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Abstract: Regioselective 1,3-dipolar cycloadditions of captodative 1-acetylvinyl p-nitrobenzoyloxy 
(la) with propionitrile oxide, diphenylnitrile imine and diazoalkanes provided the corresponding 5- 
acetyl- isoxazoles and pyrazoles. Evidence to support the formation o'f the initial cycloadducts was 
obtained. The addition of nitrones also proved to be highly regio- and stereoselective. 
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1,3-Dipolar cycloadditions have been extensively studied with numerous substituted olefins, bearing 

substituents of diverse electron-demand, in order to establish the factors responsible for the regio- and 

stereoselectivity in these processes. 1 On the other hand, eaptodative olefins have attracted especial attention in 

Diels-Alder reactions, due to the opposite electronic effect displayed by their geminally substituted functional 

groups. 2 Nevertheless, no studies have been devoted to this kind of olefin in 1,3-dipolar cycloadditions and 

only isolated examples have been reported.2a, 3 Recently, we described the 1,3-dipolar cycloaddition of 

captodative olefins 1 with arylnitrile oxides 2, 4 giving exclusively isomers 5-acetyl-3-arylisoxazoles 3 (eq. 1). 

This result prompted us to examine the reactivity and selectivity of these olefins with various dipoles. Herein, 

we disclose the results of the cycloadditions with propionitrile oxide (4), 5 diphenylnitrile imine (5), 6 

diazomethane (6a), trimethylsilyl diazomethane (6b) 7 and nitrones 7a-7g. 8 

0 R 

R - - C = N - 2 '  or R- -CH=N-- I~ I  

0 

la,  Ar = CnH4P-N02 2, R = Aryl, Z=  0 6a, R = H 3, R = Aryl, Z=  0 
lb ,  Ar = CeH4P-CI 4, R = E t ,  Z = O  6b, R = SiMe s 8, R = E t ,  Z = O  

5, R = Ph, Z = NPh 9, R = Ph, Z = NPh 
10, R = H , Z =  NH 

(1) 

As observed for the series of arylnitrile oxides Z, the reaction of la  with 4 (C6H6, reflux, 2 h) provided 

single isoxazole 89 in 85% yield (eq. 1). Similarly, the addition of nitrile imine $ (di0xane, reflux, 2 h) afforded 

N-phenyl pyrazole 9 as the only product in 80% yield. Diazomethane (6a) (ether, 25"C, 5 h) yielded 5-acetyl 

pyrazole (10) (68%). These aromatic heterocycles might have been formed as a result of I~-elimination of the p- 

nitrobenzoyloxy group (PNB) from the initial eycloadducts; however, no evidence of the latter was found. 
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The reaction of la  with 6b was carried out in ether at room temperature for 24 h, giving a mixture of 
stereoisomeric adducts l l a / l l b  (79:21) and pyrazole 10 in a ratio of ca. l : l  (eq. 2). When the reaction mixture 

was heated to 50"C for 30 min, the conversion of adducts I1 to the aromatic product 10 was complete. No 

traces of 3-(trimethylsilyl)-5-acetyl pyrazole (12) were detected. Thus, this reaction gives evidence that the 

cycloadduct is initially formed and transformed into the more stable aromatic product. The same explanation 

could be extended to the reaction with the other dipoles, including nitrile imine and nitrile oxides. 

Me3Si ,~_~_ 7 50oc " ~  R 

• I I  \/PNB N~NH ~ la + 6b 250C N ~,N,/X,,,,~/ + N,, (2) 
0 0 

11a/llb 10, R = H 
12, R =SiMe 3 

Therefore, it appears that the presence of a double bond in the initially formed cycloadducts facilitates the 

elimination of the PNB group, leading to the aromatic coupound. This was additionally supported by the fact 

that the reaction of la  with diphenyl nitrone (Ta) provided isoxazolidines 13a/14a in 80% yield, as a mixture 

of stereoisomers endo/exo in a ratio of 89:1 I. Other C-aryI-N-phenyl nitrones were assessed and the isomer 

ratios are shown in Table 1. The NMR spectra of crude mixtures revealed the presence of a mixture of 

diastereomeric isoxazolidines 13/14. NOE experiments established the relative configuration of the major 

isomer, indicating that an endo transition state was favored 10 and probably stabilized by secondary orbital 

interactions 11 (Figure 1). It is also noteworthy that neither the elimination product, i.e. dihydroisoxazole 15, 

nor the possible C-4 regioisomers 16 were present in the crude mixture. 

