

Pergamon

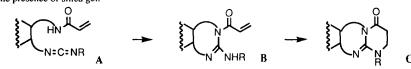
PII: S0040-4039(96)02130-2

A Novel and Facile Carbodiimide-Mediated Synthesis of 2,3-Dihydro-6*H*-pyrimido[2,1-*b*]quinazolin-4(1*H*)-ones via a Tandem Intramolecular Nucleophilic Addition / Intramolecular Hetero Conjugate Addition Annulation Strategy

Takao Saito* and Kensaku Tsuda

Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Abstract: A novel and efficient carbodiimide-mediated synthetic method for new 2,3-dihydro-6//pyrimido[2,1-b]quinazolin-4(1//)-ones (4) is described which involves initial intramolecular addition of an amino-nucleophile to the carbodiimide-cumulenic system, followed by intramolecular hetero conjugate addition annulation. Copyright © 1996 Elsevier Science Ltd


During the last past decade, potentially functionalized carbodiimides have found wide synthetic utility, especially in the field of heterocyclic chemistry.¹ The versatility of the carbodiimide-mediated synthesis of a wide range of nitrogen heterocycles has prompted us to develop a novel method for the synthesis of new heterocycles by utilizing these reactive species as the key intermediates. Recently we have demonstrated an efficient carbodiimide-mediated synthesis of dihydroquinazolines via a tandem strategy consisting of nucleophilic addition of an alcohol, an amine or a thiol, and subsequent intramolecular heterocyclizations (A_N, S_N) have also been reported.³ Since sequential, intramolecular transformations often provide advantageous efficiency in organic synthesis,⁴ we took interest in such strategy to apply it to the above process. We report here the first examples of an intramolecular-intramolecular mode of the tandem addition annulations on carbodiimides, which provide a facile and useful method for the synthesis of the otherwise hardly available, new 2,3-dihydro-6H-pyrimido[2,1-b]quinazolin-4(1H)-ones (4).^{5,6}

In general, a critical point for intramolecular reactions is preparation of key intermediates (or sometimes their precursors) in the process. This is particularly true with such highly reactive species as 1 which should appropriately be built up with the components including the three diverse functional groups (N=C=N, NH and C=C-C=O) in a molecule. For the preparation of the carbodiimides 2 we took advantage of the aza-Wittig reaction of the iminophosphoranes 1 with isocyanates because isocyanate reacts chemoselectively on the ylide moiety under very mild conditions.¹ The requisite iminophosphorane 1 was prepared by the Staudinger reaction of the azide,⁷ which was readily synthesized from *o*-toluidine via amination, azidation, and acylation.⁸ The formed carbodiimides 2 smoothly underwent the intramolecular nucleophilic addition to give the dihydroquinazolines 3, which, upon heating in a one-pot, were converted into the 2,3-dihydro-6*H*pyrimido[2,1-*b*]quinazolin-4(1*H*)-ones 4 in fair to good overall yields.⁶ It is noteworthy that the conversion $3 \rightarrow 4$ was efficiently accelerated by silica gel except for the case of $3f \rightarrow 4f$.² In this case the reluctance to cyclize can be attributed to the steric hindrance between the substituents (Me (R¹) and *c*-Hex (R²)).

In summary, we have described the novel and efficient carbodiimide-mediated synthesis of 2,3-dihydro-6H-pyrimido[2,1-b]quinazolin-4(1H)-ones via the intramolecular tandem additions strategy. Conceptually, a

variety of pyrimidinone-fused heterocycles of type C in which a guanidine moiety constitutes the fusion joint, can be synthesized by this strategy. Further study on this subject is in progress in our laboratory.

		R ¹ R ² N=C=Q	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} & & \\ & & $
Table 1 Intramolecular Tandem Addition Reactions of Carbodiimides 2				
Run	<u>R1</u>	<u>R²</u>	Temperature (Time / h)	Product (Yield / %)
a	Н	Ph	r.t. (1) \rightarrow 80 °C (1.5)	4 a (65)
b	Н	<i>p</i> -Tol	r.t. (1) \rightarrow 80 °C (1.5)	4b (60)
с	Н	c-Hex	80 °C (3 + 2*)	4c (47)
d	Me	Ph	r.t. (3) \rightarrow 80 °C (2*)	4d (69)
e	Me	<i>p</i> -Tol	r.t. (3) \rightarrow 80 °C (2*)	4e (55)
f	Me	c-Hex	80 °C (3 + 2*)	3f (47)
g	Me	Et	$60~^{\circ}\mathrm{C}~(10) \rightarrow 80~^{\circ}\mathrm{C}~(2^{*})$	4g (61)
h	Ph	Ph	80 °C (1)	4h (95)
* In the presence of silica gel.				

