271

A Discotic Mesophase with Binary or Tetragonal Symmetry

By Rose Fugnitto and Helena Strzelecka

(Groupe de Recherche no. 12, C.N.R.S., F 94320 Thiais, France)

ANNIE ZANN and JEAN-CLAUDE DUBOIS

(Compagnie Thomson-CSF, Domaine de Corbeville, F 91401 Orsay, France)

and JEAN BILLARD

(College de France, F 75231 Paris, France)

Summary The 2,2',6,6'-tetra-arylbipyran-4-ylidenes (1b) and (1c), disc-like molecules with a novel core and four n-alkyl side chains, exhibit a discotic mesophase which allows either four- or two-fold symmetry.

THE degrees of symmetry known so far for discotic[†] mesophases are three or six,¹⁻³ or infinite, as recently discovered.⁴ Compounds exhibiting these mesophases have an aromatic central core with six side chains (n-alkanoyloxy,¹ n-alkoxy,² or 4-n-alkoxy or 4-n-alkylbenzoyloxy⁴). We describe here a series of disc-like molecules (1) with a novel heterocyclic core and four n-alkyl side chains which exhibits a discotic mesophase with four- or two-fold symmetry.

Scheme. i, CH(OEt)₃, HClO₄; ii, Zn,MeCN.

The 2,2',6,6'-tetra-arylbipyran-4-ylidenes (1a-c) may be synthesised in two steps (Scheme).^{5,6} The intermediate perchlorates (2a-c) were obtained in 90, 65, and 72% yields, respectively. Compounds (1a-c) were isolated by extraction with toluene, purified by crystallisation from ethanol-hexane (1:1), and obtained in 62, 27, and 55% yields, respectively. Contrary to (1; R = H), which does not have side chains, (1a-c) are insoluble in polar solvents but are soluble in hydrocarbons.

n	Crystal 1	Crystal 2		Mesophase		Liquid	
5	×	135	×			228	х
9		53.5			X	171.5	×
		(2.0)				(5.0)	
12	×	40	×	96	×	147	×
		(6.8)		(3.8)		(6.7)	

TABLE. Phase transitions for (1a-c)^a

^a The temperatures (°C) and molar enthalpy changes (in parentheses, kcal/mol) correspond to the transitions between the phases indicated by \times .

Calorimetry, X-ray powder diffraction, and optical microscopy gave the phase sequences reported in the Table. For (1a), which does not form an enantiotropic mesophase, a virtual discotic mesophase-liquid transition at 157 °C can be obtained from the phase diagram of a mixture of (1a) and (1c) (Figure) by a method previously described.⁷ For (1b)

FIGURE. Isobaric phase diagram of the binary mixture of compounds (1a) (left) and (1c) (right). The extrapolation of the discotic liquid spindle (dashed lines) gives a virtual discotic phase-liquid transition at 157 °C.

and (1c) the molar enthalpies are larger for fluid-fluid transitions than for melting. This exceptional situation, first observed for a smectogen with a thread-like ordering of the molecules in its smectic phase,⁸ is observed here for the first time with discogens. Compounds (1b) and (1c) are totally co-miscible in the mesomorphic and liquid states and therefore have mesophases of the same type.

† The term discotic refers to saucer-shaped molecules arranged with a partial ordering.

On cooling the isotropic liquids of these materials a highly viscous and birefringent phase appeared in domains with finger-like contours allowing a four-fold symmetry Pressing over a domain produces defects with a rectilinear axis² in only two perpendicular directions On further cooling of (1b) and (1c) the crystalline needles formed in a mesomorphic single domain are parallel to two rectangular directions

These two disc-like heterocyclic compounds, having a bipyran core and four n-alkyl side chains, hence form, at atmospheric pressure, a mesophase allowing either two- or four-fold symmetry

(Received, 28th November 1979, Com 1241)

- ¹S Chandrasekhar, B K Sadashiva, and K A Suresh, Pramana, 1977, 9, 471

- ² J Billard, J C Dubois, Nguyen Huu Tinh, and A Zann, Nouv J Chim, 1978, 2, 535
 ³ A Queguiner, A Zann, J C Dubois, and J Billard, Bangalore Conference, 1979
 ⁴ Nguyen Huu Tinh, C Destrade, and H Gasparoux, Phys Letters, 1979, 72 A, 251
 ⁵ G N Dorofeenko, U V Majeritskii, E P Olekhnovitch, and A L Wasserman, Zhur org Khim, 1973, 9, 395
 ⁶ C Fabre, R Fugnitto and H Strzelecka, Compt rend, 1976, 282 C, 175
 ⁷ M Domon and L Billard Pramana 1973, suppl 1, 131

- ⁷ M Domon and J Billard, *Pramana*, 1973, suppl 1, 131 ⁸ A de Vries and D L Fishel, *Mol Cryst and Liq Cryst*, 1972, 16, 311