DILATATIN, THE FIRST EXAMPLE OF A C-ALLOSYLATED NATURAL PRODUCT

KENNETH R. MARKHAM and ANTHONY D. WOOLHOUSE

Chemistry Division, DSIR, Private Bag, Petone, New Zealand

(Received 4 March 1983)

Key Word Index—Hymenophyllum dilatatum; Hymenophyllaceae; Filicales; dilatatin; xanthone C-glycoside; allose; $2-C-\beta$ -D-allopyranosyl-1,3,6,7-tetrahydroxyxanthone; dilatatin; synthesis.

Abstract—Dilatatin, the xanthone-C-glycoside previously isolated from the filmy fern Hymenophyllum dilatatum, is identified as $2-C-\beta$ -D-allopyranosyl-1,3,6,7-tetrahydroxyxanthone. The glycosyl moiety is demonstrated to be allopyranose by ¹³C NMR spectroscopy using synthetic β -D-allopyranosyl-2,4,6-trimethoxybenzene as a model.

INTRODUCTION

In 1980 Markham and Wallace [1] reported the isolation of a new C-glycosylxanthone from the filmy fern Hymenophyllum dilatatum. The aglycone moiety of this glycoside was shown unequivocally to be 1,3,6,7-tetrahydroxyxanthone and elemental analysis and acid treatment defined dilatatin as a mono-C-hexoside of this xanthone, containing no other substituents. On the basis of absorption data and chromatographic evidence dilatatin was initially thought to be mangiferin $[2-C-\beta-D-gluco$ pyranosyl-1,3,6,7-tetrahydroxyxanthone (1)], a known constituent of many other leptosporangiate ferns [1, 2]. Closer study, however, revealed differences in the optical rotation and ¹H NMR and ¹³C NMR spectra. The present communication extends this work and identifies dilatatin as 2-C- β -D-allopyranosyl-1,3,6,7-tetrahydroxyxanthone (3).

RESULTS AND DISCUSSION

The site of the sugar linkage to the aglycone in dilatatin was considered to be at C-2 of 1,3,6,7-tetrahydroxyxanthone, since in the ¹³C NMR spectrum, the one protonated carbon (C-4) in the phloroglucinol ring appeared at δ 94 (cf. mangiferin, δ 93.7) and the glycosylated carbon (C-2) at δ 107.8 (cf. mangiferin, δ 107.7)[1]. Furthermore, dilatatin (3) bore the same chromatographic relationship to its Wessely–Moser rearrangement isomer, isodilatatin, as mangiferin did to isomangiferin (2).

The hexose substituent at C-2 gave a pattern of ${}^{13}C$ NMR signals markedly different from those exhibited by the C-linked glucose in mangiferin (Table 1) and from other C-linked hexoses for which ${}^{13}C$ NMR data were available, e.g. galactose and rhamnose [3]. It was possible, however, to calculate approximately the spectra of unknown C-hexosides from those of O-hexosides by using differences observed between the spectra of known C- and O-linked hexosides. Such

calculations suggested allose to be the most likely sugar residue in dilatatin. This was supported also by ¹³C NMR data on a comprehensive series of 1,5-anhydrohexitols.* Only the spectrum of 1,5-anhydroallitol approximated closely to that of the sugar in dilatatin when allowance was made for the effects on the chemical shifts brought about by bonding to a phloroglucinol ring system (cf. ref. [3]).

It was therefore decided to synthesize an authentic C-alloside for ¹³C NMR comparison, and for convenience β -D-allopyranosyl-2,4,6-trimethoxybenzene (4) was chosen. β -Linkage of the sugar was indicated by the ¹H NMR spectrum of dilatatin in which the sugar H-1' signal at δ 5.05 exhibited *trans*-diaxial coupling (J = 9.4 Hz) with the adjacent C-2 proton. The tetraacetate (5) of the chosen model was synthesized in 44 % yield by reacting 2,3,4,6-tetraacetyl- α -D-allopyranosyl bromide

1 $R^1 = \beta$ -D-glucopyranosyl; $R^2 = H$ (mangiferin)

2 $R^1 = H; R^2 = \beta$ -D-glucopyranosyl (isomangiferin)

3 $R^1 = \beta$ -D-allopyranosyl; $R^2 = H$ (dilatatin)

^{*}Some available from ref. [3], others (1,5-anhydro-mannitol, -allitol, -talitol and altritol) kindly made available by Dr. V. M. Chari, formerly of the University of Munich.

