

Available online at www.sciencedirect.com

Inorganica Chimica Acta 359 (2006) 2942-2955

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Hydride, halide, methyl, carbonyl, and chalcogenido derivatives of permethylmolybdenocene

Jun Ho Shin¹, David G. Churchill², Brian M. Bridgewater³, Keliang Pang, Gerard Parkin^{*}

Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA

Received 15 November 2005; accepted 11 December 2005 Available online 28 February 2006

Dedicated with respect to Professor Brian James on the occasion of his 70th birthday.

Abstract

 $Cp_2^*MoCl_2$ ($Cp^* = C_5Me_5$) is obtained via reaction of MoCl₅ with a mixture of Cp^*K and NaBH₄ followed by treatment with CHCl₃. $Cp_2^*MoCl_2$ provides access to a large variety of other permethylmolybdenocene complexes which include $Cp_2^*MoH_2$, $Cp_2^*MoH_2$, Cp_2^*MoCO , $Cp_2^*Mo(O, Cp_2^*Mo(Me)Cl$, $Cp_2^*Mo(H)I$, $Cp_2^*Mo(EPh)H$ (E = S, Se, Te), $Cp_2^*Mo(\eta^2-E_2)$ (E = S, Se, Te), $Cp_2^*Mo(\eta^2-E_4)$ (E = S, Se), $Cp_2^*Mo(OSiMe_3)CN$, $Cp_2^*Mo(NCS)_2$, and $Cp_2^*Mo(N_3)_2$. © 2006 Elsevier B.V. All rights reserved.

Keywords: Permethylmolybdenocene; Molybdenum; Hydride; Methyl; Carbonyl; Oxo; Chalcogenido

1. Introduction

Molybdenocene and tungstenocene complexes, first prepared in 1954 [1], have played a prominent role in the development of organometallic chemistry following the synthesis of the dihydrides Cp_2MH_2 (M = Mo, W) in 1959 [2].⁴ In addition to extensive studies on the parent molybdenocene system [4,5], the chemistry of monosubstituted ring derivatives such as $(Cp^{Me})_2MoX_2$ [6] and $(Cp^{But})_2MoX_2$ [7], mixed-ring and indenyl complexes [8], and *ansa* molybdenocene compounds [9] have also been investigated, although the complete development of this area has been hampered by synthetic difficulties. In particular, the chemistry of peralkylated- and perarylatedmolybdenocene systems is rather poorly developed due to inefficient and inconvenient synthetic methods. For example, the novel perphenylmolybdenocene complex $\{(C_5Ph_5)_2Mo\}$ is obtained in very low yield (7%) via reaction of Mo(CO)₆ with Ph₂C₂ [10]. The first report of the permethylmolybdenocene system appeared in 1973 with the synthesis of Cp₂^{*}MoH₂ (Cp* = C₅Me₅) and several other derivatives [11], but there were no subsequent reports

^{*} Corresponding author.

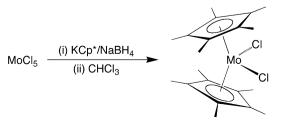
E-mail address: parkin@columbia.edu (G. Parkin).

¹ Present address: Department of Chemistry, Queensborough Community College, Bayside, NY 11364, USA.

² Present address: Department of Chemistry and School of Molecular Science (BK 21), KAIST, Daejeon 305-701, Republic of Korea.

³ Present address: Rohm and Haas Company, Spring House, PA 19002, USA.

⁴ A certain degree of confusion exists with the first report of the dihydrides Cp_2MH_2 . Specifically, some authors [3a,3b] cite the first report as being 1961 [3c], while others [3d] believe that the 1959 [3e] report involved the reaction of MoCl₅, NaCp, and NaBH₄. The 1959 synthesis actually involved the reaction of "di- π -cyclopentadienyl halides of molybdenum" with NaBH₄ [3e]. Although the specific "di- π -cyclopentadienyl halides of molybdenum" used for the first synthesis were not explicitly stated, examination of the references indicates that the term refers to either [Cp₂MoCl][Cr(CNS)₄(NH₃)₂] · H₂O or [Cp₂MoCl₂][PtCl₆] [3f]. The first synthesis of Cp₂MoH₂ using MoCl₅ as the molybdenum reagent was reported in 1960 and involved reaction with only NaCp [3g]; the reaction that involved the use of NaBH₄ as an additional hydride reagent was reported in 1961 [3c]. Thus, it is evident that the first report of Cp₂MoH₂ was in 1959 [3e], but the first synthesis involving the reaction of MoCl₅, NaCp, and NaBH₄ was in 1961 [3c].


until 1991 when Cloke et al. synthesized $Cp_2^*MoH_2$ by using metal vapor synthesis techniques [12]. The lack of studies on the permethylmolybdenocene system during the period 1973–1991 may be attributed to the fact that other researchers were unable to substantiate the 1973 synthesis of $Cp_2^*MoH_2$ [11], while Ito has noted that a modified method of synthesis gives $Cp_2^*MoH_2$ in insufficient yield for it to be useful as a starting material for subsequent derivitization [3a,13]. Furthermore, Cloke et al. have also questioned the formulation of the proposed permethylmolybdenocene compound { Cp_2^*Mo } described in the 1973 paper [12]. In this paper, we report the preparation of the dichloride $Cp_2^*MoCl_2$ by using conventional synthetic methods, and thereby provide a convenient entry point for a variety of permethylmolybdenocene derivatives.

2. Results and discussion

2.1. Synthesis and reactivity of Cp^{*}₂MoCl₂

Access to permethylmolybdenocene chemistry is conveniently provided by $Cp_2^*MoCl_2$ which is obtained via a two step sequence involving (i) the reaction of MoCl₅ with a mixture of Cp*K and NaBH₄ to give crude $Cp_2^*MoH_2$, followed by (ii) addition of CHCl₃ (Scheme 1) [14]. The latter step is an important improvement over the previous method because the lower solubility of $Cp_2^*MoCl_2$ in pentane compared to $Cp_2^*MoH_2$ facilitates isolation of the permethylmolybdenocene derivative. The tetramethylethyl-cyclopentadienyl counterpart $(Cp^{Me_4Et})_2MoCl_2$ has also been obtained in an analogous manner, and the molecular structures of $Cp_2^*MoCl_2$ and $(Cp^{Me_4Et})_2MoCl_2$ as determined by X-ray diffraction are illustrated in Figs. 1 and 2.

 $Cp_2^*MoCl_2$ is a useful precursor for a variety of other permethylmolybdenocene derivatives which include hydride, alkyl, carbonyl and oxo complexes (Scheme 2). Thus, $Cp_2^*MoCl_2$ reacts with: (i) LiAlH₄ to give $Cp_2^*MoH_2$, (ii) MeLi to give $Cp_2^*MoMe_2$, (iii) Na(Hg) in the presence of CO to give Cp_2^*MoCO and (iv) LiOH to give Cp_2^*MoO , as illustrated in Scheme 2. The molecular structures of $Cp_2^*MoH_2$, $Cp_2^*MoMe_2$, Cp_2^*MoCO and Cp_2^*MoO have been determined by X-ray diffraction, as shown in Figs. 3–6. The oxo complex has been previously reported but has only been obtained as a minor impurity resulting from the work-up procedure following the reaction of molybdenum atoms with Cp^*H [12].

Scheme 1.

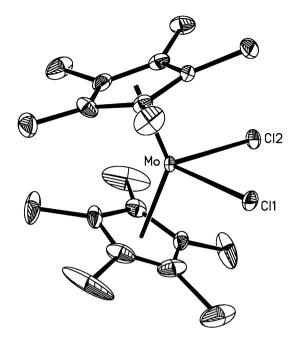


Fig. 1. Molecular structure of $Cp_2^*MoCl_2$. Selected bond lengths (Å) and angles (°): Mo-Cl(1) 2.462(2), Mo-Cl(2) 2.466(2); Cl(1)-Mo-Cl(2) 81.00(9).

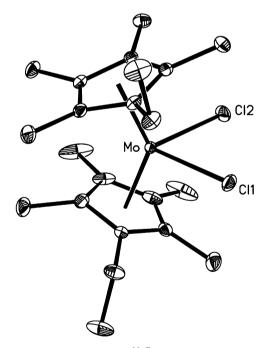
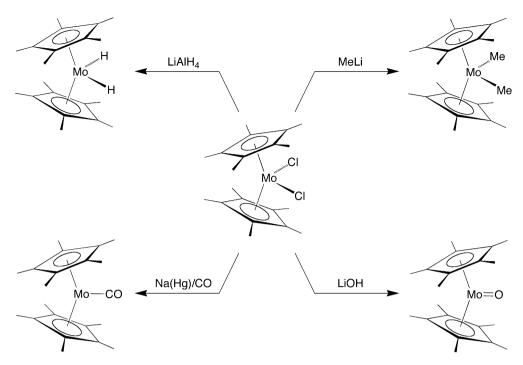



Fig. 2. Molecular structure of $(Cp^{Me_4El})_2MoCl_2$. Selected bond lengths (Å) and angles (°): Mo–Cl(1) 2.477(1), Mo–Cl(2) 2.475(1); Cl(1)–Mo–Cl(2) 80.63(3).

2.2. Reactivity of $Cp_2^*MoH_2$, $Cp_2^*MoMe_2$ and $Cp_2^*Mo(CO)$

The dihydride, dimethyl and carbonyl complexes, $Cp_2^*MoH_2$, $Cp_2^*MoMe_2$ and $Cp_2^*Mo(CO)$, provide a means to obtain permethylmolybdenocene compounds that feature more than one substituent. For example, the

Scheme 2.

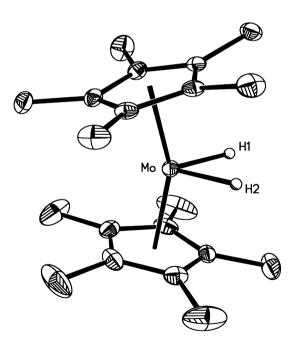


Fig. 3. Molecular structure of $Cp_2^*MoH_2$. Selected bond lengths (Å) and angles (°): Mo–H(1) 1.61(4), Mo–H(2) 1.64(4); H(1)–Mo–H(2) 70.3(18).

dimethyl Cp₂^{*}MoMe₂ reacts with HCl to yield the methylchloride Cp₂^{*}Mo(Me)Cl (Scheme 3) while the dihydride Cp₂^{*}MoH₂ reacts with MeI to give the hydride-iodide Cp₂^{*}Mo(H)I (Scheme 4), which has been structurally characterized by X-ray diffraction (Fig. 7). The isolation of the latter complex is noteworthy in view of the fact that reaction of Cp₂^{*}MoH₂ with ICH₂CH₂I yields the diiodide Cp₂^{*}MoI₂ [12]. An asymmetric permethylmolybdenocene derivative, namely the carbonyl–methyl compound

Fig. 4. Molecular structure of $Cp_2^*MoMe_2$. Selected bond lengths (Å) and angles (°): Mo-C(1) 2.234(3), Mo-C(2) 2.239(3); C(1)-Mo-C(2) 78.4(1).

 ${Cp_2^*Mo(CO)Me}I$ may be obtained via treatment of $Cp_2^*Mo(CO)$ with MeI (Scheme 5).

The methyl-chloride complex $Cp_2^*Mo(Me)Cl$ reacts with LiAlH₄ to yield the "tuck-in" complex $Cp^*(\eta^5, \eta^1 - C_5Me_4CH_2)MoH$ (Scheme 3) which has previously been obtained via photolysis of $Cp_2^*MoH_2$ [12]. The "tuck-in" complex $Cp^*(\eta^5, \eta^1 - C_5Me_4CH_2)MoH$ is presumably obtained as a consequence of facile elimination of methane from the undetected methyl-hydride intermediate,

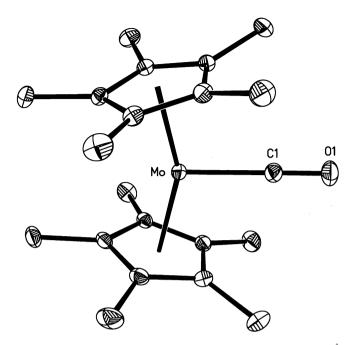


Fig. 5. Molecular structure of $Cp_2^*Mo(CO)$. Selected bond lengths (Å) and angles (°): Mo–C(1) 1.954(2), C(1)–O(1) 1.154(3); Mo–C(1)–O(1) 179.5(3).

