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Synthesis of 3-Nitropyrrolidines via Dipolar Cycloaddition Reactions Using a 
Modular Flow Reactor
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Abstract: The generation and subsequent use of unstabilised
azomethine ylides in dipolar cycloaddition reactions within a flow
microreactor is demonstrated. The 3-nitropyrrolidines produced
were furthermore subjected to chemoselective hydrogenation reac-
tions using the H-Cube® system. To ensure product purities in ex-
cess of 90–95%, immobilised scavengers were successfully
employed.
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The synthesis of highly functionalised heterocyclic com-
pounds is of central importance to most modern medicinal
chemistry programmes1 since these building blocks are
readily manipulated to compounds with favourable phar-
macophoric properties. Accordingly, the synthetic chem-
ist is expected to deliver these entities in a flexible, high-
yielding fashion yet avoiding time-consuming purifica-
tion procedures as well as hazardous or obnoxious chem-
ical inputs wherever possible.2 In recent studies we3 and
others4 have attempted to address some of these issues by
using modular flow reactors in concert with automation
methods and in-line immobilised reagents and scavengers
packed into glass columns to effect clean product forma-
tion.

We have already demonstrated the success of these meth-
ods in the preparation of various heterocyclic scaffolds
such as oxazoles,5 oxazolines,6 pyrazoles,7 triazoles,8 thi-
azoles, and imidazoles9 using a variety of flow microreac-
tors. Here we show how these devices can be applied
further to the efficient assembly of 3-nitropyrrolidines and
related structures as potentially useful building blocks for
synthesis since pyrrolidine-based compounds have been
shown to display a wide variety of biological activities.10

These structures can be found in alkaloids such as nicotine
or in amino acids typified by proline, as well as many drug
substances such as the anticonvulsant Levetiracetam or
the oral antihyperglycemic agent Vildagliptin (Figure 1).
In addition, many chiral pyrrolidines have been described
as privileged structures with numerous applications in the
field of asymmetric organocatalysis.11

In our investigations below we make use of the R2+/R4
flow system commercially available from Vapourtec.12

This modular platform consists of a dual pumping unit
which delivers the dissolved starting materials into a mix-
ing device and directs the combined reaction stream
through a selection of convection flow coils (CFC) and/or
glass tubes13 filled with solid-supported reagents and
scavengers that can be maintained at a desired tempera-
ture and pressure. Furthermore, this system can be run
with the Flow Commander software also available from
Vapourtec12 allowing for the use of a front-end liquid han-
dler and a UV-directed fraction collector.

Figure 1 Biologically and synthetically interesting pyrrolidines

For the preparation of 3-nitropyrrolidine derivatives and
in order to access more structural variety in the pyrroli-
dine ring, we have chosen to use a dipolar cycloaddition
process involving nonstabilised azomethine ylides and ni-
tro alkenes.14 This reaction also readily allows for the sub-
sequent differentiation of both nitrogen functionalities
and hence increases the flexibility towards any subse-
quent transformation (Scheme 1).

In order to perform initial cycloaddition studies, toluene
was selected as the preferred solvent to dissolve both the
nitro alkene as well as the commercially available N-(meth-
oxymethyl)-N-(trimethylsilyl)benzylamine coupling part-
ner at concentrations up to 0.2 M. The further addition of
1.0 equivalent of TFA to the nitro alkene solution was
found to be crucial in order to generate the dipole even at
the elevated temperatures of the flow reaction. When
these stock solutions were mixed in a standard static mix-
ing tee and flowed through a 10 mL CFC heated to
120 °C, with a residence time of between 30–90 minutes,
the corresponding 3-nitropyrrolidine was formed. Subse-
quent optimisation led to the observation that acetonitrile,
in most cases, was a superior solvent to toluene as it was
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more easily removed, and the starting materials could be
prepared at higher concentrations (up to 0.5 M). Further-
more, real time product analysis via LC-MS was more
convenient in acetonitrile as opposed to toluene due to the
high UV absorption of the toluene signal at key monitor-
ing wavelengths.

