INSERTION REACTION OF ISOCYANIDES INTO A CARBON-SULFUR BOND

G. MOREL, E. MARCHAND, K.H. NGUYEN THI, A. FOUCAUD

Groupe de Physicochimie Structurale associé au C.N.R.S., Université de Rennes, Campus de Beaulieu, 35042 Rennes, France.

<u>Summary</u> Tert-butylisocyanide and tert-octylisocyanide insert into the carbone-sulfur bond of activated sulfides 2 yielding this $\frac{5}{2}$ which rearrange to enamines $\frac{6}{2}$.

Isocyanides are stable nucleophilic carbenes. They gave insertion reactions into carbon-halogen bonds ^{1,2} or heteroatom-hydrogen bonds ^{1,3}. These last reactions can be catalyzed by groups IB and IIB metals and their salts, by acids or radical initiators ^{1,3}. Some uncatalyzed α -addition reactions to N-S bond ⁴, S-H bond ⁵ and S-Cl bond ⁶ are also known. In the present communication, we wish to report a new uncatalyzed formal insertion of isocyanide C atom into a carbon-sulfur bond activated by two electronegative groups.

Sulfides $\underline{2}$ were prepared by sulfenylation reaction of α -cyanoester anions $\underline{3}$ with N-alkylthio or N-phenylthiosuccinimides ⁷. The reaction of isocyanides $\underline{1}$ (R¹ = tert-Bu, R¹ = tert-BuCH₂CMe₂) with sulfides was carried out without solvent at room temperature (method A) or in refluxing acetonitrile (method B), according to the reactivity of the sulfides $\underline{2}$. The method A allows to isolate most of the thioimidates $\underline{5A}$ with R² given in table I ⁸. Thioimidates $\underline{5A}$, except when R³ = Ph, are unstable in solution. They rearrange at room temperature to give enamines $\underline{6A}$ (two isomers). In other cases (R² = aryl, PhCH₂), the insertion reaction, slow at room temperature, requires a heating (method B) and yields the enamines $\underline{6B}$ only (table II)⁸ Thioimidates $\underline{5}$, precursors of compounds $\underline{6B}$, probably very unstable, were not obtained even through method A.

Table I - Thioimidates 5A and enamines 6A (method A)

R ¹	R ²	r ³	Reaction time (hr) ^a	Thioimic m.p.(°C)	lates <u>5A</u> yıeld(%) ^b	Enar m.p.(°C) ^C	nines <u>6A</u> yield(%)(E+Z) ^b
tert-Bu	Ph ₂ C(C [™])	Me	17	136	40	177	40
tert-Bu	Ph ₂ C(CN)	Ph	112	130	84	-	d
tert-Bu	Ph ₂ C(CN)	PhCH ₂	18	145	75	192	6
tert-Oct	Ph ₂ C(CN)	Me	48	108	37	158, 128 ^e	50
tert-Bu		Me	113	f	-	228	82
tert-Bu	(PhCH ₂) ₂ C(CN)	Me	66	f	-	156, 125 ^e	60
tert-Bu	Ph(Me)C(CN)	Me	114	94 ⁶⁶	45	165	10
tert-Oct	Ph(Et)C(CN)	Me	72	125 ⁸	36	118	10
					_		

a - Reaction time corresponding to the complete conversion of the starting product 2 in the presence of 3 equiv. of isocyanide. Yields of 5A were optimized. b - Isolated product yield. c - One purified isomer (E or Z). d - The rearrangement $5 \rightarrow 6$ was not observed. e - Two purified isomers. f - Observed by NMR. A pure compound was not obtained. g - Only one diastereoisomer was observed.

R ¹	R ²	R ³	Reaction time (hr) ^a	Yield (%) (E+Z)	m.p. (°C)
tert-Bu	pc1-c6H4	Me	7	94	114 ^b
tert-Bu	$p^{MeC}6^{H}$	Me	48	75 ^d	154, 81 ^c
tert-Bu	$\mathtt{pMeOC}_{6}\mathtt{H}_{l_{j_{1}}}$	Me	68	82	100 ^e
tert-Bu	pn0 ₂ c6 ^H 4	Me	87	68	110 ^e
tert-Bu	PhCH ₂	Me	144 ^f	19	74 ^b
tert-Bu	Ph	Ph	20	50	66-68 ^b
tert-Bu	р ^{MeC} 6 ^H ц	PhCH ₂	22	90	130, 100 ^c
tert-Oct	pClC ₆ H ₄	Me	6	40	88 ^b

Table II - Enamines <u>6B</u> (method B)

a - Reaction time corresponding to the complete conversion of the starting products. Isolated enamines yield, b - one purified isomer E or Z. c - two purified isomers. d - The enamine $\underline{6}$ was formed along with the coupling product $7(pMeC_{6}H_{4}C(CN)CO_{2}Me)_{2}$ (8 % yield). e - mixture of two isomers. f - solvent nitromethane.