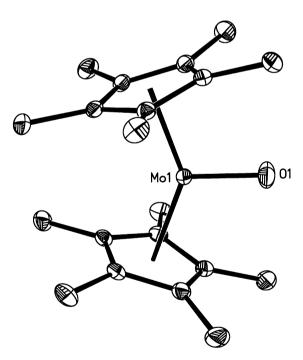
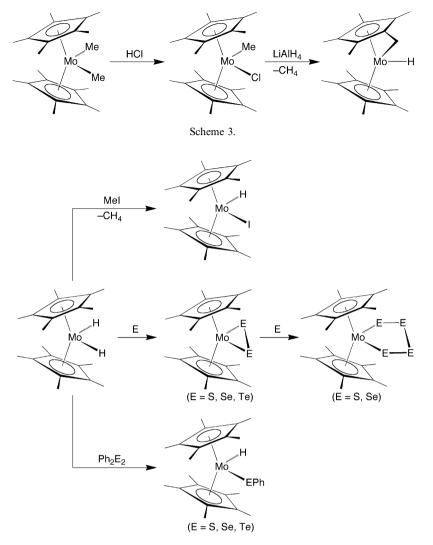


Fig. 6. Molecular structure of Cp_2^*MoO (only one of the two crystallographically independent molecules shown). Selected bond lengths (Å): Mo(1)-O(1) 1.723(2), Mo(2)-O(2) 1.720(2).

 $Cp_2^*Mo(Me)H$. The inability to isolate the methyl-hydride $Cp_2^*Mo(Me)H$ in this system is in marked contrast to the isolation of the tungsten analogue, $Cp_2^*W(Me)H$ [14,15], but is not surprising in view of the fact that elimination of RH from a {[M](R)(H)} complex is typically more facile for molybdenum than for tungsten. For example, reductive elimination of benzene from $[Me_2Si(C_5Me_4)_2]Mo(Ph)H$ has

a substantially smaller activation barrier ($\Delta G^{\ddagger} = 27.9$ kcal mol⁻¹ at 80 °C) than that for the tungsten counterpart, [Me₂Si(C₅Me₄)₂]W(Ph)H ($\Delta G^{\ddagger} = 40.1$ kcal mol⁻¹ at 182 °C) [9d]. If reductive elimination of methane from Cp₂^{*}Mo(Me)H and Cp₂^{*}W(Me)H were to exhibit a similar difference in activation barrier to that for reductive elimination of benzene from [Me₂Si(C₅Me₄)₂]Mo(Ph)H and [Me₂Si(C₅Me₄)₂]W(Ph)H ($\Delta \Delta G^{\ddagger} \approx 12$ kcal mol⁻¹), the barrier for reductive elimination of methane from Cp₂^{*}Mo(Me)H is estimated to be $\Delta G^{\ddagger} \approx 17$ kcal mol⁻¹. This activation barrier corresponds to a half-life of ≈ 7 s at 0 °C, a value that is in accord with our inability to observe Cp₂^{*}Mo(Me)H.


The dihydride $Cp_2^*MoH_2$ also provides a means to synthesize a series of phenylchalcogenolate–hydride complexes $Cp_2^*Mo(EPh)H$ (E = S, Se, Te)⁵ and chalcogenido complexes, namely $Cp_2^*Mo(\eta^2-E_2)$ (E = S, Se, Te)⁶ and $Cp_2^*Mo(\eta^2-E_4)$ (E = S, Se), as illustrated in Scheme 4. Thus, $Cp_2^*Mo(EPh)H$ is obtained via reaction of $Cp_2^*MoH_2$ with Ph_2E_2 , while $Cp_2^*Mo(\eta^2-E_2)$ and $Cp_2^*Mo(\eta^2-E_4)$ are obtained by reaction of $Cp_2^*MoH_2$ with 2 and 4 equivalents of the elemental chalcogen, respectively. The molecular structures of $Cp_2^*Mo(\eta^2-E_2)$ (E = S, Se, Te) and $Cp_2^*Mo(\eta^2-Se_4)$ have been determined by X-ray diffraction, as illustrated in Figs. 8–11.

Although $Cp_2^*Mo(EPh)H$ have not been structurally characterized by X-ray diffraction, low-temperature ¹H NMR spectroscopic studies demonstrate that the complexes exist as two conformers that are distinguished according to whether the phenyl group occupies an endo or exo position relative to the hydride ligand (Fig. 12). NOESY studies enable the two isomers to be identified by virtue of the fact that the endo isomer exhibits a cross peak between the molybdenum-hydride and the ortho hydrogen atoms of the phenyl group, whereas a corresponding cross peak does not exist for the *exo* isomer.⁷ Measurement of the equilibrium constant as a function of temperature demonstrates that the *exo* isomer is identified as the more stable. The existence of endo and exo isomers is not unprecedented, as illustrated by the fact that X-ray diffraction studies demonstrate that the EPh ligands of $(Cp^{Bu'})_{2}Mo(EPh)H$ (E = Se, Te) and $(Cp^{Bu'})_{2}Mo(SPh)_{2}$ exhibit endo and exo conformations, respectively [7a,16]. The *exo* conformation is the geometry that minimizes (i) destabilizing interactions between the lone pairs of electrons on the chalcogen and the d^2 pair of electrons on the molybdenum and (ii) steric interactions between the phenyl group and the other substituent on molybdenum, while the endo conformation is the geometry which

 $^{^5}$ The counterparts $(Cp^{Bu^{\rm t}})_2 Mo(EPh)H$ have also been synthesized. See Ref. [7a].

 $^{^6}$ The counterparts $(Cp^{Bu^t})_2 Mo(\eta^2\mathchar`E_2)$ have also been synthesized. See Ref. [7a].

⁷ It is also noteworthy that the hydride ligand of the *exo* isomers of $Cp_2^*Mo(EPh)H$ (E = Se, Te) exhibit coupling to selenium and tellurium at low temperature (230 K): $J_{Se-H} = 26$ Hz and $J_{Te-H} = 79$ Hz.

Scheme 4.

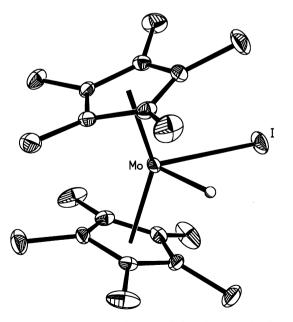
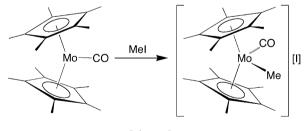



Fig. 7. Molecular structure of $Cp_2^*Mo(H)I$ (the hydride ligand is disordered and only one position is shown). Selected bond lengths (Å): Mo–I 2.8100(5).

Scheme 5.

minimizes steric interactions between the phenyl and cyclopentadienyl ligands.

The interconversion between the *endo* and *exo* conformers of $Cp_2^*Mo(EPh)H$ is facile on the NMR timescale, as illustrated in Fig. 13 for $Cp_2^*Mo(SPh)H$. Analysis of the data demonstrates that the barrier decreases in the sequence S > Se > Te (Table 1). In principle, the interconversion of the *endo* and *exo* conformers may be achieved by either rotation of the phenyl group about the Mo–E bond or by inversion at the chalcogen. However, the observation that the barrier decreases in the sequence

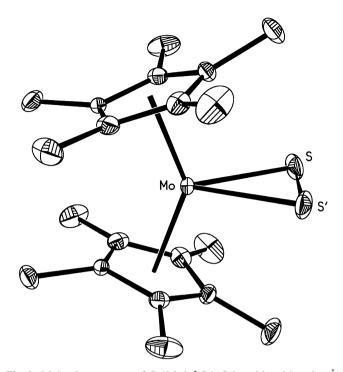


Fig. 8. Molecular structure of $Cp_2^*Mo(\eta^2-S_2)$. Selected bond lengths (Å) and angles (°): Mo–S 2.434(1), S–S' 2.091(2); S–Mo–S' 50.88(5).

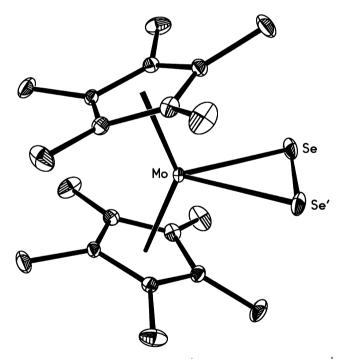


Fig. 9. Molecular structure of $Cp_2^*Mo(\eta^2-Se_2)$. Selected bond lengths (Å) and angles (°): Mo–Se 2.590(1), Se–Se' 2.335(1); Se–Mo–Se' 53.59(2).

S > Se > Te suggests that the mechanism for interconversion merely corresponds to rotation about the Mo–E bond. Specifically, the barrier for rotation about the Mo–E bond should be reduced as the Mo–E bond length increases because this would reduce the interaction between the phenyl group and the Cp* ligand in the transition state. In further support of the notion that the fluxionality within

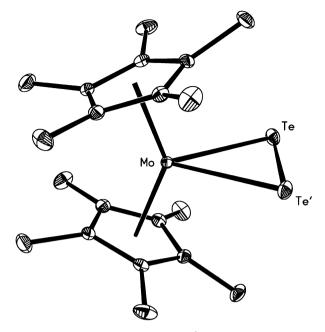


Fig. 10. Molecular structure of $Cp_2^*Mo(\eta^2-Te_2)$. Selected bond lengths (Å) and angles (°): Mo–Te 2.804(1), Te–Te' 2.696(1); Te–Mo–Te' 57.48(3).

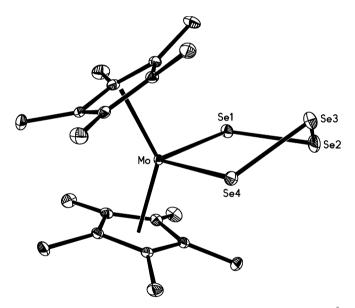


Fig. 11. Molecular structure of $Cp_2^*Mo(\eta^2-Se_4)$. Selected bond lengths (Å) and angles (°): Mo–Se(1) 2.527(1), Mo–Se(4) 2.550(1), Se(1)–Se(2) 2.409(1), Se(2)–Se(3) 2.307(1), Se(3)–Se(4) 2.380(1); Se(1)–Mo–Se(4) 90.30(2).

 $Cp_2^*Mo(EPh)H$ pertains to rotation about the Mo–E bond, the fluxional process that causes the two Cp^{Bu^t} ligands of $[Cp^{Bu^t}Mo(PhEMe)H]^+$ to become equivalent requires inversion at the chalcogen and the barrier for this process varies in the opposite sequence, i.e., S < Se < Te [7a].

2.3. Reactivity of Cp^{*}₂MoO

The oxo complex Cp_2^*MoO is also a useful precursor for other derivatives via reactions with Me₃SiX reagents. For example, Cp_2^*MoO reacts with (i) Me₃SiCN to give

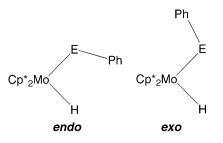


Fig. 12. Endo and exo conformers of Cp₂^{*}Mo(EPh)H.

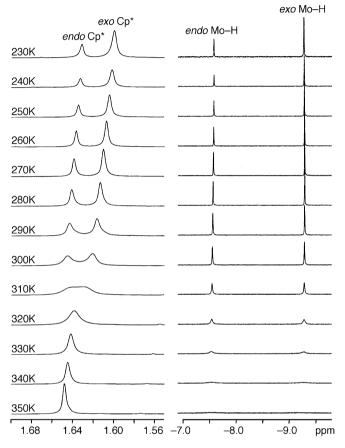


Fig. 13. Variable temperature 1H NMR spectra of $Cp_2^*Mo(SPh)H$ (Cp* and hydride region).

