DOI: 10.1002/cctc.201400018

Methane Coupling Reaction in an Oxy-Steam Stream through an OH Radical Pathway by using Supported Alkali Metal Catalysts

Yin Liang,^[a] Zhikao Li,^[a] Mohamed Nourdine,^[b] Salman Shahid,^[c] and Kazuhiro Takanabe^{*[a]}

A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H_2O-O_2 reaction followed by C–H activation in CH₄ with an OH radical. Thus, the presence of water enhances both the CH₄ conversion rate and the C₂ selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which sug-

Introduction

The oxidative coupling of methane (OCM), the direct synthesis of C_2 hydrocarbons from methane by using O_2 and oxide catalysts at high temperatures, has been investigated for many years.^[1] The simplified reaction pathway for the OCM that is commonly accepted in the literature is shown in Scheme 1. The sequential pathways to grow carbon chains account for the attainable yield of OCM processes because the products combust more rapidly than the CH₄ reactant.

Scheme 1. The simplified reaction pathway for the OCM at high conversion (dotted arrows: first order with respect to hydrocarbon concentration, solid arrows: second order with respect to hydrocarbon concentration).

[a]	Y. Liang, Z. Li, Prof. K. Takanabe
	Division of Physical Sciences and Engineering
	KAUST Catalysis Center (KCC)
	King Abdullah University of Science and Technology (KAUST)
	4700 KAUST, Thuwal, 23955-6900 (Saudi Arabia)
	E-mail: kazuhiro.takanabe@kaust.edu.sa
	Homepage: http://catec.kaust.edu.sa
[b]	M. Nourdine
	Department of Chemical Engineering
	Universiti Teknologi Petronas
	Tronoh, Perak (Malaysia)
[c]	S. Shahid
	Department of Chemical Engineering
	Indian Institute of Technology Kharagpur
	West Bengal 721302, Kharagpur (India)

gests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH'-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C₂ yield is achievable by using Na₂WO₄/SiO₂, which catalyzes the OH'-mediated pathway selectively.

Until recently, the reaction was generally thought to be initiated by the formation of methyl radicals on the catalyst surfaces that then undergo gas-phase radical reactions (heterogeneous-homogeneous pathways).^[2] The literature describes catalysts based on MgO or rare earth oxides for the OCM.^[3] In addition, Mn alkali catalysts have been investigated.^[4] Rigorous kinetic studies that use the state-of-the-art Mn/Na₂WO₄/SiO₂ catalyst for the OCM revealed that the addition of water to the reactant mixture can improve both the rate and selectivity.^[5] Rather than CH₄ activation by the surface oxygen species (an O^{*}-mediated pathway), the OCM reaction was found to largely proceed through CH₄ activation by gas-phase OH radicals that are formed catalytically from the H₂O–O₂ reaction (a OH^{*}-mediated pathway).^[Sa]

This study addresses the site requirements for catalytic OH radical generation in an oxy-steam stream at high temperatures during an OCM reaction. Many OCM-active Mn-containing catalysts have been reported,^[4] but whether these reducible Mn-originated sites are essential for water activation remains uncertain. We demonstrate that Na2WO4/SiO2 (without Mn species) yields a higher selectivity than its Mn-containing counterparts because the catalyst is not active for the less selective O*-mediated pathway, which allows the OH radical pathway to predominate. These catalysts (without Mn) have been investigated previously,^[6] but the effects of H₂O were not considered. The melting points of Na_2WO_4 (971 K) and Na₂MoO₄ (960 K) are lower than the typical OCM operating temperatures (> 1000 K), which suggests that under OCM conditions, the catalyst surface is covered with these molten salts that can, for example, facilitate a phase transfer of the SiO₂ support from tridymite to cristobalite.^[4d] Variation of the catalyst components demonstrates that a selective OH-mediated pathway within an OCM reaction depends on the catalyst for-

ChemCatChem 0000, 00, 1-8

mulation. We propose that alkali metals, not the reducible oxide, may be the active component for high selectivity. To the best of our knowledge, the experimentally obtained C_{2+} yields (> 27 %) are among the highest reported to date.

Results and Discussion

Kinetic analysis using Na₂WO₄/SiO₂ (low conversion)

We first focus on the initial steps of CH_4 activation. The reaction pathway that dominates at low conversions for a selective catalyst, such as Na_2WO_4/SiO_2 , is shown in Scheme 2. Zero

Scheme 2. The reaction pathway for the $CH_4/O_2/H_2O$ reaction at low conversion.

conversion rates, determined by extrapolating the rates measured at various conversions to zero, were used to reflect the input conditions with the given reactant pressures.

