Journal of Organometallic Chemistry, 88 (1975) C41—C43
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

CONVERSION OF BUTADIENE INTO 2,4,6-OCTATRIENE BY Pd^o PHOSPHINE COMPLEXES

A. MUSCO and A. SILVANI

Istituto di Chimica delle Macromolecole del C.N.R., Via Alfonso Corti 12 20133 Milano (Italy)
(Received February 6th, 1975)

Summary

CO₂ enhances the catalytic effect of tertiary phosphine—palladium complexes in the dimerization of butadiene to 1,3,7-octatriene and the subsequent isomerization to 2,4,6-octatriene.

The dimerization of butadiene to 1,3,7-octatriene catalyzed by palladium complexes is well known [1]. It was recently shown that the catalytic activity of $Pd[PPh_3]_4$ and $Pt[PPh_3]_3$ in the dimerization reaction is greatly enhanced if the reaction is carried out under CO_2 pressure [2]. We are currently studying the dimerization of butadiene catalyzed by several Pd^0 phosphine complexes [3] in the presence of CO_2 in order to gain some insight into the effects of CO_2 on the catalyst, and we have observed that the PdL_n , CO_2 system (L = tertiary phosphine) is a very effective catalyst for the transformation of butadiene to 2,4,6-octatriene*. In Table 1 the results which have been obtained with $Pd[PEt_3]_3$, $Pd[P(C_6H_{11})_3]_2$ and $Pd[PPh_3]_3$ are summarized.

Withdrawal of a small portion of the reaction mixture shortly after the end of the pressure drop due to the consumption of butadiene revealed that 1,3,7-octatriene was the main product. This shows that the reaction proceeds in two steps, the formation of 1,3,7-octatriene followed by its isomerization to 2,4,6-octatriene. The isomerization does not seem to be catalyzed by a Pd^o species. This has been shown treating 1,3,7-octatriene with Pd[PEt₃]₃ both in presence and absence of CO₂. In neither case was 2,4,6-octatriene obtained, whereas the catalyst which is recovered from the Pd[PEt₃]₃,CO₂ and butadiene reaction, and which contains only traces of metallic palladium, is an effective catalyst in the absence of CO₂ for either dimerization of butadiene or isomerization of 1,3,7-octatriene. Since larger quantities of metal

[•] In the absence of CO₂ these complexes catalyze the dimerization of butadiene to 1,3,7-octatriene but the degree of conversion is low even after long reaction times.

TABLE 1

DIMERIZATION OF BUTADIENE

Catalyst (mmol)	Reaction time (h)	Conversion (%)	Reaction Conversion (%) 1,3,7-Octatriene (%) time (h)	2,4,6.Octratriene (%) b Others (%) c	Others (%) c
Pd[PEt ₃] ₃ (0.8)	1.26	80	96	traces	7 ,
Party H 1 1 0 61	. d		LACES	(00:T0://) 7A	.
Pd[P(C ₆ H ₁₁) ₈] ₃ (0.6)	ာ ဝ	80	traces	traces 90 (8:8:30:53)	4 O
Pd[P(C, H,), 1, (0.7)	12	C)	82	traces	16
Pd[P(C, H,), 1, (0.7)	69	3	G	84 (6:6:30:58)	10

column, 90°C). The trans, trans, trans isomer was isoluted by cooling the isomeric mixture at -15°C and crystallizing the resulting white crystalline material from methanol several times [4]. The 1H NMR spectra of the t, t, t isomer[6(CDCi,), 1.70 d (J 7 Hz, CH₃), 6.60 m b Bp. 84-8g °C (100 mmHg): 4 isomers were detected by GLC (0.6% diethylglycol succinate on 60/80 mesh Carbopack A, 2 mm X 2 m a 200 ml autoclave, butadiene 25 g (0.46 mol), CO, was introduced at room temp, in the reaction vessel already charged with butadiene to a total pressure of 8.9 kg/cm2, solvent 40 ml of benzene, temp. 110°C.

c 4-Vinylcyclohexene and other unidentified products.

5.95 m (CH)] and of the isomeric mixture are similar.

١

were recovered from the $Pd[P(C_6H_{11})_3]_2$ and $Pd[PPh_3]_3$ runs and the PPh_3 system found to be the least active catalyst, it seems that the isomerization is not due to palladium metal.

These preliminary results suggest that CO_2 , in the presence of butadiene, assists the formation of a Pd^{II} species which is active both for the dimerization of butadiene to 1,3,7-octatriene and for the isomerization of 1,3,7-octatriene to 2,4,6-octatriene.

Acknowledgment

The authors thank Mr. S. Italia for his skillful technical help.

References

- 1 J. Tsuji, Accounts Chem. Res., 6 (1973) 8.
- 2 J.F. Kohnle, L.H. Slaugh and K.L. Nakamaye, J. Amer. Chem. Soc., 91 (1969) 5094.
- 3 W. Kuran and A. Musco, Inorg. Chim. Acta, 12 (1975) 187.
- 4 E.A. Zuech, D.L. Crain and R.F. Kleinschmidt, J. Org. Chem., 33 (1968) 771.