 $Cp_2^*Mo(OSiMe_3)CN$ and (ii) Me_3SiX (X = NCS, N₃) to give $Cp_2^*MoX_2$ [17], as illustrated in Scheme 6; precedents for these transformations are provided by the reactions of $(Cp^{Bu'})_2MoO$ with Me_3SiX [7a]. Thiocyanate is an ambidentate ligand and may coordinate to a metal center via either sulfur (M–SCN, thiocyanate) or nitrogen (M–NCS, isothio-

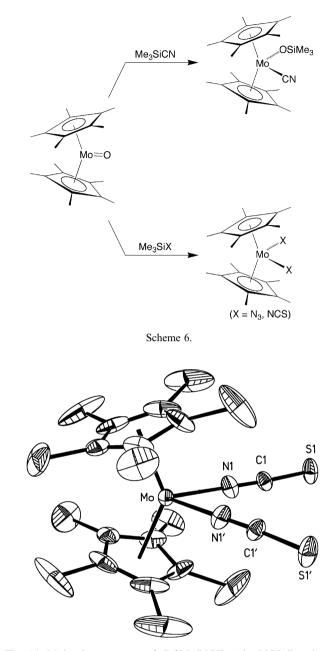


Fig. 14. Molecular structure of $Cp_2^*Mo(NCS)_2$ (the NCS ligands are disordered and only one configuration is shown). Selected bond lengths (Å): Mo–N(1) 2.107(2), N(1)–C(1) 1.153(2), C(1)–S(1) 1.631(2).

cyanate). ¹³C NMR spectroscopy has been used to distinguish the two coordination modes, with the chemical shift for M–NCS moieties being comparable to, or greater than, that for NCS⁻ (ca. 134 ppm), whereas M–SCN moieties are

Table 1

Thermodynamic quantities pertaining to interconversion of endo and exo Cp₂^{*}Mo(EPh)H

	$Cp_2^*Mo(SPh)H$	$Cp_2^*Mo(SePh)H$	$Cp_2^*Mo(TePh)H$
$\Delta H_{\rm endo \rightarrow exo}/\rm{kcal}\ \rm{mol}^{-1}$	-1.64(6)	-2.19(5)	-2.21(9)
$\Delta S_{\text{endo} \rightarrow \text{exo}}/\text{e.u.}$	-5.2(2)	-5.5(2)	-5.2(4)
$\Delta H_{\rm endo \to exo}^{\ddagger}/{\rm kcal}~{\rm mol}^{-1}$	17.6(7)	14.2(6)	12.2(7)
$\Delta S_{\text{endo} \rightarrow \text{exo}}^{\dagger}/\text{e.u.}$	3(2)	-2(2)	0(3)
$\Delta G_{\text{endo} \rightarrow \text{exo}}/\text{kcal mol}^{-1} (25 \text{ °C})$	-0.09	-0.55	-0.66
$\Delta G_{\text{endo} \rightarrow \text{exo}}^{\ddagger}/\text{kcal mol}^{-1} (25 \text{ °C})$	16.7	14.8	12.2

characterized by chemical shifts less than that for NCS⁻ (i.e., $\delta_{M-SCN} < \delta_{NCS^-} \le \delta_{M-NCS}$) [18]. On this basis, $Cp_2^*Mo(NCS)_2$, with a chemical shift of 147.4 ppm, is clearly identified as a *N*-bound isothiocyanate derivative. X-ray diffraction studies also support this coordination mode (Fig. 14), although the NCS ligands are disordered over two positions.

3. Conclusions

In summary, convenient access to permethylmolybdenocene compounds is provided via the synthesis of $Cp_2^*MoCl_2$ which involves the reaction of $MoCl_5$ with a mixture of Cp^*K and $NaBH_4$ followed by treatment with CHCl_3. $Cp_2^*MoCl_2$ provides access to a large variety of other derivatives, such as $Cp_2^*MoH_2$, $Cp_2^*MoMe_2$, Cp_2^*MoCO , Cp_2^*-MoO , $Cp_2^*Mo(Me)Cl$, $Cp_2^*Mo(H)I$, $Cp_2^*Mo(EPh)H$ (E = S, Se, Te), $Cp_2^*Mo(\eta^2-E_2)$ (E = S, Se, Te), $Cp_2^*Mo(\eta^2-E_4)$ (E = S, Se), $Cp_2^*Mo(OSiMe)_3CN$, $Cp_2^*Mo(NCS)_2$, and $Cp_2^*Mo(N)_3$, many of which have been structurally characterized by X-ray diffraction.

4. Experimental

4.1. General considerations

All manipulations were performed using a combination of glovebox and Schlenk techniques [19]. Solvents were purified and degassed by standard procedures. All commercially available reagents were used as received without any further purification. IR spectra were recorded as KBr pellets on a Perkin-Elmer Paragon 1000 FT-IR spectrometer and are reported in cm⁻¹. Carbon, hydrogen and nitrogen elemental analyses were performed on a Perkin-Elmer 2400 CHN Elemental Analyzer. NMR spectra were recorded on Bruker Avance DPX 300, DRX 300, and DMX 500 spectrometers. ¹H and ¹³C resonance chemical shifts are reported in ppm relative to SiMe₄ (δ 0) and were referenced internally to the residual protio resonance (δ 7.15 for C_6D_5H and 7.26 for CHCl₃) and the ¹³C resonance (δ 128.0 for C₆D₆ and 77.0 for CDCl₃) of the solvent. ⁷⁷Se chemical shifts are reported in ppm relative to neat Me₂Se $(\delta = 0)$ and were referenced using a solution of Ph₂Se₂ in C_6D_6 ($\delta = 460$) as external standard [20]. ¹²⁵Te chemical shifts are reported in ppm relative to neat Me₂Te ($\delta = 0$) and were referenced using a solution of Ph₂Te₂ in CDCl₃ $(\delta = 420.8)$ as external standard [21].

4.2. Synthesis of $Cp_2^*MoCl_2$ and $(Cp^{Me_4Et})_2MoCl_2$

A solution of $MoCl_5$ (4.02 g, 14.7 mmol) in toluene (10 mL)/THF (50 mL) at -78 °C was slowly added to a mixture of Cp*K (15.70 g, 90.1 mmol) and NaBH₄ (1.49 g, 39.4 mmol) in THF (150 mL) at -78 °C. The resulting mixture was allowed to warm to room temperature and stirred for 3 h. After this period, the mixture was heated for 24 h at 65 °C. The volatile components were removed from the

mixture and the residue was dried in vacuo overnight. The residue was extracted into pentane (200 mL), concentrated to 100 mL, and treated with $CHCl_3$ (5 mL). The mixture was stirred overnight at room temperature and the resulting precipitate was isolated by filtration, washed with pentane $(2 \times 30 \text{ mL})$, and dried in vacuo to give Cp^{*}₂MoCl₂ as a brown⁸ solid (4.13 g, 64%). Anal. Calc. for $C_{20}H_{30}Cl_2Mo$: C, 54.9; H, 6.9. Found: C, 54.3; H, 7.2%. IR data (KBr disk, cm⁻¹): 2959 (s), 2904 (vs), 1456 (vs), 1374 (vs), 1069 (m), 1019 (vs), 804 (w), 679 (w), 609 (w), 415 (w). ¹H NMR (C_6D_6) : 1.46 [s, $C_5(CH_3)_5$]. ¹³C NMR (C_6D_6) : 11.3 [q, ${}^{1}J_{C-H} = 128, C_{5}(CH_{3})_{5}, 108.9 [s, C_{5}(CH_{3})_{5}], (Cp^{Me_{4}Et})_{7}$ MoCl₂ was prepared by an analogous procedure. IR data (KBr disc, cm⁻¹): 2963 (vs), 2905 (vs), 1636 (m), 1457 (vs), 1376 (vs),1022 (vs), 970 (m). ¹H NMR (C_6D_6): 0.92 $[t, {}^{3}J_{H-H} = 8, 6H, 2C_{5}(CH_{3})_{4}CH_{2}CH_{3}], 1.52 [s, 12H,]$ $2C_5(CH_3)_4CH_2CH_3$], 1.54 [s, 12H, $2C_5(CH_3)_4CH_2CH_3$], 1.52 [c, 12H, $2C_5(CH_3)_4CH_2CH_3$], 1.54 [s, 12H, $2C_5(CH_3)_4CH_2CH_3$], 1.78 [q, ${}^3J_{H-H} = 8$, 4H, $2C_5(CH_3)_4CH_2CH_3$]. ${}^{13}C$ NMR (C₆D₆): 11.3 [q, ${}^{1}J_{C-H} = 128$, 4C, $2C_5(CH_3)_4CH_2CH_3$], 11.8 [q, ${}^{1}J_{C-H} = 128$, 4C, $2C_{5}(CH_{3})_{4}CH_{2}CH_{3}$], 14.3 [q, ${}^{1}J_{C-H} = 127$, 2C, $2C_{5}(CH_{3})_{4}CH_{2}CH_{3}$], 19.3 [t, ${}^{1}J_{C-H} =$ 128, 2C, 2C₅(CH₃)₄CH₂CH₃], 107.7 [s, 4C, 2 C₅(CH₃)₄-CH₂CH₃], 111.3 [s, 4C, 2 C₅(CH₃)₄CH₂CH₃], 111.6 [s, 2C, $2C_5(CH_3)_4CH_2CH_3].$

4.3. Synthesis of Cp^{*}₂MoH₂

A stirred suspension of Cp^{*}₂MoCl₂ (1.00 g, 2.29 mmol) in ether (30 mL) was treated with LiAlH₄ (14 mL, 1.0 M solution in ether) at -78 °C and then allowed to warm slowly to room temperature and stirred overnight. After this period, the mixture was cooled to 0 °C and treated dropwise with degassed water (2 mL). The mixture was allowed to warm to room temperature and stirred for 1 h. The volatile components were removed in vacuo, and the residue was extracted into pentane. The filtrate was concentrated to ca. 2 mL and cooled to -78 °C, thereby depositing Cp^{*}₂MoH₂ as a green-brown solid⁹ which was isolated by filtration and dried in vacuo (0.52 g, 62%). Anal. Calc. for C₂₀H₃₂Mo: C, 65.2; H, 8.8. Found: C, 65.3; H, 9.2%. IR data (KBr disk, cm⁻¹): 2975 (vs), 2898 (vs), 2712 (m), 1864 (s) [v(Mo-H)], 1478 (s), 1452 (s), 1426 (s), 1375 (vs), 1069 (m), 1028 (vs), 908 (w), 884 (w), 792 (w), 670 (w), 590 (w), 414 (w). ¹H NMR (C₆D₆): -8.35 [s, MoH₂], 1.85 [s, C₅(CH₃)₅]. ¹³C NMR (C₆D₆): 12.2 [q, ${}^{1}J_{C-H} = 126$, C₅(CH₃)₅], 92.9 [s, C₅(CH₃)₅].

4.4. Synthesis of $Cp_2^*Mo(CO)$

A mixture of $Cp_2^*MoCl_2$ (500 mg, 1.14 mmol), Na (55 mg, 2.39 mmol) and Hg (2 mL) in THF (100 mL) was

⁸ It should be noted that the brown color of $Cp_2^*MoCl_2$ is in marked contrast to the bright blue color that was reported previously (Ref. [11]).

⁹ Sublimation of the green-brown solid gives Cp^{*}₂MoH₂ as a yellow solid upon sublimation (C. Limberg, S. Roggan and C. Jankowski, unpublished results).

stirred under CO (1 atm) overnight at room temperature. After this period, the volatile components were removed and the residue was extracted into pentane. The extract was concentrated to ca. 2 mL and cooled to -78 °C, thereby depositing Cp₂^{*}Mo(CO) as a green solid which was isolated by filtration and dried in vacuo (290 mg, 64%). Anal. Calc. for C₂₁H₃₀OMo: C, 64.0; H, 7.7. Found: C, 63.0; H, 7.8%. IR data (KBr disk, cm⁻¹): 2972 (m), 2952 (m), 2899 (s), 2716 (w), 1867 (vs) [v(CO)], 1458 (m), 1376 (s), 1067 (w), 1025 (m), 909 (w), 884 (w), 801 (vw), 682 (vw), 620 (vw), 590 (vw), 512 (w), 483 (vw), 404 (vw). IR data (pentane): 1890 [v(CO)]. ¹H NMR (C₆D₆): 1.72 [s, C₅(CH₃)₅]. ¹³C NMR (C₆D₆): 11.7 [q, ¹J_{C-H} = 127, C₅(CH₃)₅], 90.5 [s, C₅(CH₃)₅], 254.8 [s, CO].