Compound	Sugar carbon resonances (δ)					
	C-1	C-2	C-3	C-4	C-5	C-6
Mangiferin (1)	73.4	70.6*	79.2	70.8*	81.7	61.7
Dilatatin (3)	71.9	68.9†	68.2†	68.1†	76.7	61.8
β -D-Allopyranosyl-2,4,6-trimethoxybenzene (4)	71.7	68.5‡	68.5‡	67.8‡	76.2	62.2
β -D-Glucopyranosyl-2,4,6-trimethoxybenzene	73.2	70.5§	79.2	70.9§	81.3	61.8

Table 1. Chemical shifts of the sugar carbons in the ${}^{13}C$ NMR spectra of various C-glycosylated phenols

*, †, ‡, \$Assignments bearing the same superscript may be reversed.

C-H coupling: triplet J = ca 140 Hz, all other signals doublets J = ca 140 Hz.

with tri-O-methylphloroglucinol in dry carbon tetrachloride in the presence of zinc oxide. The constitution of the product was confirmed by elemental analysis and ¹H NMR spectroscopy. Deacetylation of this product with sodium methoxide in dry methanol gave β -Dallopyranosyl-2,4,6-trimethoxybenzene (4) in 75% yield. ¹³C NMR and ¹H NMR spectroscopy confirmed the identity of the product, the latter also confirming that the β -linkage of the allose had been produced (H-1', d, J = 9.9 Hz at δ 4.93).

The ¹³C NMR spectrum of 4 (Table 1) resembled very closely that of dilatatin in the sugar carbon region, and this evidence was taken to provide firm confirmation that the *C*-linked sugar in dilatatin was indeed β -D-allopyranose. That the nature of the aglycone in 4 had little effect on the chemical shifts of the sugar carbon was evident from a comparison (see Table 1) of the sugar carbon resonances in mangiferin and β -D-glucopyranosyl-2,4,6-trimethoxybenzene (also synthesized by the same route as 5).

Allose is a sugar which is rare in nature. Only very recently has it been found in glycosidic combination with naturally occurring phenols [4, 5]. Dilatatin appears to be the first example of a natural product containing a C-linked β -D-allopyranosyl moiety.

EXPERIMENTAL

NMR measurements were made on a Varian FT-80A instrument at 20 MHz (¹³C) and 80 MHz (¹H).

2,3,4,6-Tetraacetyl- α -D-allopyranosyl bromide. 2,3,4,6-Tetraacetyl- α -D-allopyranosyl bromide was prepared by dissolution of β -D-allose pentaacetate (6) [6] in an excess of a 33 % soln of HBr in HOAc maintained at ambient temp. After dilution with CHCl₃ and washing with H₂O and then with saturated NaHCO₃ soln, the organic phase was dried and concd to a colourless, immobile gum which was characterized by the presence, in the ¹H NMR spectrum, of a clean one-proton doublet (H-1) centred at δ 6.50 (J = 7.5 Hz).

 β -D-Allopyranosyl-2,4,6-trimethoxybenzene tetraacetate (5). From a suspension of dry ZnO (3.00 g) and Drierite (3.50 g) in dry CCl₄ (75 ml) containing trimethylphloroglucinol (1.03 g, 6.13 mmol) was distilled *ca* 30 ml solvent. To the remaining refluxing mixture was added, dropwise over 15 min, a soln of 2,3,4,6-tetraacetyl- α -D-allopyranosyl bromide [prepared from 0.60 g (1.45 mmol) β -D-allopyranose pentaacetate] in dry CCl₄ (10 ml). After refluxing for 2.5 hr, the mixture was filtered through Celite, the inorganic materials were washed with hot CCl₄ (2 × 50 ml), and the combined organic phases coned to a dark red oil (1.31 g) which slowly solidified. The total product was subjected to prep. TLC on silica gel and eluted with 40% EtOAc-toluene. Trimethylphloroglucinol (0.76 g) was recovered from the most mobile species, R_f ca 0.9. A band visible in UV light at R_f 0.6 was eluted with EtOAc and concd to an immobile gum (0.41 g, 57°) and purified by further chromatography on silica gel to give 0.34 g of β -D-allopyranosyl-2,4,6-trimethoxy-benzene tetraacetate (5) as a colourless, immobile gum, $[\alpha]_D$ + 9.8° (c 1.2 in CHCl₃) (Found: C, 55.3; H, 6.2. C₁₃H₃₀O₁₂ requires: C, 55.4; H, 6.1%). ¹H NMR (CDCl₃): δ 1.77 (s, 3H, OAc), 2.04 (s, 6H, OAc), 2.21 (s, 3H, OAc), 3.78 (s, 3H, OMe), 3.80 (s, 6H, OMe), 5.31 (d, 1H, J = 10.0 Hz, H-1 allose), 6.09 (s, 2H, aromatic). Signals attributable to the remaining allopyranosyl ring protons appeared as broad multiplets centred at δ 4.19 (3H), 5.10 (1H) and 5.80 (2H).

