

Phosphorus, Sulfur, and Silicon and the Related Elements

ISSN: 1042-6507 (Print) 1563-5325 (Online) Journal homepage: http://www.tandfonline.com/loi/gpss20

Lithium Diisopropylamide (LDA) as an Efficient **Reducing Agent for Thioketones—Mechanistic** Consideration

Marcin Jasiński, Grzegorz Mlostoń, Andreas Gebert & Heinz Heimgartner

To cite this article: Marcin Jasiński, Grzegorz Mlostoń, Andreas Gebert & Heinz Heimgartner (2015) Lithium Diisopropylamide (LDA) as an Efficient Reducing Agent for Thioketones—Mechanistic Consideration, Phosphorus, Sulfur, and Silicon and the Related Elements, 190:8, 1281-1284, DOI: 10.1080/10426507.2015.1012201

To link to this article: <u>http://dx.doi.org/10.1080/10426507.2015.1012201</u>

Accepted online: 15 Jul 2015.

📝 Submit your article to this journal 🗹

Article views: 36

View related articles 🗹

View Crossmark data 🗹

Citing articles: 1 View citing articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gpss20

LITHIUM DIISOPROPYLAMIDE (LDA) AS AN EFFICIENT REDUCING AGENT FOR THIOKETONES—MECHANISTIC CONSIDERATION

Marcin Jasiński,¹ Grzegorz Mlostoń,¹ Andreas Gebert,² and Heinz Heimgartner²

¹Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Łódź, Łódź, Poland

²Department of Chemistry, University of Zurich, Zurich, Switzerland

Abstract Treatment of thiocarbonyl compounds with excess of lithium diisopropylamide (LDA) leads to corresponding thiols or sulfides depending on the work-up procedure. The mechanistic scenario for this unusual reduction pathway is discussed.

Keywords Thioketones; LDA; hydride transfer; sulfides; reaction mechanisms

INTRODUCTION

Thioketones belong to the class of reactive dipolarophiles (so-called superdipolarophiles) widely applied for the synthesis of numerous *S*-heterocylic systems.¹ However, their behavior toward lithiated agents is by far less well known. As a part of our ongoing project focused on the exploration of thioketones in organic, materials, coordination, and biometallo-organic chemistry,² a series of model compounds of type **1** were recently shown to be suitable reaction partners in reactions with *C*-nucleophiles. For example, treatment of adamantanethione (**1a**) with lithiated methylphosphonate followed by methyl iodide or with methoxyallene anion provided the corresponding products, i.e., the phosphonylated sulfide **2**³ and vinylthiirane derivative **3**,⁴ respectively, as a result of exclusive *carbophilic* attack onto the C=S group (Scheme 1).

Received 12 December 2014; accepted 20 January 2015.

Address correspondence to Prof Grzegorz Mlostoń, Department of Organic and Applied Chemistry, University of Łódź, Tamka 12 PL 91-403, Łódź, Poland. E-mail: gmloston@uni.lodz.pl

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gpss.

Scheme 1 Reactions of adamantanethione (1a) with lithiated C-nucleophiles.

Within the studies on [3 + 2]-cycloadditions of thioketones with azomethine ylides, 1,3-thiazole-5(4*H*)-thione **4a** was selected as a model compound.⁵ Unexpectedly, the treatment of a mixture of **4a** and trimethylamine oxide, used as an anticipated source of the parent azomethine ylide,⁶ with lithium diisopropylamide (LDA) at 0°C provided only the reduction product **5a**. Further experiments with **4a** confirmed the unusual potential of LDA for the reduction of C=S groups. Thus, depending on the work-up procedure, the corresponding thiol **5a** or methylsulfide **6a** was obtained in high yields⁷ (Scheme 2).

Scheme 2 Reduction of 1,3-thiazole-5(4H)-thione 4a with LDA.