4.5. Synthesis of $Cp_2^*Mo(H)(I)$

A solution of Cp₂^{*}MoH₂ (200 mg, 0.54 mmol) in toluene (10 mL) was treated with CH₃I (200 mg, 1.41 mmol) for 2 days at room temperature. After this period, the volatile components were removed, and the residue was washed with pentane (1 mL) and dried in vacuo to give Cp₂^{*}Mo(H)(I) as a green solid (210 mg, 78%). Anal. Calc. for C₂₀H₃₁IMo: C, 48.6; H, 6.3. Found: C, 48.4; H, 6.5%. IR data (KBr disk, cm⁻¹): 2956 (s), 2891 (vs), 1869 (m) [ν (Mo–H)], 1462 (vs), 1373 (vs), 1159 (w), 1070 (m), 1021 (vs), 844 (w), 798 (w), 669 (w), 613 (w), 544 (vw), 412 (w). ¹H NMR (C₆D₆): -9.49 [s, MoH], 1.75 [s, C₅(CH₃)₅]. ¹³C NMR (C₆D₆): 13.1 [q, ¹J_{C-H} = 127, C₅(CH₃)₅], 99.0 [s, C₅(CH₃)₅].

4.6. Synthesis of $Cp_2^*Mo(CH_3)_2$

A mixture of Cp₂^{*}MoCl₂ (500 mg, 1.14 mmol) and CH₃Li (75 mg, 3.41 mmol) in toluene (20 mL) was stirred at room temperature for 3 h. After this period, the volatile components were removed in vacuo, and the residue was extracted into pentane. The extract was concentrated to ca. 2 mL and cooled to -78 °C, thereby depositing Cp₂^{*}Mo(CH₃)₂ as a red-brown solid which was isolated by filtration and dried in vacuo (275 mg, 61%). Anal. Calc. for C₂₂H₃₆Mo: C, 66.6; H, 9.2. Found: C, 65.8; H, 9.5%. IR data (KBr disk, cm⁻¹): 2948 (vs), 2899 (vs), 2859 (vs), 2716 (m), 1481 (s), 1425 (s), 1374 (vs), 1167 (m), 1065 (m), 1021 (vs), 800 (w), 743 (w), 612 (w), 543 (w), 468 (w), 410 (w). ¹H NMR (C₆D₆): -0.66 [s, Mo(CH₃)₂], 1.42 [s, C₅(CH₃)₅]. ¹³C NMR (C₆D₆): 6.9 [q, ¹J_{C-H} = 125, Mo(CH₃)₂], 10.1 [q, ¹J_{C-H} = 126, C₅(CH₃)₅], 96.2 [s, C₅(CH₃)₅].

4.7. Synthesis of $Cp_2^*Mo(CH_3)Cl$

A solution of $Cp_2^*Mo(CH_3)_2$ (110 mg, 0.28 mmol) in toluene (10 mL) was treated with HCl (0.27 mL, 1.0 M solution in Et₂O) and the mixture was stirred at room temperature for 2 h. After this period, the volatile components were removed in vacuo and the residue was washed with pentane (2 mL) and dried in vacuo to give Cp₂^{*}MoCH₃Cl as a brown solid (90 mg, 78%). Anal. Calc. for C₂₁H₃₃ClMo: C, 60.5; H, 8.0. Found: C, 59.7; H, 7.9%. IR data (KBr disk, cm⁻¹): 2962 (vs), 2901 (vs), 2715 (m), 1481 (s), 1433 (s), 1374 (vs), 1262 (w), 1154 (m), 1067 (m), 1021 (vs), 954 (m), 803 (m), 696 (w), 675 (w), 653 (w), 611 (w), 541 (w), 469 (w). ¹H NMR (C₆D₆): -0.41 [s, Mo(CH₃)], 1.44 [s, C₅(CH₃)₅]. ¹³C NMR (C₆D₆): 4.6 [q, ¹J_{C-H} = 129, Mo(CH₃)], 10.6 [q, ¹J_{C-H} = 127, C₅(CH₃)₅], 102.3 [s, C₅(CH₃)₅].

4.8. Reaction of $Cp_2^*Mo(CH_3)Cl$ with $LiAlH_4$

A solution of $Cp_2^*Mo(Me)Cl$ (ca. 10 mg) in benzene-d⁶ was treated with LiAlH₄ and monitored by ¹H NMR spectroscopy, thereby demonstrating the formation of $Cp^*(\eta^5, \eta^1-C_5Me_4CH_2)MoH$ inter alia by comparison with the ¹H NMR spectrum of a sample prepared by the literature method [12]. Specifically, a solution of Cp₂^{*}MoH₂ (200 mg, 0.54 mmol) in cyclohexane (10 mL) was photolyzed for one day. After this period, the volatile components were removed in vacuo, and the residue was extracted into pentane and filtered. The filtrate was concentrated to 1 mL, cooled at -78 °C, filtered and dried in vacuo to give $Cp^*(\eta^6-C_5Me_4CH_2)MoH$ as a yellow-brown solid (95 mg, 48%). Anal. Calc. for C₂₀H₃₀Mo: C, 65.6; H, 8.3. Found: C, 65.7; H, 8.5%. IR data (KBr disk, cm⁻¹): 2951 (vs), 2897 (vs), 2717 (m), 1858 (m) [v(Mo-H)], 1458 (s), 1374 (vs), 1160 (w), 1080 (m), 1024 (vs), 949 (w), 908 (m), 879 (m), 843 (m), 773 (w), 750 (w), 623 (m), 589 (w), 541 (vw), 425 (w). ¹H NMR (C₆D₆): -9.69 [q, ⁴ J_{H-H} = 3.5, 1H, MoH], 1.40 [s, 3H of C₅(CH₃)₄CH₂], 1.55 [s, 3H of C₅(CH₃)₄CH₂], 1.75 [s, 15H, C₅(CH₃)₅], 1.85 [s, 3H of C₅(CH₃)₄CH₂], 1.97 [d, ${}^{4}J_{H-H} = 3.5$, 3H of C₅(CH₃)₄CH₂], 2.69 [br, 1H of C₅(CH₃)₄CH₂], 3.29 [br, 1H of $C_5(CH_3)_4CH_2$]. ¹³C NMR (C_6D_6): 8.6 [q, ¹ J_{C-H} = 126, 1C of $C_5(CH_3)_4CH_2$], 9.5 [q, ${}^{1}J_{C-H} = 126$, 1C of $C_5(CH_3)_4$ -CH₂], 11.3 [q, ${}^{1}J_{C-H} = 126$, 1C of C₅(CH₃)₄CH₂], 11.8 [q, ${}^{1}J_{C-H} = 126$, 5C of C₅(*C*H₃)₅], 15.5 [q, ${}^{1}J_{C-H} = 127$, 1C of C₅(*C*H₃)₅CH₂], 49.5 [t, ${}^{1}J_{C-H} = 155$, 1C of C₅(CH₃)₄-CH₂], 90.3 [s, 1C of C₅(CH₃)₄CH₂], 92.8 [s, 1C of $C_5(CH_3)_4CH_2$], 95.3 [s, 5C of $C_5(CH_3)_5$], 97.9 [s, 1C of $C_5(CH_3)_4CH_2$, 101.5 [s, 1C of $C_5(CH_3)_4CH_2$], 109.0 [s, 1C of $C_5(CH_3)_4CH_2$].

4.9. Synthesis of Cp^{*}₂MoO

A mixture of Cp₂^{*}MoCl₂ (1.00 g, 2.29 mmol) and LiOH (0.84 g, 35.08 mmol) in toluene (50 mL) was stirred at 80 °C for 2 days. After this period, the volatile components were removed in vacuo, and the residue was extracted into pentane (50 mL). The extract was concentrated to ca. 2 mL and cooled to -78 °C, thereby depositing Cp₂^{*}MoO as a green solid which was isolated by filtration and dried in vacuo (0.56 g, 64%). Anal. Calc. for C₂₀H₃₀OMo: C, 62.8; H, 7.9. Found: C, 62.6; H, 8.2%. IR data (KBr disk, cm⁻¹): 2973 (s), 2949 (s), 2902 (vs), 2717 (w), 1478 (m), 1440 (s), 1373 (vs), 1159 (w), 1065 (m), 1024 (s), 915 (m),

885 (m), 834 (vs) [ν (Mo=O)], 799 (m), 713 (vw), 682 (vw), 621 (vw), 600 (vw), 546 (vw), 437 (w), 405 (vw). ¹H NMR (C₆D₆): 1.70 [s, C₅(CH₃)₅]. ¹³C NMR (C₆D₆): 11.8 [q, ¹J_{C-H} = 126, C₅(CH₃)₅], 109.2 [s, C₅(CH₃)₅].

4.10. Synthesis of $Cp_2^*Mo(\eta^2-S_2)$

A mixture of $Cp_2^*MoH_2$ (200 mg, 0.54 mmol) and sulfur (35 mg, 1.09 mmol) in toluene (10 mL) was stirred at room temperature for 2 h. After this period, the volatile components were removed in vacuo and the residue was washed with pentane (2×2 mL) and dried in vacuo to give $Cp_2^*Mo(\eta^2-S_2)$ as a red-brown solid (150 mg, 64%). Anal. Calc. for $C_{20}H_{30}S_2Mo$: C, 55.8; H, 7.0. Found: C, 55.4; H, 7.3%. IR data (KBr disk, cm⁻¹): 2970 (s), 2946 (s), 2894 (vs), 2708 (w), 1473 (s), 1371 (vs), 1068 (m), 1019 (vs), 802 (m), 728 (w), 608 (w), 526 (m), 457 (w), 413 (w). ¹H NMR (C₆D₆): 1.58 [s, $C_5(CH_3)_5$]. ¹³C NMR (C₆D₆): 11.3 [q, ¹J_{C-H} = 127, $C_5(CH_3)_5$], 101.8 [s, $C_5(CH_3)_5$].

4.11. Synthesis of $Cp_2^*Mo(\eta^2-S_4)$

A mixture of Cp₂^{*}Mo(η^2 -S₂) (90 mg, 0.21 mmol) and sulfur (20 mg, 0.62 mmol) in toluene (5 mL) was stirred at 80 °C for 2 days. After this period, the mixture was cooled to room temperature and pentane (5 mL) was added, thereby depositing Cp₂^{*}Mo(η^2 -S₄) as a red solid which was isolated by filtration, washed with pentane (2 × 5 mL) and dried in vacuo (70 mg, 68%). Anal. Calc. for C₂₀H₃₀S₄Mo: C, 48.6; H, 6.1. Found: C, 48.8; H, 6.4%. IR data (KBr disk, cm⁻¹): 2987 (m), 2948 (m), 2899 (vs), 2713 (w), 1483 (vs), 1449 (s), 1374 (vs), 1157 (w), 1065 (w), 1018 (vs), 802 (w), 741 (w), 678 (w), 580 (w), 528 (w), 495 (w), 462 (w), 434 (w), 408 (vw). ¹H NMR (CDCl₃): 1.74 [s, C₅(CH₃)₅]. ¹³C NMR (CDCl₃): 11.2 [q, ¹J_{C-H} = 128, C₅(CH₃)₅], 107.2 [s, C₅(CH₃)₅].

4.12. Synthesis of $Cp_2^*Mo(\eta^2-Se_2)$

A mixture of Cp₂^{*}MoH₂ (200 mg, 0.54 mmol) and selenium (85 mg, 1.08 mmol) in toluene (10 mL) was stirred at 80 °C for 2 h. After this period, the mixture was filtered and the volatile components were removed in vacuo. The residue was washed with pentane (2 × 5 mL) and dried in vacuo to give Cp₂^{*}Mo(η^2 -Se₂) as a green solid (210 mg, 74%). Anal. Calc. for C₂₀H₃₀Se₂Mo: C, 45.8; H, 5.8. Found: C, 45.9; H, 6.1%. IR data (KBr disk, cm⁻¹): 2968 (m), 2888 (vs), 2707 (w), 1471 (s), 1370 (vs), 1161 (w), 1067 (m), 1017 (vs), 804 (m), 696 (w), 601 (w), 543 (w), 411 (w). ¹H NMR (CDCl₃): 1.82 [s, C₅(CH₃)₅]. ¹³C NMR (CDCl₃): 12.1 [q, ⁻¹J_{C-H} = 128, C₅(CH₃)₅], 101.4 [s, C₅(CH₃)₅]. ⁷⁷Se{¹H} NMR (CDCl₃): 73 [s].

