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A variety of first row transition-metal complexes activate 
dioxygen or facilitate oxygen atom transfer to organic substrates.' 
In many cases the reactive species is assumed to be the terminal 
oxo group of a high-valent metal complex, but few such complexes 
have been isolated and structurally characterized.1g.h.2 In order 
to assess the structure and reactivity of metal-oxo centers, we 
have developed the PHABCligand shown below [where H4PHAB 
is 1 ,2-bis( 2,2-diphenyl-2-hydroxyethanamido)benzene], incor- 
porating design elements from the picket-fence porphyrinsIi and 
oxidation-resistant tetradentate ligands synthesized by Collins 
and co-workers.2 The latter workers have shown that bis-amido 

n 

0- 
bis-alkoxo donor sets can stabilize high oxidation state metal- 
oxo complexes.2 In addition to providing this electronic stabi- 
lization, the steric features of the PHAB ligand protect terminal 
metal-oxo centers and limit coordination numbers to less than 
six. We show here that the PHAB ligand forms a novel five- 
coordinate MnII' dimer and describe a reaction with dioxygen 
that yields a MnV-oxo complex. Dioxygen reactions with MI1 
complexes are well precedented,' but 0 2  reactions with metal 
ions in the 3+ oxidation state are rare and, in the case of most 
MnII'complexes, result in MnIv-oxc+or -perox+bridged dimers 
or the Mn'V one-electron oxidation product.3 The air oxidation 
of the MnIII(PHAB) dimer proceeds in the absence of external 
reductants and results in the hydroxylation of the ether solvent 
through a proposed autocatalytic path. The surprising reactivity 
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of these five-coordinate PHAB complexes stabilized in the higher 
oxidation states suggests new routes for selective oxidation of 
organic substrates. 

The dimeric structure of Li2[Mn(PHAB)]2 (1).4MeCN is 
shown in Figure 1.4 The alkoxo bridging motifs are similar to 
those found in other Mn"'  dimer^,^ but the four phenyl groups 
restrict both Mn"1 centers to a five-coordinate alkoxo-bridged 
geometry which is unprecedented in the rich chemistry of 
manganese dimer~.3~ A second distinct bridging interaction is 
formed by a lithium ion which is tightly bound between two 
terminal alkoxides.6 

When lithium complexing agents are added, facile oxidation 
of 1 occurs in air or 02-saturated, peroxide-free THF, yielding 
[Mnv(0)(PHAB)]- (2)' and 2-hydroxytetrahydrofuran (THF- 
OH). The oxomanganese(V) complex 2 has been isolated and 
structurally characterized8 (Figure 1) as a square-pyramidal MnV 
with a terminal oxo bond distance of 1.558(4) A, in good 
agreement with the values obtained for the two other structurally 
characterized oxomanganese(V) complexes.2 

Conversion of 1 to 2, monitored as a change in the visible 
spectrum at 410 nm (Figure 2), will not occur unless a lithium- 
specific chelator, such as excess 1 2-crown-49 or tetraalkylam- 
monium chloride (kNCl) ,  is added. Furthermore, the lithium- 
free dimer (BU~~N)~[M~(PHAB)]~ 'O (3) reacts with dioxygen to 
form 2 in the absence of k N C I  or 12-crown-4. Apparently, loss 
of the Li+ bridge leads to formation of an 02-reactive species. 
The latter could be a dimer in an altered conformation or a 
dissociation product of 1, such as a four-coordinate Mn"1 
monomer. 