Scheme 1 Optimised flow set-up for formation of 3-nitropyrrolidines

We have also shown that by passing the exiting flow
stream through a glass column packed with an immobil-
ised benzylamine scavenger resin (QP-BZA,15 2.5 equiv)
followed by a plug of silica gel (1 cm path length), it was
possible to remove any unreacted nitro alkene and simul-
taneously release the desired nitropyrrolidine from its ini-
tially formed TFA salt. By using the above set of
conditions a small collection of 3-nitropyrrolidines
(Figure 2) was quickly generated using temperatures
ranging from 60–120 °C and affording high-purity prod-
ucts in good isolated yields.

By being able to carefully adjust the reaction parameters
of the flow reactor more sensitive nitropyrrolidines such
as those with labile halides on heterocyclic ring systems
(1, 2, and 5) or the bicyclic octahydroisoindoline deriva-
tive 3 could also be readily obtained in high yield.

Having prepared this first set of nitropyrrolidine deriva-
tives we wished to further simplify our protocol by avoid-
ing the use of the strong TFA acid in order to generate the
reactive dipole. In relation to some of our earlier studies
on monolithic reactor cartridges we were attracted by the
concept of a reloadable fluoride monolith which we had
previously found very powerful in a number of trifluo-
romethylation reactions using Ruppert’s reagent (TMS-
CF3) in a flow process.17b After preparation and charging
of this ion-exchange monolith according to previously
published literature procedures3e,16,17 we started our inves-
tigations in the azomethine ylid cycloaddition chemistry.
We were pleased to confirm that indeed high conversions
of the starting materials could be achieved even at reduced
temperatures of between 50–80 °C in comparison to our
original procedure. Furthermore, we were able to reduce
the overall reaction time including the QP-BZA-assisted
removal of excess nitro alkene starting material to less
than one hour. Using the fluoride monolith also resulted in
increased yields of 3-nitropyrrolidine products when
compared to the previous method using TFA (Figure 3,
compounds 1, 3, 9). Encouraged by these new results we
expanded the initial work by varying the type of dipolaro-
phile. Again, a small collection of differently substituted
pyrrolidine products was prepared (Figure 3) including
interesting substituents such as sulfonates, phosphonates,
and esters. Starting from D-menthyl acrylate we also in-
vestigated the impact of a chiral auxiliary on the diastere-
omeric ratio of the product outcome. However, under all
conditions evaluated (time, temperature, stoichiometry,
and solvent modifications) only a 1:1 mixture of diastereo-
mers was ever observed by NMR analysis.

Figure 2 Collection of 3-nitropyrrolidines prepared in flow
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Figure 3 Pyrrolidines prepared using a fluoride monolith in flow
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To further elaborate these 3-nitropyrrolidine derivatives
into other building blocks we exploited their inherent
chemoselectivity. This was accomplished by selective hy-
drogenation of the nitro group over the benzyl group using
the H-Cube® flow hydrogenator.18 Employing an ethanol–
ethyl acetate (1:1 mixture) solvent system the clean reduc-
tion of the nitro group to the corresponding amine was
achieved on passage through a Raney Nickel filled car-
tridge at 60 °C in the presence of catalytic amounts of ace-
tic acid (Figure 4).

Figure 4 Raney nickel mediated reduction of nitropyrrolidines

Alternatively, when the flow catalyst cartridge was filled
with 10% Pd on charcoal both reduction of the nitro group
and concomitant removal of the benzyl protecting group
can be realised. All of the resulting 3-aminopyrrolidines
were obtained with no loss of stereochemical integrity in
very good yields and purities after removal of the acetate
counterion. This was easily achieved by elution of the out-
put stream through a column of polymer-supported
carbonate19 (1.0 equiv based on 3-nitropyrrolidine starting
material) followed by solvent removal (Figure 5).

Figure 5 Pd/C-mediated reduction and debenzylation of 3-nitro-
pyrrolidines

In summary, we have demonstrated a particularly conve-
nient preparation of 3-nitropyrrolidines and related com-
pounds using a flow chemical reactor and appropriate
inline workup cartridges to avoid conventional clean up
procedures.20 The further elaboration of the products by
chemoselective hydrogenation chemistry using a flow hy-
drogenator was also achieved to give a new range of
building blocks for organic synthesis programmes.
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