4.13. Synthesis of $Cp_2^*Mo(\eta^2-Se_4)$

A mixture of $Cp_2^*MoH_2$ (200 mg, 0.54 mmol) and selenium (175 mg, 2.22 mmol) in toluene (20 mL) was stirred

at 80 °C for 3 h. After this period, the volatile components were removed and the residue was extracted into THF (50 mL). The solvent was removed from the extract to give $Cp_2^*Mo(\eta^2-Se_4)$ as a red-purple solid which was washed with toluene (2 × 20 mL) and pentane (2 × 10 mL) and dried in vacuo (160 mg, 43%). Anal. Calc. for $C_{20}H_{30}Se_4Mo$: C, 35.2; H, 4.4. Found: C, 34.4; H, 4.6%. IR data (KBr disk, cm⁻¹): 2985 (m), 2945 (m), 2893 (vs), 2712 (w), 1480 (vs), 1447 (vs), 1372 (vs), 1065 (m), 1017 (vs), 804 (w), 590 (w), 547 (w), 491 (w), 408 (w). ¹H NMR (CDCl₃): 1.82 [s, $C_5(CH_3)_5$]. ¹³C NMR (CDCl₃): 12.0 [q, ¹ J_{C-H} = 128, $C_5(CH_3)_5$], 106.1 [s, $C_5(CH_3)_5$]. ⁷⁷Se{¹H} NMR (CDCl₃): 376 [s, ¹ J_{Se-Se} = 195 (satellite), 2Se of Mo(η^2 -Se₄)].

4.14. Synthesis of $Cp_2^*Mo(\eta^2-Te_2)$

A mixture of $Cp_2^*MoH_2$ (150 mg, 0.41 mmol) and tellurium (210 mg, 1.65 mmol) in toluene (10 mL) was stirred at 120 °C for 4 days. After this period, the mixture was filtered and the volatile components were removed in vacuo. The residue was washed with pentane (2 × 5 mL) and dried in vacuo to give $Cp_2^*Mo(\eta^2-Te_2)$ as a red solid (150 mg, 59%). Anal. Calc. for $C_{20}H_{30}Te_2Mo$: C, 38.6; H, 4.9. Found: C, 38.0; H, 4.8%. IR data (KBr disk, cm⁻¹): 2965 (m), 2943 (s), 2879 (vs), 1468 (s), 1372 (vs), 1262 (w), 1067 (m), 1016 (vs), 956 (w), 803 (w), 653 (w), 603 (w), 539 (w), 497 (w), 469 (w), 411 (w). ¹H NMR (C₆D₆): 1.88 [s, $C_5(CH_3)_5$]. ¹³C NMR (C₆D₆): 14.5 [q, ¹ $J_{C-H} = 127$, $C_5(CH_3)_5$], 99.3 [s, $C_5(CH_3)_5$]. ¹²⁵Te NMR (C₆D₆): -225 [s].

4.15. Synthesis of $[Cp_2^*Mo(CO)CH_3]I$

A solution of Cp₂^{*}Mo(CO) (70 mg, 0.18 mmol) in toluene (10 mL) was treated with CH₃I (200 mg, 1.41 mmol) and the mixture was stirred for 1 h at room temperature. After this period, the mixture was filtered and the precipitate was washed with toluene (5 mL) and pentane (2 × 5 mL) and dried in vacuo to give [Cp₂^{*}Mo(CO)CH₃]I as a brown solid (50 mg, 53%). Anal. Calc. for C₂₂H₃₃OIMo: C, 49.3; H, 6.2. Found: C, 50.2; H, 6.4%. IR data (KBr disk, cm⁻¹): 2985 (w), 2954 (w), 2904 (w), 1946 (vs) [v(CO)], 1493 (w), 1468 (m), 1428 (w), 1386 (m), 1184 (vw), 1075 (vw), 1024 (m), 514 (w), 494 (w), 433 (vw), 410 (vw). ¹H NMR (CDCl₃): -0.62 [s, Mo(CH₃)], 1.86 [s, C₅(CH₃)₅]. ¹³C NMR (CDCl₃): -1.6 [q, ¹J_{C-H} = 133, Mo(CH₃)], 10.6 [q, ¹J_{C-H} = 129, C₅(CH₃)₅], 105.2 [s, C₅(CH₃)₅], 234.0 [s, CO].

4.16. Synthesis of $Cp_2^*Mo(OSiMe_3)CN$

A solution of Cp_2^*MoO (100 mg, 0.26 mmol) in toluene (10 mL) was treated with Me₃SiCN (100 mg, 1.01 mmol) for 1 h at room temperature. After this period, the volatile components were removed and the residue was washed with

pentane (5 mL) and dried in vacuo to give $Cp_2^*Mo(OSiMe_3)CN$ as a red-brown solid (90 mg, 71%). Anal. Calc. for $C_{24}H_{39}NOSiMo$: C, 59.9; H, 8.2; N, 2.9. Found: C, 59.9; H, 8.5; N, 2.8%. IR data (KBr disk, cm^{-1}): 2961 (m), 2942 (m), 2905 (s), 2098 (s) [$\nu(C=N)$], 1461 (m), 1378 (m), 1251 (m), 1235 (s), 1074 (w), 1025 (s), 965 (vs), 821 (s), 745 (m), 650 (w), 447 (w), 410 (w). ¹H NMR (C₆D₆): 0.51 [s, OSi(CH₃)₃], 1.49 [s, C₅(CH₃)₅]. ¹³C NMR (C₆D₆): 8.4 [q, ¹J_{C-H} = 116, OSi(CH₃)₃], 11.5 [q, ¹J_{C-H} = 128, C₅(CH₃)₅], 107.8 [s, C₅(CH₃)₅], 153.4 [s, CN].

4.17. Synthesis of $Cp_2^*Mo(NCS)_2$

A solution of Cp₂^{*}MoO (100 mg, 0.26 mmol) in toluene (10 mL) was treated with Me₃SiNCS (340 mg, 2.59 mmol) for 1 day at room temperature. After this period, the mixture was filtered and the residue was washed with toluene (5 mL) and pentane (2 × 5 mL) and dried in vacuo to give Cp₂^{*}Mo(NCS)₂ as a purple solid (65 mg, 52%). Anal. Calc. for C₂₂H₃₀N₂S₂Mo: C, 54.8; H, 6.3; N, 5.8. Found: C, 54.8; H, 6.7; N, 5.4%. IR data (KBr disk, cm⁻¹): 2992 (vw), 2959 (vw), 2910 (w), 2092 (vs) [v(NC)], 1477 (w), 1437 (w), 1380 (m), 1070 (vw), 1017 (m), 829 (m), 734 (vw), 427 (vw). ¹H NMR (CDCl₃): 1.82 [s, C₅(CH₃)₅]. ¹³C NMR (CDCl₃): 1.82 [s, C₅(CH₃)₅], 112.2 [s, C₅(CH₃)₅], 147.4 [s, Mo(NCS)₂].

4.18. Synthesis of $Cp_2^*Mo(N_3)_2$

A solution of Cp₂^{*}MoO (220 mg, 0.58 mmol) in toluene (20 mL) was treated with Me₃SiN₃ (220 mg, 1.91 mmol) for 2 h at room temperature. After this period, the volatile components were removed, and the residue was washed with pentane (3×2 mL) and dried in vacuo to give Cp₂^{*}Mo(N₃)₂ as a green solid (190 mg, 73%) [*Caution: certain azide compounds may decompose explosively*]. Anal. Calc. for C₂₀H₃₀N₆Mo: C, 53.3; H, 6.7; N, 18.7. Found: C, 52.5; H, 6.5; N, 18.0%. IR data (KBr disk, cm⁻¹): 2992 (vw), 2960 (vw), 2911 (w), 2040 (vs) [ν (N₃)], 1486 (w), 1458 (w), 1380 (m), 1337 (w), 1285 (w), 1068 (vw), 1021 (w), 804 (vw), 644 (vw), 601 (vw), 420 (vw). ¹H NMR (C₆D₆): 1.45 [s, C₅(CH₃)₅]. ¹³C NMR (C₆D₆): 9.9 [q, ¹J_{C-H} = 128, C₅(CH₃)₅], 110.1 [s, C₅(CH₃)₅].

4.19. Synthesis of $Cp_2^*Mo(SPh)H$

A mixture of $Cp_2^*MoH_2$ (150 mg, 0.41 mmol) and PhSSPh (85 mg, 0.39 mmol) in toluene (10 mL) was stirred for 1 day at 80 °C. After this period, the volatile components were removed and the residue was washed with cold pentane (3 mL) and dried in vacuo to give $Cp_2^*Mo(SPh)H$ as a brown solid (110 mg, 57%). ¹H NMR (C₆D₆, 300 K): *exo* isomer -9.23 [s, 1H of Mo-H], 1.62 [s, 30H, C₅(CH₃)₅], 6.92 [t, ³J_{H-H} = 7, 1H of SC₆H₅], 7.09 [t, ³J_{H-H} = 8, 2H of SC₆H₅], 8.24 [d, ³J_{H-H} = 8, 2H of SC₆H₅]; *endo* isomer -7.52 [s, 1H of Mo-H], 1.64 [s, 30H, C₅(CH₃)₅], 6.97 [t, ³J_{H-H} = 7, 1H of SC₆H₅], 7.22 [t, ${}^{3}J_{H-H} = 8, 2H \text{ of } SC_{6}H_{5} \text{ (2H of } SC_{6}H_{5} \text{ not located).} {}^{13}C$ NMR (C₆D₆), both isomers: 11.2 [q, ${}^{1}J_{C-H} = 127$, C₅(CH₃)₅], 11.6 [q, ${}^{1}J_{C-H} = 127$, C₅(CH₃)₅], 99.5 [s, C₅(CH₃)₅], 99.6 [s, C₅(CH₃)₅], 120.6 [d, ${}^{1}J_{C-H} = 156$, SC₆H₅], 120.9 [d, ${}^{1}J_{C-H} = 158$, SC₆H₅], 126.9 [d, ${}^{1}J_{C-H} = 155$, SC₆H₅], 127.6 [d, ${}^{1}J_{C-H} = 155$, 2SC₆H₅], 132.3 [d, ${}^{1}J_{C-H} = 158$, SC₆H₅], 132.7 [d, ${}^{1}J_{C-H} = 157$, SC₆H₅], 150.0 [s, SC₆H₅], 151.0 [s, SC₆H₅].

4.20. Synthesis of Cp^{*}₂Mo(SePh)H

A mixture of Cp₂^{*}MoH₂ (200 mg, 0.54 mmol) and PhSe-SePh (170 mg, 0.54 mmol) in toluene (10 mL) was stirred for 2 h at room temperature. After this period, the volatile components were removed, and the residue was washed with pentane $(2 \times 5 \text{ mL})$ and dried in vacuo to give $Cp_2^*Mo(SePh)H$ as a red-brown solid (210 mg, 74%). ¹H NMR (C_6D_6 , 300 K): exo isomer -9.43 [br. s, 1H of Mo-H], 1.66 [br. s, 30H, C₅(CH₃)₅], 7.02 [br, 2H of SeC₆ H_5], 7.46 [br, 1H of SeC₆ H_5], [2H of SeC₆ H_5 not located]; endo isomer: -7.71 [br, 1H of Mo-H], 1.66 [br, 30H, C₅(CH₃)₅], 7.02 [br. s, 2H of SeC₆H₅], 7.46 [br. s, 1H of SeC₆H₅] 8.36 [br. s, 2H of SeC₆H₅]. ¹³C NMR (C_6D_6) : 11.9 [q, ${}^{1}J_{C-H} = 127$, $C_5(CH_3)_5$], 98.8 [s, $C_5(CH_3)_5$], 122.1 [br. d, ${}^{1}J_{C-H} = 159$, 1C of SeC₆H₅], 127.3 [br. d, ${}^{1}J_{C-H} = 154$, 2C of SeC₆H₅], 134.4 [br. d, ${}^{1}J_{C-H} = 157, 2C \text{ of } SeC_{6}H_{5}], 139.9 [br. s, 1C \text{ of } SeC_{6}H_{5}].$ ⁷⁷Se{¹H} NMR (C₆D₆): 179 [s], 217 [s] (3:1).