The CH₄ conversion rate on a Na₂WO₄/SiO₂ catalyst (in the absence of H₂O) is proportional to $P_{CH_4}P_{O_2}^{1/2}$ (Figure 1 A and 1 B), which is consistent with the mechanism that involves the dissociative adsorption of O₂ that reacts with molecularly adsorbed CH₄.^[4e,5a] The elementary reaction steps involved in the surface O*-mediated pathway for Na₂WO₄/SiO₂ are consistent with those reported for a Mn-containing catalyst, described as R1–R6 in Table 1.

To simplify the steps, the quasi-equilibrium steps for R1 and R2 are combined into R7. The rate for methane activation through this mechanism can be described as Equation (1) (Table 1), which is first order with respect to CH_4 and half order with respect to O_2 (Figure 1).

Table 1. Plausible elementary steps and rate equations for the surface O* pathway and gas-phase OH pathway.					
Reaction					
R1	$O_2 + * \underbrace{\overset{K'_{O_1}}{} O_2} *$				
R2	$O_2^* + * \underbrace{\kappa''_{O_2}}{2} 2O^*$				
R3	$CH_4 + * \overleftarrow{CH_4} CH_4 *$				
R4	$CH_4^* + O^* \xrightarrow{k_0 *} CH_3 + OH^* + *$				
R5	$2 \text{OH} \stackrel{\text{K-OH} *}{\longleftarrow} \text{O} \stackrel{\text{H}}{\rightarrow} \text{O}$				
R6	$H_2O^* \xrightarrow{K_{H_2O}*} H_2O$				
R7	$O_2 + 2^* \stackrel{K_{O_2}}{\longleftarrow} 2O^*$				
R8	$OH* \underbrace{K'_{OH+}}{} *+ OH' \text{ or } H_2O* + O* \underbrace{K'_{OH+}}{} *+ OH* + OH'$				
R9	$O_2 + 2H_2O \stackrel{K_{\text{OH}}}{\longrightarrow} 4OH'$				
R10	CH₄+OH ^{•<u>k</u>•o+CH₃[•]+H₂O}				
Eq. (1)	$r' = k_{O*} K_{CH_4} K_{O_2}^{1/2} P_{CH_4} P_{O_2}^{1/2}$				
Eq. (2) ^[a]	$r_{C_2} = k_{C_2} P_{CH_3}^2$				
Eq. (3) ^[a]	$r_{\rm CO_x} = k_{\rm CO_x} P_{\rm CH_3} P_{\rm O_2}^{\beta}$				
Eq. (4)	$r'' = k_{\rm OH} K_{\rm OH} P_{\rm CH_4} P_{\rm O_2}^{1/4} P_{\rm H_2O}^{1/2}$				
Eq. (5)	$r_{CH_4} = r' + r'' = k' P_{CH_4} P_{O_2}^{1/2} + k'' P_{CH_4} P_{O_2}^{1/4} P_{H_2O}^{1/2}$				
$[\mathbf{a}] P_{CH_3} = \frac{\sqrt{\left(k_{CO_1} P_{O_2}^{\beta}\right)^2 + 4k_{C_3} r_{CH_4} - k_{CO_1} P_{O_2}^{\beta}}}{2k_{C_2}}$					

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 1. A) CH₄ partial pressure dependence and B) O₂ partial pressure dependence of the CH₄ conversion rates obtained by extrapolating the measured rates to zero (zero conversion rates) and C) C₂ selectivity (C₂H₆+C₂H₄) as a function of the CH₄ conversion (under various conditions without a H₂O co-feed with a Na₂WO₄/SiO₂ catalyst; 0.1 g cat, 1073 K, 6–48 kPa CH₄, 1–12 kPa O₂, total pressure = 101 kPa balanced by He).

After the kinetically relevant C–H bond activation step of CH₄, the methyl radicals can either react with another methyl radical or with an oxygen species (Scheme 2, Eqs. (2) and (3) in Table 1). The presence of O_2 is essential to activate CH₄ (either through O* or OH'), which leads to a nonzero selectivity for

 CO_x at zero CH_4 conversion. A high O_2 pressure results in a low C_2 selectivity at low CH_4 conversions as indicated in Figure 1 C. In a previous study,^[5b] the oxygen dependence β was associated with first-order CO formation (molecular O_2 in the gas phase) and half-order CO_2 formation (dissociated O_2 on the surface (O*)). We emphasize that, in any case, the catalysts should prevent the direct formation of CO_x .