RESULTS AND DISCUSSION

Following the protocol established for compound **4a**, a spirocyclic 1,3-thiazole-5(4H)-thione of type **4** and a series of thioketones **1** were smoothly reduced with excess of LDA to give respective thiolates, which after trapping with methyl iodide as an electrophile provided the expected products **6b** and **7a–f**, respectively, in high yields (Figure 1). Analytically pure samples of products were obtained after chromatographic purification in 40–80% yields. Hence, as shown in Figure 1, dithioacetals **6a–b** as well as cycloaliphatic (**7a–b**) and aromatic (**7c–f**) sulfides, including unique diferrocenyl (**7e**) and hetaryl (**7f**) derivatives, are available by the presented method, although the yields in the latter cases are rather low.⁷

Although lithium amides are known in the first line as strong bases, often used for the deprotonation of CH-acidic compounds, reducing properties of LDA and its analogs have been also reported.⁸ For example, LDA-induced conversion of nitroarenes to the corresponding aromatic amines and azoxyarenes via a single electron transfer (SET) mechanism was described.^{8a} An analogous reaction pathway was postulated for the observed formation of sulfides from 2,2-diaryl-1,3-dithiolanes via the in situ generated aromatic thioketones.^{8b} On the other hand, treatment of 4-fluorotoluene with LDA in diethyl ether gave, among other products, a mixture of *meta-* and *para-*ethyl(2-tolylethyl)amine.^{9a} A reaction mechanism via hydride transfer from LiNEt₂ to the intermediate aryne, and subsequent addition of aryl anion to the formed imine, was proposed. Furthermore, the reduction of benzophenone with LiNEt₂ was interpreted as a hydride-transfer reaction via a six-membered transition state.^{9b}

Figure 1 Products 6 and 7 prepared by the reduction of respective thiocarbonyl substrates.

A strong evidence for this reaction mechanism is the enantioselective reduction of ketones with enantiomerically pure lithium alkyl phenyl amides^{9c} and lithium dialkylamides.^{9d} This pathway resembles that of reactions of Grignard reagents with sterically demanding carbonyl compounds as well as the Meerwein–Schmidt–Ponndorf–Verley reductions of ketones.¹⁰

Based on the above-discussed reports, we suggest that LDA in the reaction with non-enolizable thioketones acts as a hydride donor. Hydride transfer via the six-membered transition state **A** then leads to thiolate **B**, which can be protonated or trapped with appropriate electrophiles. The respective imine **C** is formed as a side-product (Scheme 3). A small amount of the imine **C** was identified in the ¹H-NMR spectra of crude mixtures obtained with both adamantanethione (**1a**) and thiobenzophenone (**1c**); a characteristic septet attributed to the *CH*Me₂ group was found at 3.77 ppm.¹¹ In addition, no incorporation of a deuterium atom was observed when the reaction of LDA with **4a** was performed in THF-*d*₈.⁷ However, the competitive SET mechanism, especially in the case of hetaryl-substituted thioketone **1f**, can not be ruled out.

Scheme 3 Postulated transition state (A), and hydride shift leading to thiolate (B).

ACKNOWLEDGMENTS

Marcin Jasiński thanks the University of Łódź Foundation. Stimulating discussion with Professor D. Seebach is also acknowledged.

FUNDING

Authors acknowledge financial support given by the National Science Center (PL-Cracow) Grant Maestro-3 No. 2012/06/A/ST5/00219.