PhN~o~ ~ A r x ~  O 
/ \~PNB 

ph / ph/N'.o/) 0 
15 16 

In order to evaluate the steric effect of the PNB group as a factor in contributing to the high 

stereoselectivity observed in the cycloaddition with nitrones, we carried out the reaction of nitrone 7c with the 

sterically less hindered captodative olefin le. Only a mixture of C-5 disubstituted isoxazolidines 17/18 (73:27) 

(Table 1) was observed. The lower stereoselection for olefin le in comparison with l a  would suggest that the 

steric hindrance between the N-phenyl group of the nitrone and the carboxylate subtituent in the dipolarophile 

could affect the stereochcmical outcome of these reactions, l I Indeed, the more crowded exo transition state for 

la  would lead to the preferential endo approach, improving 13/14 ratio (Figure 1), as observed. 
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Table 1. Cycloadditions between nitrones 7 and olefins l a  and le. 

% A r ~ . . ~  R A r  

OR R' C6H6 

+ . . 80°C, 8 h ~ ph,,,,'N-o-~'g'.l] , - /  + Ph / 
Ph 0 0 

la ,  R = COC6H4,0-N02 7 13, R = PNB 14, R = PNB 
le, R = COCH3 17, R = OCOCI-[ 3 18, R = OCOCH 3 

O i e f i n  N i t r o n e  P r o d u c t s  m p  Yie ld  
(ratio)a (*c)b (~,)c 

la  7a ~R' = ti) 13aJl4a (89:11) 101-102 7(3 
la  13b/14b (90:10) 57-58 75 
l a  
l a  

7b (R' = 4-CI) 
7c (R' = 4-Br) 
7d (R' = 4-NO2) 

13e/14c (87:13) 
13d/14d (85:15) 

126-127 
120-121 

70 
70 

l a  7e (R' = 4-OCH3) 13e/14e (83:17) 112-113 80 
la  7f (R' = 4-CH3) 1311141 (95:5) 67-68 81) 
la  137-138 75 75 (R' = 3-NO2) 

7¢ (R' = 4-Br) 122-123 
13g/14g (89:11) 
17118 (73:27) 1¢ 70 

a Determined by NMR (300 MHz). b Of the major isomer 13 or 17. c Of the major isomer after recrystallization. 

Figure 1. Transition states of the cycloaddition of nitrones towards olefins l a  

H H 

"(3 "(3 C-)' 

endo exo 

The high C-5 regioselectivity observed in these cycloadditions with all the dipoles could be explained by a 

steric control, keeping the bulkier aryl group of the nitrone and the geminally substituted carbon C-3 of the 

olefin as far away from each other as possible. However, this regioselectivity could not be explained only by 

steric interactions, 3c,12,13 since the more crowded C-4 substituted isomers have mainly been generated 

depending on the electronic demand 14 of the dipolarophile substituents. 15 Factors such as the captodativc 

effect, ~ involving diradicaloid intermediates or transition states,3a, b could also be considered in controlling the 

orientation of the cycloaddents.t6 

In summary, these results demonstrated that captodative olefins 1 were highly selective in 1,3-dipolar 

additions with diverse dipoles, since only the 5-acetyl isomer was formed, in agreement with othcr 1,1- 

disubstituted olefins, which give rise to similar high regioselectivity. 16b,17 Moreover, by giving access to acetyl 
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substituted aromatic heterocycles, l a  behaves as an acetyl acetylene equivalent, improving the selectivity shown 

by dipolarophiles such as 3-butyne-2-one. 18 
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