Next, the CH₄ conversion rates were measured by using a Na₂WO₄/SiO₂ catalyst at constant CH₄ and O₂ pressures with varied H₂O pressure. The rates as a function of the residence time at various H₂O pressures are presented in Figure 2A. The CH₄ conversion rates improved drastically as the H₂O pressure increased. Although the reason for the slight decrease in rates with increasing residence time in the presence of H₂O remains unclear, the beneficial effects of H₂O pressure on CH₄ conver-

Figure 2. Effect of water pressure on A) the CH₄ conversion rates as a function of the residence time, B) C₂ selectivity (C₂H₆ and C₂H₄) as a function of the CH₄ conversion, C) and D) incremental CH₄ conversion rate (obtained from the measured differences between the rates with and without H₂O) as a function of $P_{D_2}^{1/4}P_{H_2}^{1/2}$ with a Na₂WO₄/SiO₂ catalyst (0.1 g, 1073 K, 10.0 kPa CH₄, 1.7 kPa O₂, 0–2.3 kPa H₂O, total pressure = 101 kPa balanced by He).

sion rates are apparent (Figure 2A). The C₂ selectivity (C₂H₆+C₂H₄) during the same experiments is presented in Figure 2B. The selectivity also improved with increasing H₂O pressures (at a given conversion). At these low conversion levels, the selectivity exceeded 90% at zero conversion, and mostly for C₂H₆ formation with other products in smaller quantities (Figure 2C). This suggests that the direct combustion of CH₄ to CO_x is minimized on the catalyst. C₂H₄ is likely formed by the dehydrogenation of C₂H₆ as it is extrapolated to zero selectivity can be explained by the accelerated CH₃[•] formation, which is followed by a second-order recombination of CH₃[•] to CO_x with positive O₂ dependence [Eq. (3)]. This high sensitivity to O₂ pressure increases the rate of CO_x formation over that of

 C_2H_6 , which results in the decreased C_2 selectivity at higher O_2 pressure (Figure 1 C). This high initial selectivity is also consistent with the observation that the catalyst lacks steam-reforming activity toward CO and H_2 .^[5b]

The rates at zero conversion were obtained similarly from the data acquired if various H₂O pressures and CH₄/O₂ mixtures were co-fed. The improved rates in the presence of H₂O were associated with a positive kinetic order for H₂O pressures. As indicated in the kinetic analysis (Figure 2D), the incremental rates between the H₂O-present and H₂O-absent rates were proportional to $P_{O_2}^{1/4} P_{H_2O'}^{1/2}$ which is consistent with a reaction mechanism in which CH₄ is activated by guasi-equilibrated OH radicals from a H₂O/O₂ mixture. The quasi-equilibrated nature of OH radical formation leads to R8 in Table 1.[5,7] Thus, the quasiequilibrated steps R5-R8 lead simply to R9. If an OH radical reacts with CH₄ in the gas phase, R10 occurs to generate a methyl radical. Notably, R10 is a pure homogeneous (gas-phase) reaction. The rate of this reaction can be described as Equation (4). The rate is proportional to $P_{O_2}^{1/4}P_{H_2O_2}^{1/2}$, which is consistent with Figure 2D. The rate expression for CH₄ activation (at least at low conversion) can be thus described based on two separate CH₄ conversion terms, the O*-

ChemCatChem 0000, 00, 1-8

^{© 2014} Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

mediated and OH-mediated pathways as shown in Equation (5),^[5a] in which $k' = k_{O^{+}} K_{CH_4} K_{O_2}^{1/2}$ and $k'' = k_{OH} K_{OH}$.

CHEMCATCHEM FULL PAPERS

The measured apparent rate constants k' and k'', the rates for r' and r'', and their rate ratio r''/r' under typical oxy-steam conditions at 10 kPa CH₄, 1.7 kPa O₂, and 1.7 kPa H₂O are summarized in Table 2. The ratio r''/r' provides a clear explanation of how the OH-mediated pathway dominates the O*-mediated pathway. The r''/r' ratio can be strongly correlated with $K_{OH'}$ / $K'_{CH_4'}$ which is the ratio of the H₂O and CH₄ adsorption coefficients. The presence of Mn in the catalyst clearly enhanced the rate constants for the CH₄ conversion with O* (without H₂O) to yield an apparent rate constant (k') for Mn/Na₂WO₄/SiO₂ (0.04 µmol g⁻¹ s⁻¹ kPa^{-3/2}) that exceeds that for Na₂WO₄/SiO₂ (0.01 µmol g⁻¹ s⁻¹ kPa^{-3/2}). Thus, Mn has been considered effective previously if a CH₄/O₂ mixture (in the absence of H₂O) was

introduced as a reactant.^[4] The apparent rate constant for the OH⁻-mediated pathway (k'') was found be to $0.12 \,\mu mol \, g^{-1} s^{-1} k Pa^{-7/4}$ for Mn/ Na_2WO_4/SiO_2 compared with $0.21 \ \mu mol g^{-1} s^{-1} k Pa^{-7/4}$ for Na_2WO_4/SiO_2 . Thus, r''/r' is 5.8 for the catalyst without Mn, which exceeds that for the catalyst with Mn (2.7) to result in predominant CH₄ activation through a OH-mediated pathway for Na₂WO₄/SiO₂. The C₂₊ selectivity on using Na₂WO₄/SiO₂ was notably higher than that with a Mncontaining catalyst for all CH₄ conversions, which is consistent with that predicted by ChemKin modeling in which a pure OHmediated pathway exhibits improved C₂ selectivity and yield.^[5b]