 β -D-Allopyranosyl-2,4,6-trimethoxybenzene (4). A soln of 5 (0.40 g, 0.80 mmol) in dry MeOH (20 ml) containing a catalytic amount (ca 0.05 g) of Na was stirred for 0.5 hr at ambient temp. before being neutralized with ion exchange resin (Dowex 50W-X8, H). Concn of the supernatant organic phase furnished a colourless, immobile gum (0.23 g) which was purified by prep. TLC in Me₂CO-EtOAc-H₂O (5:4:1). The band at R_f 0.5 gave β -D-allopyranosyl-2,4,6-trimethoxybenzene (4) (0.20 g, 75 %) as a colourless gum, $[\alpha]_D$ 1.1 (c 1.183 in MeOH); ¹H NMR (d₆-DMSO): & 3.69 (s, 6H, OMe), 3.74 (s, 3H, OMe), 4.93 (d, 1H, J = 9.9 Hz, anomeric proton), 6.16 (s, 2H, aromatic). Signals attributable to the remaining allopyranosyl ring protons were not clearly recognizable but appeared as a complex multiplet between δ 3.17 and 4.35. ¹³C NMR (*d*₆-DMSO); δ 160.5 (C-2, 4, 6); 108.8 (C-1); ca 92 br (C-3, 5); 76.2, 71.7, 68.5, 67.8, 62.2 (allosyl carbons); 56.0 (2 and 6-OMe); 55.2 (4-OMe).

In some instances the C-alloside tetraacetate (5) was contaminated after prep. TLC with an equally mobile impurity (believed to be a disaccharide, cf. ref. [7]), which was removed by deacetylation and prep. TLC on silica gel, eluting with $Me_2CO-EtOAc-H_2O$ (5:4:1) as described above.

Acknowledgements----We are grateful to Dr. V. M. Chari, formerly of the Institut für Pharmazeutische Arzneimittellehre, University of Munich, for the supply of 1,5-anhydrohexitol ¹³C NMR spectra and for helpful early discussions; to Dr. R. Furneaux of Chemistry Division, DSIR for the supply of allose; and to Dr. H. Wong, Chemistry Division, DSIR, for determining the ¹H NMR and ¹³C NMR spectra.

REFERENCES

- Markham, K. R. and Wallace, J. W. (1980) Phytochemistry 19, 415.
- Wallace, J. W., Markham, K. R., Gianassi, D. E., Mickel, J. T., Yopp, D. L., Gomez, L. D., Pittillo, J. D. and Soeder, R. (1982)

Am. J. Botany 69, 356.

- Markham, K. R. and Chari, V. M. (1982) in *The Flavonoids*, Advances in Research (Harborne, J. B. and Mabry T. J., eds.), p. 19. Chapman & Hall, London.
- 4. Okuyama, T., Hosoyama, K., Hiraga, Y., Kurono, G. and

Takemoto, T. (1978) Chem. Pharm. Bull. 26, 3071.

- 5. Chari, V. M., Grayer, R., Harborne, J. B. and Österdahl, B. G. (1981) Phytochemistry 20, 1977.
- 6. Stevens, J. D. (1972) Methods Carbohydr. Chem. 6, 123.
- 7. Eade, R. A. and Pham, H. P. (1979) Aust. J. Chem. 32, 2483