

Tetrahedron Letters 39 (1998) 3029-3030

Synthesis and Thermal Reactivity of a Novel Macrocyclic Enediyne and its Copper(II) Complex Amit Basak* and Jagadish Chandra Shain

Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India Received 12 January 1998; accepted 6 February 1998

Abstract: A novel 24-membered tetraazaenediyne and its copper(II) complex have been synthesized via a Pd(0)-catalysed macrocyclization route. DSC measurements revealed a lowering of onset temperature for Bergman Cyclization upon complexation. © 1998 Elsevier Science Ltd. All rights reserved.

The enediyne class of antitumor antibiotics¹ exert their biological action through the formation of diradicals via a process popularly known as Bergman Cyclization $(BC)^2$. The rate of BC has been shown to be influenced by ring size³, state of hybridization⁴, incorporation of hetero atom⁵ or strained ring system⁶ and metal ion complexation⁷. In continuation of our interest on the behaviour of nitrogen-containing enediynes⁸ we have synthesized a novel tetraazaenediyne 1 and studied the perturbation of its cyclization behaviour upon complexation.

1,2-Dibromobenzene was first converted to the substituted propargyl alcohol 2 by a single Pd(0)catalysed coupling⁹. Conversion to the mesylate 3 followed by treatment with N.N-dibenzyl ethylenediamine in the presence of K_2CO_3 in DMF produced the dibromo diamine 4. A second Pd(0)-coupling of 4 with propargyl alcohol furnished the diol 5. Unfortunately, attempts to prepare the mesylate 6 or the bromide 7 from the diol 5 was unsuccessful; the reaction led to a considerable amount of decomposition product. Ultimately the target enediyne 1 was synthesized in a single step from 4 via Pd(0)-mediated biscoupling with N,Ndipropargyldibenzyl ethylenediamine 8. The reaction proceeded very well and serves as a novel example of intramolecular ene-yne coupling leading to a macrocyclic enediyne (Scheme 1). The ¹H-NMR spectrum of 1 showed three sharp singlets (each 8H) at δ 2.87, 3.65 and 3.74 apart from the aromatic signals at δ 7.21-7.49. Further confirmation about the structure was obtained from the mass spectrum which showed the MH⁺ peak at m/z 781. Differential Scanning Calorimetric (DSC)¹⁰ measurements showed the onset temperature for BC to be around 160⁰ C. The Cu(II)-complex 9 was prepared by refluxing a methanolic solution of equimolecular amounts of the enediyne 1 and $Cu(OAc)_2$ and then evaporating the solvent. The ¹H-NMR spectrum of the complex in CDCl₃ showed the aromatic protons appearing in the range of δ 7.0-7.9 whereas all the methylene protons appeared as a very broad signal in the range of δ 3.0-4.2. DSC measurement of the complex 9 showed the exothermic rise starting from 90° C thus indicating a lowering of onset temperature for BC by a large margin of about 70⁰ C upon complexation.

An earlier work¹¹ on crown ethers containing enediyne moiety showed a rise of onset temperature of BC upon complexation with alkali metal ions. The repulsion between the the like charges or the accommodation of a large K^+ ion was predicted to be the cause behind such a rise. In the tetraaza system 1, the inner cavity size seems sufficient to accommodate Cu(II) ion and thus form an 11-membered ring. As a result the distance between the acetylenic carbons undergoing covalent connection is lowered and hence BC is facilitated at a lower temperature.

*Current Address: Visiting Associate Professor, Department of Chemistry, Johns Hopkins University, 3400 Charles Street, Baltimore MD 21218, USA. Acknowledgement: Auther (AB) thanks CSIR, Government of India for financial assitance. We thank Dr. A.Basak, IRCM, Montreal, Canada for the Mass Spectral data.

a:Pd(PPh₃)₄,CHCCH₂OH,n-BuNH₂ b:MeSO₂Cl,NEt₃ c:RNHCH₂CH₂NHR,K₂CO₃ d:Pd(PPh₃)₄,CHCCH₂OH,n-BuNH₂ e:Pd(PPh₃)₄,n-BuNH₂,reflux f:Cu(OAc)₂,MeOH

Scheme 1

Selected Spectral Data: For 1 $\delta_{\rm H}$ 2.87 (8H, s), 3.65 (8H, s), 3.74 (8H, s), 7.21-7.49,(28H, m);

δ_C 42.53, 51.27, 58.25, 84.85, 88.29, 25.70, 127.10, 127.63, 128.23, 129.18, 132.34, 138.69; γ_{max}(KBr) 613, 694, 747, 812, 942, 983, 1033, 1075, 1112, 1318, 1350, 1442, 1480, 1545, 1603, 1723, 2362, 2921, 3069 cm .; Mass(FAB) 781 (MH⁺); λ_{max} (MeOH) 259.8, 232.4 nm; For 9 δ_{H} 3.0-4.2 (24H, bm), 7.0-7.9 (28H, bm); γ_{max} (KBr) 648, 693, 749, 1026, 1119, 1234, 1428, 1569, 1724, 2355, 2933 cm ; λ_{max} (MeOH) 247, 232, 215 nm.

References

- Jones, B.R.; Bergman, R.G. J. Am. Chem. Soc. 1972, 94, 660; Bergman, R. G. Acc. Chem.Res. 1. 1973, 6, 25; Lockhart, T. P.; Comita, P. B.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 4091.
- Nicolaou, K. C.; Dai, W.M. Angew. Chem. Int. Ed. Engl. 1991, 30, 1387; Grissom, J. W.; 2.
- Gunawardena, G. U.; Klingberg, D.; Huang, D. Tetrahedron, 1996, 52, 6453.
 Nicolaou, K. C.; Zuccarello, G.; Ogawa, Y.; Schweger, E. J.; Kumazawa, T. J. Am. Chem. Soc. 1988,
- 110, 4866.
- De Voss, J. J.; Hangeland, J. J.; Townsend, C. A. J. Am. Chem. Soc. 1990, 12, 4554. 4
- 5. Sakai, Y.; Nishiwaki, E.; Shishido, K.; Shibuya, M. Tetrahedron Lett. 1991, 32, 4363.
- 6. Nicolaou, K. C.; Sorensen, E. J.; Discordia, R.; Hwang, C. K.; Minto, R. E.; Bharucha, K. N.; Bergman, R. G. Angew. Chem. Int. Ed. Engl. 1992, 31, 1044; Basak, A.; Khamrai, U. K. J. Chem. Soc. Chem. Commun. 1996, 749; Banfi, L.; Guanti, G Angew. Chem. Int. Ed. Engl. 1995, 34, 2393.
- Konig, B.; Hollnagel, H.; Ahrens, B.; Jones, P. G. Angew. Chem. Int. Ed. Engl. 1995, 34, 2538.
 Shain, J. C.; Khamrai, U. K.; Basak, A. Tetrahedron Lett. 1987, 38, 6067; Basak, A.; Shain, J. S. Tetrahedron Lett. 1998, 39, 1623.
- 9. Just, G.; Singh, R. Tetrahedron Lett. 1987, 28, 5981.
- 10. Burkhead, K.; Rutters, H. Tetrahedron Lett. 1994, 35, 3501.
- 11. Sigman, D. S. Acc. Chem. Res. 1986, 19, 180.; Ranganathan, D.; Misra, R. K.; Patel, B. K.; Vaish, N. K. Proc. Ind. Acad. Sci. 1994, 106, 1071.