Typical Procedure (Table 1, Run 1)

To a benzene solution (15 cm³) of iminophosphorane la (1.00 mmol, 436 mg) was added a benzene solution (15 cm³) of phenyl isocyanate (1.10 mmol) at room temperature with stirring under an atmosphere of argon. After additional stirring for 1 h at r.t., the reaction mixture was then heated under reflux for 1.5 h. Evaporation of the solvent and column chromatography (silica gel, hexane-ethyl acetate 5:1 - 3:1) of the residue gave 1-phenyl-2,3-dihydro-6H-pyrimido[2,1-b]quinazolin-4(1H)-one (4a) in a 65 % yield as colorless crystals after recrystallization from CH2Cl2-diethyl ether.

References and Notes

- For a review; (a) Molina, P.; Vilaplana, M. J. Synthesis, 1994, 1197. (b) Eguchi, S.; Matsushita, Y.; 1 Yamashita, K. Org. Prep. Proced. Int., 1992, 24, 209. (b) Nitta, M. In Reviews on Heteroatom Chemistry, Oae, S. Ed.; MYU: Tokyo, 1993; Vol. 9, p. 87. (c) Barluenga, J.; Palacios, F. Org. Prep. Proced. Int., 1991, 23, 1. (c) Gololobov, Y. G.; Kasukhin, F. Tetrahedron, 1992, 48, 1353. (d) Gusar, N. I. Russ. Chem. Rev., (Engl. Transl.), 1991, 60, 146. (e) Gusar, N. I.; Samarai, L. I. Russ. Chem. Rev. (Engl. Transl.), 1992, 67, 297. (f) Wamhoff, H. Adv. Heterocycl. Chem., 1995, 64, 159.
- Saito, T.; Tsuda, K.; Saito, Y. Tetrahedron Lett., 1996, 37, 209.
 (a) Okawa, T.; Eguchi, S. Synlett, 1994, 555. (b) Wamhoff, H.; Wintersohl, H.; Stolben, S.; Paasch, J.; Nai-jue, Z.; Fang, G. Liebigs Ann. Chem., 1990, 901. (c) Molina, P.; Alajarin, M.; Vidal, A. 3 Tetrahedron, 1989, 45, 4263. (d) Molina, P.; Arques, A.; Vinader, M. V. Synthesis, 1990, 469.
- (a) Tietze, L. F.; Beifuss, U. Angew. Chem. Int. Ed. Engl., 1993, 32, 131. (b) Ihara, M.; Fukumoto, 4 K. Angew. Chem. Int. Ed. Engl., 1993, 32, 1010. Castle, R. N.; Phillips, S. D. In Comprehensive Heterocyclic Chemistry, Boulton, A. J., McKillop, A.
- 5 Eds.; Pergamon Press: New York, 1984; p. 329.
- To the best of our knowledge, only a few pyrimido[2,1-b]quinazoline derivatives are known and they 6. have been reported to display interesting biological and pharmacological properties such as depressive action on the central nervous system, and neuroleptic and diuretic activity: Korzycka, L.; Szadowska, A.; Pakulska, W. *Pharmazie*, **1994**, *49*, 815; *Chem. Abstr.* **1995**, *122*, 105798g. Yamamoto, M.; Koshiba, M.; Aono, S. German Patent 2,838,846; Chem. Abstr. 1979, 90, 204132n.
- Staudinger, M.; Meyer, J. Helv. Chim. Acta 1919, 2, 635. (a) Barton, D. H. R.; Sammes, P. G.; Weingarten, J. J. Chem. Soc. (C), 1971, 721. (b) Smith, P. A. S.; Budde, G. F.; Chou, S.-S. P. J. Org. Chem., 1985, 50, 2062. 8.

(Received in Japan 28 September 1996; revised 23 October 1996; accepted 28 October 1996)