The reaction of 1 with 0 2  in the presence Bun4NC1 (Figure 2, 
inset) commences after an induction period of approximately 
4-6 min, and complete conversion of 1 to 2 requires a total of ca. 
10 min at 50 "C. A GC-MS analysis of the reaction mixture at 
this point revealed formation of 2-3 equiv of THF-OH per MnII1. 
The observation of an induction period and a decreasing half-life 
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Figure 1. Reaction of 1 with 0 2  in T H F  yields 2 q u i v  of [MnV(OJ(PHAB)]- (2)' and 2-hydroxytetrahydrofuran (THF-OH). On the left is shown 
an ORTEP drawing of the core of Li[MntttPHAB]2- for compound 1, showing the 50% thermal probability ellipsoids. Solvate molecules, hydrogen 
atoms, and phenylgroups areomitted for clarity. Selectedbond distances (A) and angles (deg) areas follows: Mnl-Mn2,3.052(9); Mnl-01, 1.904(5); 
Mnl-02,1.927(5); Mnl-N1,1.914(6);Mnl-N2,1.900(5);Mnl-05,2.174(5);Mn2-05,1.926(5);Mn2-06,1.891(5); Mn2-02,2.115(5);Mn2-N3, 
1.91 l(6); Mn2-N4, 1.925(6); Li2-01,1.87(1); Li2-06,1.87(1); Mnl-02-Mn2,97.0(2); Mnl-05-Mn2,96.0(2); 02-Mnl-05,80.3(2); 02-Mn2- 
05, 81.9(2); 01-Li2-06, 113.0(7). On the right side is shown an ORTEP drawing of [MnV(0)(PHAB)]- anion of 2, showing the 50% thermal 
probability ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond distances (A) and angles (deg) are as follows: Mn-01, 1.558(4); Mn-02, 
1.827(4); Mn-03,1.831(4); Mn-N1,1.893(5); Mn-N2,1.875(5); 01-Mn-02,110.0(2); 01-Mn-03,110.0(2); 01-Mn-Nl, 109.2(2); 01-Mn-N2, 
108.5(2). 
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Figure 2. Absorbance spectra of the red Li2[Mn1I1(PHAB)]2.4MeCN 
(1) in T H F  (freshly distilled from sodium/benzophenone) before and 
after admission of air to form 2 q u i v  of green [Mnv(0)L]- (2) (c values 
quoted per Mn). Inset: absorbance at  410 nm was recorded at 15-s 
intervals after addition of air to a T H F  solution of 1 (0.54 mM) in 10 
mM Bun4NCI, thermostated at 50 OC. 

for formation of 2 are characteristicof an autocatalytic process.'' 
We speculate that a MnIII(O2) or Mnw(02-) intermediateinitiates 
THF autoxidation by H atom abstraction. The resulting THF 
radicals could react with 0 2  to ultimately give 2-tetrahydrofuran 
hydroperoxide (THF-OOH), which is expected to rapidly react 
with 1 to form 2 and THF-OH. The excess of THF-OH over 
Mn"1 indicates that other reactions may yield THF-OH, such as 
the direct reaction of 2 with THF. In support of this model, we 
find that addition of exogeneous alkyl hydroperoxides causes an 
immediate conversion of 1 to 2 even without lithium complexing 
reagents at 50 OC. In addition, hydroperoxides are known to 
generate oxomanganese(V) complexes in related systems.& 

Other 0 2  activation steps, such as initiation of THF autoxi- 
dation by trace contaminating Mn" or MnIIIspecies or by residual 
THF-OOH in the neat solvent, are unlikely as neat solutions of 
1 are stable in the presence of O2 until &NCl or 12-crown-4 is 
added. Control experiments demonstrate that 2 does not require 
the presence of lithium complexing agents to initiate autoxidation 
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of 1. Thus contamination of solid samples of 1 by 2 cannot be 
responsible for initiating the overall reaction shown in Figure 1. 
Furthermore, when 1 is replaced by Mn(acac)z, MnCl2, Mn- 
(OAC)~, Mn(OAc)3, or MnII(salophen),13 no 0 2  oxidation of the 
metal centers or THF is observed by GC at 50 OC over a 2-h 
period. While reduction of Mn"1 complexes in other ligand fields 
can occur in THF,12 an initiation step in which 1 is reduced to 
a MnIIspecies is unlikely for these PHABcomplexes. The extreme 
stability of the dimeric Mn"1 centers of 1 and 3 with respect to 
reduction is clear in cyclic voltammetry experiments: neither 1 
nor 3 is reduced electrochemically upon scanning to -2.0 V us 
SCE in a~etonitri1e.l~ 

Under anaerobic conditions, the oxygen atom of 2 can be 
transferred to a variety of substrates, including phosphines, ethers, 
and olefins.15 For instance, the reaction of this MnV-oxo complex 
with norbornylene gave norbornylene epoxide in 1 1 % yield.16 We 
are evaluating these mechanisms with the intent of coupling the 
oxidation of 1 to 2 with oxo-transfer reactions in catalytic 
processes. 
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