4.21. Synthesis of $Cp_2^*Mo(TePh)H$

A mixture of Cp₂*MoH₂ (150 mg, 0.41 mmol) and PhTe-TePh (170 mg, 0.42 mmol) in toluene (10 mL) was stirred for 1 h at room temperature. After this period, the volatile components were removed, and the residue was washed with pentane (2×3 mL) and dried in vacuo to give Cp₂*Mo(TePh)H as a brown solid (160 mg, 69%). ¹H NMR (C₆D₆, 300 K): -9.4 [br, Mo-*H*], 1.75 [s, 30H, C₅(CH₃)₅], 6.96 [t, ³J_{H-H} = 7, 2H of TeC₆H₅], 7.07 [t, ³J_{H-H} = 7, 1H of TeC₆H₅], 7.83 [br, 2H of TeC₆H₅], ¹³C NMR (C₆D₆): 12.8 [q, ¹J_{C-H} = 127, C₅(CH₃)₅], 97.5 [s, C₅(CH₃)₅], 112.5 [br, 1C of TeC₆H₅], 123.8 [dt, ¹J_{C-H} = 159, ²J_{C-H} = 7, 1C of TeC₆H₅], 127.6 [dd, ¹J_{C-H} = 156, ²J_{C-H} = 8, 2C of TeC₆H₅], 138.6 [dt, ¹J_{C-H} = 159, ²J_{C-H} = 7, 2C of TeC₆H₅]. ¹²⁵Te{¹H} NMR (C₆D₆): 416 [s].

4.22. X-ray structure determinations

Single-crystal X-ray diffraction data were collected on a Bruker P4 diffractometer equipped with a SMART CCD detector and crystal data, data collection and refinement parameters are summarized in Table 2. The structures were solved using direct methods and standard difference map techniques, and were refined by full-matrix least-squares procedures on F^2 with SHELXTL (Version 5.10) [22]. The crystallographic data for Cp₂^{*}MoCl₂ (CCDC #289487), (Cp^{Me₄Et})₂MoCl₂ (CCDC #289486), Cp₂^{*}MoH₂ (CCDC

