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A highly stereoselective synthesis of �- and �-zearalenol 1
and 2 is accomplished utilising �-allyltricarbonyliron
lactone complexes 5 and 6 to establish the 1,5-stereo-
chemical relationship of oxygen functionalities present in
the natural products.

The 14-membered resorcylic macrolides α- and β-zearalenol
1 and 2 are estrogenic mycotoxins produced by certain species

of the fungus Fusarium.1 Their hormonal activity is linked to
the close spatial similarity to 17β-estradiol,2 with the α-isomer 1
being three to four times as active as the β-isomer 2.3 While
several total syntheses of the parent compound zearalenone
were accomplished over the last 30 years,4 to our knowledge no
independent synthesis of 1 or 2 has been reported so far. Here
we report the first enantioselective preparation of 1 and 2
employing π-allyltricarbonyliron lactone complexes as key
intermediates.

We have previously shown that organoaluminium reagents
possessing active β-hydrogens, like tripropyl- and triisobutyl-
aluminium, reduce carbonyl groups appended to the allyl lig-
and of π-allyltricarbonyliron lactone complexes with excellent
diastereoselectivity.5 Also, we recently reported that sodium
triacetoxyborohydride efficiently decomplexes π-allyltricarb-
onyliron lactone complexes bearing a hydroxy group in the
side-chain to afford stereodefined 1,5-diols.6 By exploiting
this methodology in this work, we show that π-allyl-
tricarbonyliron lactone complexes can be used to set up the
relative oxygen atom stereochemistry present in the natural
products.

The route to α- and β-zearalenol 1 and 2 relied upon the
formation of the π-allyltricarbonyliron lactone intermediates
5 and 6, respectively, whose preparation is delineated in
Scheme 1. Reduction of the ester 3 7 using lithium aluminium
hydride followed by Swern oxidation and Horner–Wadsworth–
Emmons homologation with the phosphonate 18,† prepared
according to the methodology of Grieco,8 gave the correspond-
ing (E)-enone in 83% yield over three steps. Deprotection of
the acetonide under acidic conditions and transformation of
the liberated diol to the cyclic sulfite using thionyl chloride 9

afforded the compound 4 in 82% overall yield. Treatment of
4 with diironnonacarbonyl in benzene under sonication condi-
tions 10 provided the two diastereoisomeric π-allyltricarbonyl-

iron lactone complexes, endo-5 and exo-6, in 70% com-
bined yield and in a ratio of ca. 1 : 1. Separation of the two
isomers 5 and 6 was readily achieved by flash column
chromatography.

With these key intermediates in hand we were able to proceed
to the target molecules α- and β-zearalenol 1 and 2 (Scheme 1).
For example, for α-zearalenol 1, reduction of the side-chain
ketone in the endo complex 5 was achieved in 94% yield using
tripropylaluminium 5 to give 7, as the sole product as deter-
mined by 600 MHz 1H NMR analysis. Treatment of 7 with
sodium triacetoxyborohydride in tetrahydrofuran 6 resulted in a
highly stereoselective decomplexation to afford, after TBDMS-
protection and hydrogenation, the alcohol 8. Swern oxidation
of 8 provided the corresponding aldehyde which in turn was
transformed into the vinylstannane 9 by applying the procedure
developed by Hodgson 11 utilising chromium() chloride and
Bu3SnCHI2 in N,N-dimethylformamide. Stille coupling of the
stannane 9 with the known aromatic iodide 10 4 f using Farina’s
catalyst 12 provided the coupled product 11 in 82% yield. Treat-
ment of 11 with HF�pyridine followed by hydrolysis of the
methyl ester functionality using aqueous potassium hydroxide
in ethane-1,2-diol at 120 �C provided the seco acid 12 in 83%
yield over two steps.

Cyclisation of 12 using Mukaiyama’s protocol 13 afforded the
desired MEM-protected α-zearalenol in 64% yield. Final depro-
tection of the MEM-ethers with aqueous hydrochloric acid in
tetrahydrofuran at 40 �C provided α-zearalenol 1 in 93% yield
and with a de of 94% as determined by 600 MHz 1H NMR
analysis {[α]D

32 �93.6 (c 0.55 in acetone) [optical rotation
obtained on an authentic sample‡ [α]D

32 �97.3 (c 0.55 in
acetone)]}.

Application of the same sequence of reactions to the exo
complex 6 afforded the diastereoisomeric β-zearalenol 2 in simi-
lar overall yield via the intermediates 13 to 17, as shown in
Scheme 1 {de >95% as determined by 600 MHz 1H NMR
analysis; [α]D

32 �12.5 (c 1.00 in acetone) [optical rotation
obtained on an authentic sample‡ [α]D

32 �12.9 (c 1.00 in
acetone)]}.

These highly stereoselective syntheses of α- and β-zearalenol
1 and 2 clearly demonstrate the utility of carbonyl substituted
π-allyltricarbonyliron lactone complexes in organic syn-
thesis. Using the endo complex 5 as well as the exo complex
6 we were able to set up the required 1,5-stereochemical
relationship of oxygen functionalities present in the natural
products.
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Scheme 1 Reagents and conditions: i. LiAlH4, Et2O, 0 �C, 2 h; ii. (COCl)2, DMSO, Et3N, DCM, �78 �C, 3 h; iii. (EtO)2P(O)CH2CO(CH2)4OBn 18,†
NaH, THF, �78 �C, 1 h, 83% (over 3 steps); iv. AcOH–H2O (1 :1), 40 �C, 24 h, 92%; v. SOCl2, Et3N, Et2O, 0 �C, 30 min, 89%; vi. Fe2(CO)9, benzene,
sonication, 30 �C, 3 h, 35% 5, 35% 6; vii. AlPrn

3, DCM, 0 �C, 94% (80%);§ viii. NaBH(OAc)3, THF, 3 d, 75% (83%); ix. TBDMSCl, imidazole, DMF,
0 �C, 30 min, then rt 24 h, 87% (85%); x. Pd/C (10%), H2, EtOAc, 30 min, 94% (93%); xi. (COCl)2, DMSO, Et3N, DCM, �78 �C, 3 h, 86% (80%); xii.
Bu3SnCHI2, CrCl2, DMF, 0 �C, 67% (69%); xiii. methyl 4,6-bis[(2-methoxyethoxy)methoxy]-2-iodobenzoate 10, Pd2(dba)3, P(2-furyl)3, toluene,
100 �C, 4 h, 82% (85%); xiv. HF�pyridine, pyridine, THF, 12 h, 95% (93%); xv. 10 M aqueous KOH, ethane-1,2-diol, 120 �C, 4 h, 87% (91%); xvi.
syringe pump addition of a solution of the seco acid and Et3N in MeCN over 10 h to 1-methyl-2-chloropyridinium iodide, MeCN, reflux, 64% (62%);
xvii. 1.5 M aqueous HCl, THF, 40 �C, 93% (93%).
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Notes and references
† Compound 18 was prepared by alkylation of the dianion of diethyl
(2-oxopropyl)phosphonate (NaH, BuLi, 0 �C) with benzyl 3-bromo-
propyl ether (82%).
‡ Authentic samples of α- and β-zearalenol were purchased from Sigma
Aldrich.
§ Yields given refer to the synthesis of α-zearalenol 1, while those given
in parentheses correspond to the synthesis of β-zearalenol 2.
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