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CHEMOENZYMATIC SYNTHESIS OF (-)-CARBOCYCLIC 7-DEAZAOXETANOCIN G

Xing Chen, Suhaib M. Siddiqi and Stewart W. Schneller*
Department of Chemistry, University of South Florida
Tampa, Florida 33620-5250

Summary: The enantioselective synthesis of (-)-(1R,2S,35)-2-amino-7-[2,3-bis(hydroxymethyl)-
cyclobutyllpyrrolo[2,3-d]lpyrimidin-4(3H)-one (5) as the 7-deaza analogue of carbocyclic oxetanocin G is
described in 13 steps from rans-3,3-diethoxy-1,2-bis(hydroxymethyl)cyclobutane (8) in an overall yield of 6%.
Included in this route is the use of Pseudomonas cepacia lipase for enzymatic resolution.

The naturally occurring oxetanocin A (1)! and synthetic oxetanocin G (2)2 represent a novel class of
nucleosides possessing antiviral properties.3 Modification of the unique oxetanosyl-N-glycoside structural feature
of 1 and 2 into the carbocyclic nucleoside framework? led to the synthesis of 3 and 4 as racematesS and
individual enantiomers,S which have shown activity against herpesviruses and HIV.56..6.7 One particular interest
to this laboratory is the development of 7-deazapurine carbocyclic nucleosides that can be effective against human
cytomegalovirus (HCMV). In view of the potent and selective anti-HCMYV properties of the C-1' R-stereoisomer
of 4,50 we desired a synthesis of the corresponding R-stereoisomer 5.
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Related 7-deazapurine carbocyclic nucleoside syntheses in our laboratory indicated that the most
efficacious route to § would be via reaction of the protected chiral amine 6 with the dimethylacetal of 2-(2-amino-
4,6-dichioropyrimidin-5-yl)acetaldehyde 78 followed by ring closure, hydrolysis and deprotection. A review of
the literature revealed two enantioselective routes to cyclobutyl derivatives used in the synthesis of chiral
carbocyclic oxeanocinsS that seemed suitable for preparing a precursor of 6. In one case,52 however, the initial
step involved a [2+2]-cycloaddition reaction of not easily obtainable reagents in the presence of a chiral titanium
compound as catalyst. In the other case,5P resolution of a chiral mixture of cycloadducts was done through
diastercomeric amides that added steps to the synthesis. In view of the ease with which enzymes® can produce re-
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solution of a racemic mixture, we chose to use Pseudomonas cepacia lipase1Q on the (+)-acetate 13 as a more

efficient means to 6.
Scheme
OFEt (o)
ROHzc\q(oa _ :9 BnOH,C ¢ __ BnOH,C oR
CH,OR CH,0Bn CH,0Bn
8, R=H%2b 10 )11, R=H
a dl:<
» R=Bn +)-13, R=Ac
)
R
BnOH,C, h1s BnOH,C R ¢+ g CH,OBn
CHoBn  °" CHOBn  BnOH,C
E"T, R=Nj / [: (+)-13, R=AC (-)-11
i
6, R=NH, (+)-11, R=H
i g E 16, R=Ts
i)
B Cl T X
MeO),HCH,C
( )2 2 fi ; / l \N
- o ~ m_ 5
HN" "N™ i, NTEN NH, on 20
BnOH,C BnOH,C.
CHZOBn CHzan
L 18 .J 19, X=Cl
1N
20,X=0H

Reaction conditions: a, (i} NaH in DMF; (ii) BnBr; b, 0.5% H2S04 in MeCN:; ¢, LS-Sselectride in THF, -78 °C; d, AcQy/

pyridine; e, Pssudomonas cepacia lipase in phosphate buffer; £, KOH in MeOH; g, TsCl/pyridine; A, NaN3 in DMF,

100 °C; j, BHa*THF in THF; j, 7 and EtsN in 1-BuOH, 100 °C; k, 2 N HCI; J, 5% aq. NaOH in MeOH; m, EtSH and

BFz+Et;0

Thus, benzylation of trans-3,3-diethoxy-1,2-bis(hydroxymethyl)cyclobutane (8)52.2 to trans-3,3-

diethoxy-1,2-bis[(benzyloxy)methyljcyclobutane (9,11 100%, oil) (Scheme) was followed by hydrolysis to trans-
2,3-bis[(benzyloxy)methyl]cyclobutanone (10,1112 100%, oil). Reduction of 10 with LS-Selectride13 to (&)-
(1a,2a,3B)-2,3-bis{ (benzyloxy)methyl]cyclobutanol (11,14 81%, oil) occurred with no indication (by 1H and 13C
nmr) of the diastereomeric alcohol 12 having been formed. Acetylation of 11 gave (+)-(1x,2a,3p)-2,3-



2251

bis{(benzyloxy)methyl]-1-cyclobutyl acetate (13,14 92%, oil), which, when subjected to treatment with
Pseudomonas cepacia lipase yielded (+)-(15,25,35)-bis[(benzyloxy)methyl]-1-cyclobuty! acetate ((+)-13,11 oil,
48%, >99% ee,15, {[a]lp25 +14.57° (c 0.508, CHClp)} and (-)-(1R,2R,3R)-2,3-bis[(benzyloxy)methyl}-1-
cyclobutanol ((-)-11,11 oil, 50%, >99% ee,!5 {[a]p25 -27.06° (c 0.436, CHCl3)}). The structural assignments
for (+)-13 and (-)11 were accomplished by conversion into the enantiometic alcohols 14 and 15 and comparing
the optical rotation data for each product with the reported!6 values for these latter compounds.
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Saponification of (+)-13 to (+)-(15,25,35)-2,3-bis[(benzyloxy)methyl]cyclobutanol ((+)-11,11 100%,
oil, {[o]p25 +27.14° (¢ 0.7, CHCl3)}) was followed by tosylation to (+)-(15,25,3$)-2,3-bis[(benzyloxy)methyl}-
1-cyclobutyl tosylate (16,14 90%, oil). Treatment of 16 with sodium azide (to 17) followed by reduction
provided (+)-(1R,2S,35)-2,3-bis[(benzyloxy)methyl]cyclobutylamine (6,11 54% from 16, oil), which, in turn,
upon reaction with 7 gave the desired intermediate 18. Ring closure of 18 with dilute acid produced (+)-
(1R,25,35)-2-amino-7-{2,3-bis[(benzyloxy)methyl]cyclobutyl } -4-chloropyrrolo[2,3-d]-pyrimidine (19,14 63%
from 6, oil) that underwent subsequent hydrolysis to the protected 7-deazaguanine derivative (+)-(1R,2S,38)-2-
amino-7-{2,3-bis[(benzyloxy)methyl]lcyclobutyl}pyrrolof2,3-d]pyrimidin-4(3H)-one (20,14 78%, oil).
Attempted hydrogenolytic debenzylation of 20 produced the 5,6-dihydro derivative of 5. On the other hand, use
of boron trifluoride/ethylthiol on 20 led to the target compound (-)-(1R,25,35)-2-amino-7-[2,3-
bis(hydroxymethyl)cyclobutyllpyrrolo{2,3-d]pyrimidin-4(3H)-one (5,14 64%, mp 250-252 °C from MeCH,
{[a]lp?5 -12.29° (¢ 0.358, DMS0)}). It should be noted that attempts to react 16 with 2-amino-4-
chloropytrolo[2,3-d]pyrimidine8 resulted in recovery of starting material.

The biological properties of § and other uses of (+)-13 for preparing various carbocyclic oxetanocin
derivatives will be reported in the future.
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