Table 2 Crystal, intensity collection, and refinement data

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nd	$Cp_2^*MoCl_2$	$(Cp^{Me_4Et})_2MoCl_2$	$Cp_2^*MoH_2$
System moneclinic				$C_{20}H_{32}Mo$
Space group Cc P_2/n P_2 $a(\dot{\Lambda})$ 3.567(1) 8.406(1) 8.5 $b(\dot{\Lambda})$ 17.913(1) 17.556(1) 2.43 $c(\dot{\Lambda})$ 13.666(1) 14.383(1) 9.7 $a(\dot{\Lambda})$ 10.70.20(1) 0.90 90 90 $b('')$ 107.20(1) 0.92(1) 114 $\gamma('')$ 19.84.0(3) 212.2_(3) 188 Z 4 4 4 4 $\gamma(h)$ 19.84.0(3) 212.3 203 Radiation $(\dot{\lambda}, \dot{\Lambda})$ 0.71073 0.71073 0.7 $\gamma(h)$ 0.950 0.873 0.60 Mumber of data 3112 4927 435 Number of data 11.18 1.005 1.0 Goodense-of-fit 1.118 1.005 1.0 Goodense-of-fit 1.118 1.005 0.0 Goodense-of-fit 1.18.30(1) 18.426(6) 12.922(1) 8.5 $f(\dot{\Lambda})$ 13.239(1) 16.096(1)	weight	437.28	465.33	368.40
$i(A)$ 8.257(1) 8.406(1) 8.55 $i(A)$ 17.556(1) 24.3 $i(A)$ 13.686(1) 14.385(1) 9.7 $x(1)$ 90 90 90 $y(1)$ 107.020(1) 90.221(1) 114 $y(1)$ 90 90 90 90 $y(1)$ 193.60(2) 212.5(3) 188 Z' 4 4 4 4 $T(K)$ 203 23 20 20 Rolation (i, A) 0.71073 0.70 7.7 7.6 Maximum (*) 28.3 28.3 28.5 28.8 Number of data 3112 497 435 Number of parameters 220 236 20 20 K_{5} 0.1029 0.0651 0.0 0.0 Goodness-of-fit 1.118 1.005 1.0 Goodness-of-fit 1.118 1.005 1.0 System monoclinic monoclinic mo $y_{1}(Y)$ 96.45 32.38 2.3 2.4		monoclinic		monoclinic
$b(\dot{A})$ 17.91(1) 17.556(1) 24, $c(\dot{A})$ 13.686(1) 14.385(1) 9.7 $x(\uparrow)$ 90 90 90 $b(\uparrow)$ 107.020(1) 90 90 $f(\uparrow)$ 90 90 90 $f(\uparrow)$ 198.0(3) 2122.5(3) 188 Z 4 4 4 $f(\Lambda)$ 0.71073 0.71073 0.7 $g(\Lambda)$ 0.129 0.6651 0.0 Godnes-of-fat 1.118 1.005 1.0 Formula $C_2, H_{2,M} MoO$ $C_2, I_{2,M} MoO$ $C_2, I_{2,M} MoO$ $g(\Lambda)$ 8.4126(6) 12.92(1) 8.5	oup	Cc	$P2_1/n$	$P2_1/n$
$b(\dot{A})$ 17.91(1) 17.556(1) 24, $c(\dot{A})$ 13.686(1) 14.385(1) 9.7 $x(\uparrow)$ 90 90 90 $b(\uparrow)$ 107.020(1) 90 90 $f(\uparrow)$ 90 90 90 $f(\uparrow)$ 198.0(3) 2122.5(3) 188 Z 4 4 4 $f(\Lambda)$ 0.71073 0.71073 0.7 $g(\Lambda)$ 0.129 0.6651 0.0 Godnes-of-fat 1.118 1.005 1.0 Formula $C_2, H_{2,M} MoO$ $C_2, I_{2,M} MoO$ $C_2, I_{2,M} MoO$ $g(\Lambda)$ 8.4126(6) 12.92(1) 8.5		8.267(1)	8.406(1)	8.5210(6)
$c(\dot{\Lambda})$ 13.686(1) 14.385(1) 9.7 $g(\uparrow)$ 90 90 90 $g(\uparrow)$ 107.020(1) 90.221(1) 114 $g(\uparrow)$ 193.0(3) 212.3(3) 118 $g(\uparrow)$ 193.0(3) 212.3(3) 108 Z' 4 4 4 $f(K)$ 203 23 203 Rolation $(i, \dot{\Lambda})$ 0.71073 0.71073 0.7 $g(\Lambda)$ 0.950 0.873 0.60 Maimum (*) 28.3 28.3 28.3 28.3 Number of data 3112 4927 43 Number of parameters 220 23 26 0.0 $(c_{Sidomes-of-fit})$ 1.118 1.0051 1.0 0.0 $(c_{Sidomes-of-fit})$ 1.118 1.0051 1.0 0.0		17.913(1)	17.556(1)	24.875(2)
2 (°) 90 90 90 90 β (°) 107.020(1) 90.20(1) 144 γ (°) 90 90 90 γ (Å) 193.0(3) 2122.(3) 188 Z 4 4 4 γ (Å) 03 23 203 Radiation (λ , Å) 0.71073 0.7 γ (Å) 0.950 98.73 0.6 ρ (Maximun (°) 28.3 28.3 28.3 Number of parameters 200 2.6 208 ρ (λ 0.0410 0.0522 0.6 σR_A 0.1029 0.6611 0.0 Goodness-of-fit 1.118 1.005 1.0 Goodness-of-fit 1.118 nonoclinic mo σ (Å) 8.4126(6) 2.2.38 394 System monoclinic mo 0.9 σ (Å) 8.4126(6) 2.92.11 8.5 t (Å) 13.32911 16.069(1) 9.9 r (Å) 13.32911 16.069(1) 9.9 <td< td=""><td></td><td></td><td></td><td>9.7734(6)</td></td<>				9.7734(6)
$\begin{split} \hat{\mu}(\hat{\gamma}) & 107.020(1) & 90.921(1) & 114 \\ \gamma(\hat{\gamma}) & 1938.0(3) & 2122.5(3) & 188 \\ \gamma(\hat{\gamma}) & 203 & 223 & 203 \\ Radiation (\hat{\lambda}, \hat{\Lambda}) & 0.71073 & 0.710$				
$\gamma(^{0})_{(A)}$ 90 90 90 90 Z 4 4 4 4 T(K) 203 223 203 Radiation (λ, \dot{A}) 0.71073 0.71073 0.7 Maximum (') 28.3 28.3 28.3 28.3 Number of parameters 220 236 286 286 Number of parameters 220 236 286 286 Number of parameters 220 236 286 286 N_{ch} 0.0410 0.0292 0.0651 0.0 Goodness-of-fit 1.118 1.005 1.0 Cp_{5}MoRe_2 Cp_{5}MoO Cp_{7} 76 Formula Co_2-H_wMo C_wH_wMoO C_wH_wMoO 29.0 System monoclinic monoclinic mo 70 $a(\lambda)$ 8.4126(6) 12.92(1) 8.5 14 $c(\Lambda)$ 13.239(1) 16.096(1) 9.9 90 90 90 90				114.266(1)
$V(\tilde{\Lambda}^5)$ 193.0(3) 2122.5(3) 188 Z 4 4 4 $T(K)$ 203 223 203 Radiation ($\chi, \tilde{\Lambda}$) 0.71073 0.71073 0.70 $n(K)$ 0.950 0.873 0.60 Maximum (°) 28.3 28.3 28.3 Number of data 3112 4027 433 Number of data 3112 4027 433 Namber of parameters 220 236 208 κ_{2} 0.0410 0.0292 0.0 $\sigma(\sigma)$ 0.102 0.0651 0.0 $regita$ 0.1029 0.0651 0.0 $regita$ 0.9645 82.38 394 System monoclinic monoclinic monoclinic System monoclinic 13.329(1) 16.096(1) 9.23 $r(\Lambda)$ 8.4126(6) 12.922(1) 8.5 $r(\Lambda)$ 13.329(1) 16.096(1) 9.90 $r(\Gamma)$ 90 90 90 90 $r(\Lambda)$ 13.329(1) <t< td=""><td></td><td></td><td></td><td></td></t<>				
Z 4 4 4 4 $T(K)$ 203 223 203 Radiation (i, \tilde{h}) 0.71073 0.71073 0.7073 $Mokinum (^{\circ})$ 28.3 28.3 28.3 Number of data 3112 4927 453 Number of parameters 220 236 208 N_{R_5} 0.1029 0.0651 0.07 Goodness-offit 1.118 1.005 1.0 Goodness-offit 1.118 1.005 0.0 Formula veight 396.45 382.38 394 System monoclinic monoclinic mo $a(\tilde{h})$ 8.4126(6) 12.92(1) 8.5 $b(\tilde{\lambda})$ 18.360(1) 18.951(1) 24.2 $c(\Lambda)$ 13.239(1) 16.096(1) 9.9 g° 90 90 90 90 f° 9.0 90 90 90 f° 9.0 90 90 90				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1888.5(2)
Radiation $(\lambda, \dot{\Lambda})$ 0.71073 0.71073 0.71073 0.71073 0.71073 0.6373 0.66 θ Maximum (°) 28.3 20.0 25.4 20.0 25.4 20.0 25.4 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 25.7 20.0 20.0 20.0 20.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
		0.71073	0.71073	0.71073
	(mm^{-1})	0.950	0.873	0.688
Number of data 3112 4927 435 Number of parameters 220 236 208 R_1 0.0410 0.0292 0.0 R_2 0.1029 0.0651 0.0 Goodness-of-fit 1.118 1.005 1.0 Cp2MoMe2 Cp3MoMO C23H wMOO C2 Formula C22H wMO C3H wMOO C2 382.38 394 System monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic 94 System s.4126(6) 12.922(1) 8.55 $(\dot{\Lambda})$ 13.239(1) 16.096(1) 9.9 $(\dot{\Lambda})$ 13.239(1) 16.096(1) 9.9 $(\dot{\Lambda})$ 9.0 90				28.3
Number of parameters 220 236 208 R_1 0.0410 0.0292 0.0 R_2 0.1029 0.0651 0.0 Goodness-of-fit 1.118 1.005 1.0 Cp_2MoMe_2 Cp_3MoO Cp_3 Formula C_2H_2Mo C_3H_3MOO Cp_3 Formula weight 396.45 382.38 394 System monoclinic monoclinic monoclinic monoclinic System monoclinic 18.360(1) 18.951(1) 24.4 c (Å) 13.239(1) 16.096(1) 9.9 9.9 $g^{(r)}$ 90 90 90 90 90 $g^{(r)}$ 106.793(1) 108.912(1) 114 7(2) 3728.8 193 Z 4 8 4 4 7 (A) 26 203 203 213 Z (A) 0.569 0.704 0.66 0.704 0.66 0.704 0.66 Maxinum (°) 28.				
R_1 0.0410 0.0292 0.0 wR_2 0.1029 0.0651 0.0 Goodness-of-fit 1.118 1.005 1.0 Cp_MoMe_2 Cp_MoO Cp Formula C_2,H_3MO C_2H_3MOO C_2 Formula weight 39.645 382.38 394 System monoclinic monoclinic monoclinic monoclinic $q(h)$ 8.4126(6) 12.922(1) 8.5 (k) $d(h)$ 8.4326(6) 12.921(1) 8.5 $d(h)$ 13.390(1) 16.096(1) 9.92 $d(h)$ 13.329(1) 16.096(1) 9.92 $d(h)$ 1957.7(2) 372.8 193 Z 4 8 4 $T(K)$ 203 203 203 203 Z 4 8 4 $T(K)$ 203 203 203 203 Z 4 4 7 216 4 4				
w R_5 0.1029 0.06511 0.0 Goodness-of-fit 1.118 1.005 1.0 Cp2MoMe_2 Cp2MoO Cp1 Formula C_2,H_3,Mo C_3,H_3,MoO C_2,H_3,MoO C_2,H_3,MoO,H_3,H_3,H_3,H_3,H_3,H_3,H_3,H_3,H_3,H_3	of parameters			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0.0339
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				0.0713
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	s-of-fit	1.118	1.005	1.040
Formula weight 396.45 382.38 394 System monoclinic monoclinic mo Space group C_c $P_{2_i/n}$ P_{4_i} a (Å) 8.4126(6) 12.522(1) 8.5 b (Å) 18.360(1) 18.951(1) 24.3 c (Å) 13.239(1) 16.096(1) 9.0 α (Å) 106.793(1) 108.912(1) 114 γ (°) 90 90 90 90 β (°) 106.793(1) 108.912(1) 114 γ (°) 90 90 90 90 γ (°) 90 90 90 90 χ (Å) 105.71(2) 3728.8 193 Z 4 8 4 T (K) 203 203 213 Radiation (λ , Å) 0.71073 0.71073 0.7 μ (Mo Ka) (mm ⁻¹) 0.669 0.704 0.66 Maximum (°) 28.3 28.3 28.3 28.3 Souther of data 3951 8612 444 Number of param		$Cp_2^*MoMe_2$	Cp ₂ *MoO	Cp ₂ *MoCO
Formula weight 396.45 382.38 394 System monoclinic monoclinic mo Space group C_c $P_{2,ln}$ $P_{2,l}$ a (Å) 8.4126(6) 12.922(1) 8.5.5 b (Å) 18.551(1) 2.44 c (Å) 13.239(1) 16.096(1) 9.9.9 a (Å) 106.793(1) 108.912(1) 114 γ (°) 90 90 90 90 β (°) 106.793(1) 108.912(1) 114 γ (°) 90 90 90 90 γ (A) 0.71073 0.71073 0.7		C ₂₂ H ₃₆ Mo	C ₂₀ H ₃₀ MoO	C21H30MoO
System monoclinic state	weight			394.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	monoclinic		monoclinic
$a(\dot{A})$ 8.4126(6) 12.922(1) 8.5 $b(\dot{A})$ 18.360(1) 18.951(1) 24.0 $c(\dot{A})$ 13.239(1) 16.096(1) 9.9 $\alpha(^{\circ})$ 90 90 90 90 $\beta(^{\circ})$ 106.793(1) 108.912(1) 114 $\gamma(^{\circ})$ 90 90 90 90 $V(\dot{A}^3)$ 1957.7(2) 3728.8 193 Z 4 8 4 T(K) 203 203 213 Radiation (λ, \dot{A}) 0.71073 0.71073 0.7 $\mu(Mo K\alpha)$ (mm ⁻¹) 0.669 0.704 0.66 Mox (x) (mm ⁻¹) 0.669 0.704 0.66 Mo kar) (mm ⁻¹) 0.669 0.704 0.66 Mox (x) (mm ⁻¹) 0.669 0.704 0.66 Mainun (°) 28.3 28.3 28.3 28.3 Number of data 3951 8612 444 Number of parameters 244 417 218 e_0 0.0477 0.0309 0.0 0.0	nun			$P2_1/c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Jup			
$c(\dot{A})$ 13.239(1) 16.096(1) 9.9, α (°) 90 90 90 90 β (°) 106.793(1) 108.912(1) 114 γ (°) 90 90 90 90 γ (°) 0.6793(1) 3728.8 193 Radiation (\dot{x}, \dot{A}) 0.71073 0.71073 0.7 μ (Mo K α) (mm ⁻¹) 0.669 0.704 0.66 Maximum (°) 28.3 28.3 28.3 28.3 Number of data 3951 8612 444 Number of parameters 244 417 218 κ_2 0.0477 0.0757 0.0 Goodness-of-fit 1.043 1.029 1.14 Depiction monoclinic monoclinic 0				8.539(1)
χ (°)909090 β (°)106.79(1)108.912(1)114 γ (°)909090 V (Å ³)1957.7(2)3728.8193 Z 484 X 203203213Radiation (λ, \dot{A})0.710730.710730.7 μ (Mo K α) (mm ⁻¹)0.6690.7040.66 θ Maximum (°)28.328.328.3Number of data3951861244Number of data3951861244Number of parameters244417218 R_1 0.01910.03090.07 ωR_2 0.04770.07570.07Goodness-of-fit1.0431.0291.14Formula weight494.29482.54430SystemmonoclinicmonoclinicotherSpace group $P_{2_1/n}$ C_2/c Fda a (Å)4.040(1)9.399(1)26.6 c (Å)17.121(1)15.588(1)8.6 α (Å)0.02.872(1)118.004(1)9.0 β (°)90909090 γ (°)90909090				24.943(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		13.239(1)	16.096(1)	9.929(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		90	90	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		106.793(1)	108.912(1)	114.082(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1930.7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.71073		0.71073
Number of data39518612444Number of parameters244417218 R_1 0.01910.03090.0 wR_2 0.04770.07570.0Goodness-of-fit1.0431.0291.10Cp ² Mo(H)ICp ² Mo(NCS) ₂ Cp ² FormulaC ₂₀ H ₃₁ MoIC ₂₂ H ₃₀ MoN ₂ S ₂ C ₂₀ Formula weight494.29482.54430SystemmonoclinicmonoclinicorthSpace group $P2_1/n$ $C2/c$ Fdd c (Å)14.040(1)9.399(1)26.0 c (Å)17.121(1)15.588(1)8.65 α (°)90909090 β (°)90909090 γ (°)90909090 γ (Å)2006.9(2)2274.6(3)398 Z 448 T (K)213223213	ι) (mm ⁻¹)	0.669	0.704	0.682
Number of data39518612444Number of parameters244417218 R_1 0.01910.03090.0 wR_2 0.04770.07570.0Goodness-of-fit1.0431.0291.10Cp ² Mo(H)ICp ² Mo(NCS) ₂ Cp ² FormulaC ₂₀ H ₃₁ MoIC ₂₂ H ₃₀ MoN ₂ S ₂ C ₂₀ Formula weight494.29482.54430SystemmonoclinicmonoclinicorthSpace group $P2_1/n$ $C2/c$ Fdd c (Å)14.040(1)9.399(1)26.0 c (Å)17.121(1)15.588(1)8.65 α (°)90909090 β (°)90909090 γ (°)90909090 γ (Å)2006.9(2)2274.6(3)398 Z 448 T (K)213223213	um (°)	28.3	28.3	28.3
Number of parameters244417218 R_1 0.01910.03090.07 wR_2 0.04770.07570.07Goodness-of-fit1.0431.0291.14 $rest condent conden$		3951		4444
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
wR_2 0.04770.07570.0757Goodness-of-fit1.0431.0291.10 $Cp_2^*Mo(H)I$ $Cp_2^*Mo(NCS)_2$ Cp_2^* Formula $C_{20}H_{31}MoI$ $C_{22}H_{30}MoN_2S_2$ C_{20} Formula weight494.29482.54430SystemmonoclinicmonoclinicorthSpace group $P2_1/n$ $C2/c$ $Fdda$ a (Å) $8.564(1)$ 17.584(1)17. b (Å)14.040(1)9.399(1)26. c (Å)17.121(1)15.588(1)8.64 α (°)909090 β (°)102.872(1)118.004(1)90 γ (°)909090 χ (Å)2006.9(2)2274.6(3)398 Z 448 T (K)213223213	or parameters			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				0.0598
Formula $C_{20}H_{31}Mol$ $C_{22}H_{30}MoN_2S_2$ C_{20} Formula weight494.29482.54430SystemmonoclinicmonoclinicorthSpace group P_{21}/n C_2/c Fda a (Å) $8.564(1)$ $17.584(1)$ $17.584(1)$ b (Å) $14.040(1)$ $9.399(1)$ $26.64(1)$ c (Å) $17.121(1)$ $15.588(1)$ $8.66(1)$ α (°) 90 90 90 β (°) $102.872(1)$ $118.004(1)$ 90 γ (°) 90 90 90 χ (°) $2006.9(2)$ $2274.6(3)$ 398 Z 4 4 8 T (K) 213 223 213	s-of-fit	1.043	1.029	1.100
Formula weight494.29482.54430SystemmonoclinicmonoclinicortSpace group $P2_1/n$ $C2/c$ Fda a (Å) $8.564(1)$ $17.584(1)$ $17.584(1)$ b (Å) $14.040(1)$ $9.399(1)$ 26.0 c (Å) $17.121(1)$ $15.588(1)$ 8.66 α (°) 90 90 90 β (°) $102.872(1)$ $118.004(1)$ 90 γ (°) 90 90 90 γ (°) $2006.9(2)$ $2274.6(3)$ 398 Z 4 4 8 T (K) 213 223 213		$Cp_2^*Mo(H)I$		$Cp_2^*Mo(\eta^2-S_2$
SystemmonoclinicmonoclinicortSpace group $P2_1/n$ $C2/c$ Fda a (Å) $8.564(1)$ $17.584(1)$ $17.584(1)$ b (Å) $14.040(1)$ $9.399(1)$ $26.666(1)$ c (Å) $17.121(1)$ $15.588(1)$ $8.666(1)$ α (°) 90 90 90 β (°) $102.872(1)$ $118.004(1)$ 90 γ (°) 90 90 90 γ (°) $2006.9(2)$ $2274.6(3)$ 398 Z 4 4 8 T (K) 213 223 213				$C_{20}H_{30}MoS_2$
Space group $P2_1/n$ $C2/c$ Fdd a (Å) $8.564(1)$ $17.584(1)$ $17.584(1)$ b (Å) $14.040(1)$ $9.399(1)$ 26.0 c (Å) $17.121(1)$ $15.588(1)$ 8.66 α (°) 90 90 90 β (°) $102.872(1)$ $118.004(1)$ 90 γ (°) 90 90 90 γ (°) $2006.9(2)$ $2274.6(3)$ 398 Z 4 4 8 T (K) 213 223 213	weight	494.29	482.54	430.50
Space group $P2_1/n$ $C2/c$ Fdd a (Å) $8.564(1)$ $17.584(1)$ $17.584(1)$ b (Å) $14.040(1)$ $9.399(1)$ 26.0 c (Å) $17.121(1)$ $15.588(1)$ 8.66 α (°) 90 90 90 β (°) $102.872(1)$ $118.004(1)$ 90 γ (°) 90 90 90 γ (°) $2006.9(2)$ $2274.6(3)$ 398 Z 4 4 8 T (K) 213 223 213	c	monoclinic	monoclinic	orthorhombic
a (Å) $8.564(1)$ $17.584(1)$ $17.584(1)$ b (Å) $14.040(1)$ $9.399(1)$ 26.0 c (Å) $17.121(1)$ $15.588(1)$ 8.66 α (°) 90 90 90 β (°) $102.872(1)$ $118.004(1)$ 90 γ (°) 90 90 90 γ (°) 90 90 90 χ (Å) $2006.9(2)$ $2274.6(3)$ 398 Z 4 4 8 T (K) 213 223 213	auc			Fdd2
b (Å)14.040(1)9.399(1)26.0 c (Å)17.121(1)15.588(1)8.60 α (°)909090 β (°)102.872(1)118.004(1)90 γ (°)909090 γ (°)909090 χ (Å3)2006.9(2)2274.6(3)398 Z 448 T (K)213223213	Jup			17.187(1)
c (Å) $17.121(1)$ $15.588(1)$ 8.61 α (°)909090 β (°) $102.872(1)$ $118.004(1)$ 90 γ (°)909090 γ (°)902274.6(3)398 Z 448 T (K)213223213				
α (°)909090 β (°)102.872(1)118.004(1)90 γ (°)909090 V (Å ³)2006.9(2)2274.6(3)398 Z 448 T (K)213223213		()		26.657(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				8.688(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
γ (°)909090 V (Å3)2006.9(2)2274.6(3)398 Z 448 T (K)213223213		102.872(1)	118.004(1)	90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		90	90	90
Z 4 4 8 T(K) 213 223 213				3980.1(5)
<i>T</i> (K) 213 223 213		< <i>i</i>		
Radiation (A, A) 0.71073 0.71073 0.71073				
		0.71073	0.71073	0.71073
				0.867
θ Maximum (°) 28.4 28.3 28.	um (°)	28.4	28.3	28.3
				2299
				112