REFERENCES

- (a) Fišera, L.; Huisgen, R.; Kalwinsch, I.; Langhals, E.; Li, X.; Mlostoń, G.; Polborn, K.; Rapp, J.; Sicking, W.; Sustmann, R. Pure Appl. Chem. 1996, 68, 789–798; (b) Mlostoń, G.; Heimgartner, H. In: A. Padwa and W. H. Pearson (Eds.), Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Wiley: New York, NY, 2002; pp. 315–360; (c) Mlostoń, G.; Heimgartner, H. In: O. A. Attanasi and D. Spinelli (Eds.), Targets in Heterocyclic Systems, Vol. 10; Italian Society of Chemistry: Rome, 2006; pp. 266–300.
- (a) Mlostoń, G.; Urbaniak, K.; Gębicki, K.; Grzelak, P.; Heimgartner, H. *Heteroatom Chem.* 2014, 25, 548–555; (b) Mlostoń, G.; Urbaniak, K.; Szychowska, A.; Linden, A.; Heimgartner, H. *Heterocycles* 2015, 90, 529–539; (c) Mlostoń, G.; Pipiak, P.; Heimgartner, H. *Helv. Chim. Acta* 2015, 98, 462–473.
- 3. Mlostoń, G.; Obijalska, E.; Urbaniak, K.; Heimgartner, H. Heteroatom Chem. 2008, 19, 182-187.
- Jasiński, M.; Mlostoń, G.; Stolarski, M.; Costa, W.; Domínguez, M.; Reissig, H.-U. *Chem. Asian J.* 2014, 9, 2641–2648.
- (a) Gebert, A.; Linden, A.; Mlostoń, G.; Heimgartner, H. *Heterocycles* 2002, 56, 393–402;
 (b) Gebert, A.; Mlostoń, G.; Linden, A.; Heimgartner, H. *Pol. J. Chem.* 2003, 77, 157–167;
 (c) Gebert, A.; Linden, A.; Mlostoń, G.; Heimgartner, H. *Pol. J. Chem.* 2003, 77, 867–879.
- 6. (a) Beugelmans, R.; Negron, G.; Roussi, G. J. Chem. Soc. Chem. Commun. 1983, 31–32;
 (b) Beugelmans, R.; Chastanet, J.; Roussi, G. Heterocycles 1987, 26, 3197–3202; (c) Chastanet, J.; Roussi, G. J. Org. Chem. 1988, 53, 3808–3812.
- 7. Gebert, A.; Jasiński, M.; Mlostoń, G.; Heimgartner, H. Helv. Chim. Acta 2014, 97, 931-938.
- (a) Wang, A.; Biehl, E. Arkivoc 2002, (i), 71–75; (b) Ikehira, H.; Tanimoto, S.; Oida, T.; Okano, M. J. Org. Chem. 1983, 48, 1120–1122; (c) Ashby, E. C.; Deshponde, A. K.; Patil, G. S. J. Org. Chem. 1995, 60, 663–672; (d) De Kimpe, N.; Yao, Z. P.; Schamp, N. Tetrahedron Lett. 1986, 27, 1707–1710; (e) Newcomb, M.; Burchill, M. T. J. Am. Chem. Soc. 1984, 106, 8276–8282; (f) Newkome, G. R.; Hager, D. C. J. Org. Chem. 1982, 47, 599–601; (g) Shen, C. C.; Ainsworth, C. Tetrahedron Lett. 1979, 20, 89–92. (h) For a review see: Majewski, M.; Cleave, D. M. J. Organomet. Chem. 1994, 470, 1–16.
- (a) Wittig, G.; Rentzea, C. N.; Rentzea, M. Liebigs Ann. Chem. 1971, 744, 8–14; (b) Wittig, G.; Schmidt, H.-J.; Renner, H. Chem. Ber. 1962, 95, 2377–2383; (c) Wittig, G.; Thiele, U. Liebigs Ann. Chem. 1969, 726, 1–12; (d) Takeda, K.; Ohnishi, Y.; Koizumi, T. Org. Lett. 1999, 1, 237–239.
- (a) Maruyama, K.; Katagiri, T. J. Phys. Org. Chem. 1989, 2, 205–213; (b) Campbell, E. J.; Zhou, H.; Nguyen, S.-B. T. Angew. Chem. (Int. Ed.) 2002, 41, 1020-1022; Angew. Chem. 2002, 114, 1062–1064.
- Bunnelle, W. H.; Singam, P. R.; Narayanan, B. A.; Bradshaw, C. W.; Liou, J. S. Synthesis 1997, 439–442.