We suggest that the first step of the reaction occurs via the heterolytic and reversible cleavage of the C-S bond of the sulfide giving an ion pair (C), according to the three following observations

Pure thioimidate <u>5A</u>, $R^1 = t-BuCH_2CMe_2$, $R^2 = Ph_2C(CN)$, $R^3 = Me$ was dissolved in $CDCl_3$ at room temperature. After 23 hr, NMR spectra of the solution showed the formation of a mixture of two isomers <u>6A</u> and a small quantity of the starting sulfide <u>2</u>.

When the reaction of tert-butylisocyanide with a pure diastereoisomer $\underline{2}$, $R^2 = Ph(Me)C(CN)$, $R^3 = Me$, was stopped before the total conversion of the sulfide, we observed the formation of one diastereoisomer $\underline{5A}$ and a mixture (60 40) of two diastereoisomers $\underline{2}$. This epimerization of the sulfide is in agreement with the reversible formation of the ion pair C.

Treatment of 2, $R^2 = Ph_2C(CN)$, $R^3 = Me$, with tert-butylisocyanide at room temperature in the presence of N-methylaniline (excess) yielded cyanoester <u>7</u> (70 %) and isothiourea <u>8</u> ¹⁰ (one isomer, 83 %). This result is in agreement with the trapping of anion <u>3</u> and nitrilium cation <u>4</u> (ion pair C) by the N-methylaniline.

We have shown that the isocyanide C atom can insert into some S-C bonds giving thioimidates which have been assuming much importance as intermediates in organic synthesis ⁹. However, the reaction is restricted to electrophilic sulfides with good living group. For example, sulfides <u>9</u> and <u>10</u> do not react with isocyanides. Reactions of the sulfides <u>2</u> with isocyanides that carry an α -hydrogen atom and the mechanism of the transposition $\underline{5} + \underline{6}$ are under investigation.

References and notes

- 1 I. UGI, Isonitrile Chemistry, Academic Press, New York, 65 (1971).
- 2 M. TORDEUX and C. WAKSEIMAN, Tetrahedron, 37, 315 (1981).
- 3 T. SAEGUSA and Y. ITO, Synthesis, 291 (1975).
 - D. MARMET, P. BOULLANGER and G.DESCOTES, Tetrahedron Lett., 21, 1459 (1980).
 - A.F. HEGARTY and A. CHANDLER, Tetrahedron Lett., 21, 885 (1980).
- 4 J.P. CHUPP, J.J. D'AMICO and K.L. LESCHINSKY, J. Org. Chem., <u>43</u>, 3553 (1978).
- 5 J.P. CHUPP and K.L. LESCHINSKY, J. Org. Chem., <u>40</u>, 66 (1975).
- 6 A.J. HAVLICK and M.M. WALD, J. Amer. Chem. Soc., 77, 5171 (1955).
- 7 G.MOREL, E. MARCHAND and A. FOUCAUD, Tetrahedron Lett. 3719 (1978).
- G.MOREL, M.A. LE MOING-ORLIAC, S. KHAMSITTHIDETH and A. FOUCAUD, Tetrahedron, in press.
- 8 All isolated compounds had spectral properties (IR, NMR) and elemental analysis in accord with their assigned structures. For instance, spectral data for <u>6B</u>,
 R¹ = tert-Bu, R² = pMeC6H4, R³ = Me, isomer m.p. 81° IR 2195, 1717, 1552 cm⁻¹,
 ¹H NMR (CDC1₃, δ) 1.65 (s, 9H) 2.14 (s, 3H) 2.38 (s, 3H) 3.74 (s, 3H) 7.4 (m, 4H).
 ¹3C NMR (CDC1₃, δ) 15.5 (q, S-CH₃) 21.4 (q, C6H4-CH₃) 28.7 (m, C(CH₃)₃) 52.9 (q, 0CH₃)
 60.8 (m,C(CH₃)₃) 114.8 (t, 3J = 3.9 Hz, C6H4-C=) 118.1 (s, C=N) 129.0, 129.4, 129.5, 139.7 (C6H4) 153.9 (q, 3J = 3.9 Hz, =C-SMe) 154.0 (q, 3J = 3.9 Hz, C=O).
- 9 D.G. NEILSON, in "The Chemistry of amidines and imidates", S. Patai Ed., J. Wiley and Sons, London, 385 (1975).
- 10 Isothiourea 8, E = 80°C, ¹H NMR (CDCl₂) δ = 1.37 (s, 9H), 2.03 (s, 3H), 3 12 (s, 3H), 7.15 (m, 5H). MS exact mass at m/e 236.1335 (calc. for C₁₃H₂₀N₂S 236.1347).

(Received in France 19 January 1982)