Table 2 (continued)

Compound	$Cp_{2}^{*}Mo(H)I$	$Cp_2^*Mo(NCS)_2$	$Cp_2^*Mo(\eta^2\text{-}S_2)$
$\overline{R_1}$	0.0405	0.0510	0.0199
wR_2	0.0768	0.1264	0.0481
Goodness-of-fit	1.017	1.062	1.071
	$Cp_2^*Mo(\eta^2\text{-}Se_2)$	$Cp_2^*Mo(\eta^2\text{-}Te_2)$	$Cp_2^*Mo(\eta^2-Se_4)$
Formula	$C_{20}H_{30}MoSe_2$	$C_{20}H_{30}MoTe_2$	$C_{20}H_{30}MoSe_4$
Formula weight	524.30	621.58	682.22
System	orthorhombic	orthorhombic	monoclinic
Space group	Fdd2	Fdd2	$P2_1/n$
a (Å)	16.887(1)	16.754(8)	10.675(1)
<i>b</i> (Å)	26.771(2)	27.241(12)	14.658(1)
<i>c</i> (Å)	8.872(1)	9.146(5)	13.963(1)
α (°)	90	90	90
β (°)	90	90	92.642(1)
γ (°)	90	90	90
$V(Å^3)$	4010.9(5)	4175(3)	2182.5(1)
Z	8	8	4
<i>T</i> (K)	203	203	223
Radiation (λ, \mathbf{A})	0.71073	0.71073	0.71073
μ (Mo K α) (mm ⁻¹)	4.282	3.367	7.274
θ Maximum (°)	28.3	28.2	28.3
Number of data	1718	2341	5047
Number of parameters	112	111	236
R_1	0.0194	0.0198	0.0304
wR_2	0.0510	0.0499	0.0792
Goodness-of-fit	1.107	1.042	1.050

#289480), Cp₂^{*}MoMe₂ (CCDC #289481), Cp₂^{*}Mo(CO) (CCDC #289478), Cp₂^{*}MoO (CCDC #289489), Cp₂^{*}Mo-(H)I (CCDC #289488), Cp₂^{*}Mo(η^2 -S₂) (CCDC #289484), Cp₂^{*}Mo(η^2 -Se₂) (CCDC #289484), Cp₂^{*}Mo(η^2 -Te₂) (CCDC #289483), Cp₂^{*}Mo(η^2 -Se₄) (CCDC #289482), and Cp₂^{*}Mo-(NCS)₂ (CCDC #289479) have been deposited with the Cambridge Crystallographic Data Centre.

Acknowledgment

We thank the US Department of Energy, Office of Basic Energy Sciences (DE-FG02-93ER14339) for support of this research.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2005. 12.037.

References

- [1] F.A. Cotton, G. Wilkinson, Z. Naturforsch. B 9 (1954) 417.
- [2] M.L.H. Green, C.N. Street, G. Wilkinson, Z. Naturforsch. B 14 (1959) 738.
- [3] (a) See, for example: T. Ito, T. Yoden, Bull. Chem. Soc. Jpn. 66 (1993) 2365;

(b) A.J. Carmichael, D.J. Duncalf, M.G.H. Wallbridge, A. McCamley, J. Chem. Soc., Dalton Trans. 7 (2000) 1219;

(c) M.L.H. Green, J.A. McCleverty, L. Pratt, G. Wilkinson, J. Chem. Soc. (1961) 4854;

(d) N.D. Silavwe, M.P. Castellani, D.R. Tyler, Inorg. Synth. 29 (1992) 204;

- (e) M.L.H. Green, C.N. Street, G. Wilkinson, Z. Naturforsch. B 14 (1959) 738;
- (f) F.A. Cotton, G. Wilkinson, Z. Naturforsch. B 9 (1954) 417;
- (g) E.O. Fischer, Y. Hristidu, Z. Naturforsch. B 15 (1960) 135.
- [4] (a) R. Davis, L.A.P. Kane-Maguire, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 3, Pergamon Press, New York, 1982, pp. 1321–1384 (Chapter 28);

(b) M.J. Morris, in: J.A. Labinger, M.J. Winter (Eds.), Comprehensive Organometallic Chemistry II, vol. 5, Pergamon Press, New York, 1995 (Chapter 5).

- [5] J.A. McCleverty, in: E.R. Braithwaite, J. Haber (Eds.), Molybdenum: An Outline of Its Chemistry and Uses, Elsevier, Amsterdam, 1994, pp. 343–350 (Chapter 6) and references therein.
- [6] See, for example: L. Luo, G. Lanza, I.L. Fragala, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 120 (1998) 3111.
- [7] (a) J.H. Shin, W. Savage, V.J. Murphy, J.B. Bonanno, D.G. Churchill, G. Parkin, J. Chem. Soc., Dalton Trans. (2001) 1732;

(b) D.G. Churchill, J.H. Shin, G. Parkin, J. Chem. Crystallogr. 33 (2003) 297.

- [8] (a) M.G.B. Drew, V. Felix, C.C. Romão, B. Royo, J. Chem. Soc., Dalton Trans. (2002) 584;
 (b) J.R. Ascenso, C.G. de Azevedo, I.S. Goncalves, E. Herdtweck, D.S. Moreno, M. Pessanha, C.C. Romão, Organometallics 14 (1995) 3901.
- [9] (a) D. Churchill, J.H. Shin, T. Hascall, J.M. Hahn, G. Parkin, Organometallics 18 (1999) 2403;

(b) D.G. Churchill, B.M. Bridgewater, G. Parkin, J. Am. Chem. Soc. 122 (2000) 178;

- (c) K.E. Janak, J.H. Shin, G. Parkin, J. Am. Chem. Soc. 126 (2004) 13054;
- (d) D.G. Churchill, K.E. Janak, J.S. Wittenberg, G. Parkin, J. Am. Chem. Soc. 125 (2003) 1403;

(f) A. Chernega, J. Cook, M.L.H. Green, L. Labella, S.J. Simpson, J. Souter, A.H.H. Stephens, J. Chem. Soc., Dalton Trans. (1997) 3225;
(g) L. Labella, A. Chernega, M.L.H. Green, J. Chem. Soc., Dalton Trans. (1995) 395;
(h) L. Labella, A. Chernega, M.L.H. Green, L. Organemet, Chem.

(h) L. Labella, A. Chernega, M.L.H. Green, J. Organomet. Chem. 485 (1995) C18;

(i) T. Mise, M. Maeda, T. Nakajima, K. Kobayashi, I. Shimizu, Y. Yamamoto, Y. Wakatsuki, J. Organomet. Chem. 473 (1994) 155.

- [10] C.-I. Li, W.-Y. Yeh, S.-M. Peng, G.-H. Lee, J. Organomet. Chem. 620 (2001) 106.
- [11] J.L. Thomas, J. Am. Chem. Soc. 95 (1973) 1838.
- [12] F.G.N. Cloke, J.P. Day, J.C. Green, C.P. Morley, A.C. Swain, J. Chem. Soc., Dalton Trans. (1991) 789.
- [13] The modified method is stated to be based on the method of Green and Knowles for Cp₂MoH₂ (M.L.H. Green, P.J. Knowles, J. Chem. Soc., Perkin Trans. 1 (1973) 1155), but the latter reference does not exist. However, Green and Knowles have reported a synthesis of Cp₂WH₂. See: M.L.H. Green, P.J. Knowles, J. Chem. Soc., Perkin Trans. 1 (1973) 989.
- [14] The tungsten counterpart, Cp₂^{*}WCl₂, has also been reported, but the synthesis differs considerably from the method described here for Cp₂^{*}MoCl₂. See: G. Parkin, J.E. Bercaw, Polyhedron 7 (1988) 2053.
- [15] G. Parkin, J.E. Bercaw, Organometallics 8 (1989) 1172.

- [16] For structural preferences in Cp^{*}₂Zr(EPh)₂ derivatives, see: W.A. Howard, T.M. Trnka, G. Parkin, Inorg. Chem. 34 (1995) 5900.
- [17] The azide complex $Cp_2^*Mo(N_3)_2$ liberates N_2 at 80 °C to yield the terminal nitrido complex $(\eta^3$ - $Cp^*)_2Mo(N)(N_3)$ in which the Cp^* ligands adopt an η^3 -coordination mode. See: J.H. Shin, B.M. Bridgewater, D.G. Churchill, M.-H. Baik, R.A. Friesner, G. Parkin, J. Am. Chem. Soc. 123 (2001) 10111.
- [18] (a) J.A. Kargol, R.W. Crecely, J.L. Burmeister, Inorg. Chim. Acta 25 (1977) L109;

(b) J.A. Kargol, R.W. Crecely, J.L. Burmeister, Inorg. Chem. 18 (1979) 2532.

- [19] (a) J.P. McNally, V.S. Leong, N.J. Cooper, in: A.L. Wayda, M.Y. Darensbourg (Eds.), Experimental Organometallic Chemistry, American Chemical Society, Washington, DC, 1987, pp. 6–23 (Chapter 2);
 (b) B.J. Burger, J.E. Bercaw, in: A.L. Wayda, M.Y. Darensbourg (Eds.), Experimental Organometallic Chemistry, American Chemical Society, Washington, DC, 1987, pp. 79–98 (Chapter 4);
 (c) D.F. Shriver, M.A. Drezdzon, The Manipulation of Air-Sensitive Compounds, second ed., Wiley–Interscience, New York, 1986.
- [20] M. Lardon, J. Am. Chem. Soc. 92 (1970) 5063.
- [21] P. Granger, S. Chapelle, W.R. McWhinnie, A. Al-Rubaie, J. Organomet. Chem. 220 (1981) 149.
- [22] G.M. Sheldrick, SHELXTL: An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, University of Göttingen, Göttingen, Federal Republic of Germany, 1981.