The unique properties of Na_2WO_4/SiO_2 for the generation of OH radicals from a H₂O/O₂ mixture may arise from redox properties of the oxo anion (W). To investigate this, the CH₄ conversion rates were measured by using a Na₂MoO₄/SiO₂ catalyst at constant CH₄ and O₂ pressures with varied H₂O pressure, and the results are shown in Figure 3. As with a Na₂WO₄/SiO₂ catalyst, the CH₄ conversion rates on using Na2MoO4/SiO2 increased with increasing H₂O partial pressure (Figure 3A). The C₂ selectivity also improved drastically with increasing H₂O pressures (at a given conversion; Figure 3B and 3C), but this selectiv**Table 2.** Rate constants for the surface O* pathway and gas-phase OH pathway and the rates under typical conditions (0.1 g, 10 kPa CH_4 , 1.7 kPa O_2 , 1.7 kPa H_2O).^[a]

Catalyst	K	<i>k</i> "	ŕ	r″	r"/r′	
Mn/Na ₂ WO ₄ /SiO ₂	0.040	0.21	1.16	3.64	2.7	
Na ₂ WO ₄ /SiO ₂	0.011	0.12	0.32	2.15	5.8	
Na ₂ MoO ₄ /SiO ₂	0.016	0.058	0.46	1.00	1.9	
Na_2WO_4/AI_2O_3	0.027	0.016	0.78	0.80	0.9	
K ₂ WO ₄ /SiO ₂	0.039	0.066	1.13	1.14	0.9	
Na ₂ CO ₃ /SiO ₂	n.d.	0.023	-	0.04	-	
[a] $r_{CH_4} = r' + r''$, (surface O* pathway) $r' = k'P_{CH_4}P_{O_2}^{1/2}$, (gas-phase OH pathway) $r'' = k''P_{CH_4}P_{O_2}^{1/2}P_{H_2O}^{1/2}$. r, r' and r'' in μ molg ⁻¹ s ⁻¹ , kP_4 in μ molg ⁻¹ s ⁻¹ , k' in						

Figure 3. Effect of water pressure on A) the CH₄ conversion rates as a function of residence time, B) the C₂ selectivity (C₂H₆ and C₂H₄) as a function of the CH₄ conversion, and C) incremental CH₄ conversion rate (obtained from the measured differences between the rates with and without H₂O) as a function of $P_{0_2}^{1/4}P_{H_2O}^{1/2}$ with a Na₂MoO₄/SiO₂ catalyst (0.1 g, 1073 K, 10.0 kPa CH₄, 1.7 kPa O₂, 0–2.3 kPa H₂O, total pressure = 101 kPa balanced by He).

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ChemCatChem 0000, 00, 1-8

ity was slightly lower than that for the Na₂WO₄/SiO₂ catalyst. Without H₂O addition (CH₄/O₂ mixture only), CO and CO₂ are formed significantly, and negligible C₂H₄ selectivity at low conversion indicates that C₂H₄ is the secondary product from C₂H₆ dehydrogenation (Figure 3C). These incremental CH₄ conversion rates on using Na₂MoO₄/SiO₂ were correlated as a function of $P_{O_2}^{1/4}P_{H_2O}^{1/2}$ (Figure 3D). The linear relationship of this plot is consistent with a mechanism that involves CH₄ activation through quasi-equilibrated OH⁻-mediated pathways. The r''/r'ratio is 1.9, which indicates that a OH⁻-mediated pathway is predominant under oxy-steam conditions, yet below that of Na₂WO₄/SiO₂.

Further investigation was aimed to identify the active components of the OH radical pathways. The K₂WO₄/SiO₂, Na₂WO₄/ Al₂O₃, and Na₂CO₃/SiO₂ catalysts were investigated in a similar manner with particular attention paid to the effects of H₂O. The beneficial effects of H₂O on both the CH₄ conversion and C₂ selectivity were observed for all catalysts. The rate constants and the r''/r' ratios are compiled in Table 2. Large k' values and the resultant small r''/r' ratios for Na₂WO₄/Al₂O₃ and K₂WO₄/ SiO₂ indicate that the surface O*-mediated activation of CH₄ is relatively prominent on these catalysts. For improved C2 selectivity, the catalyst must be inert under CH₄ activation on the surface (Al₂O₃ may not be because of its Lewis acidity), but sufficiently sensitive to generate OH radicals (K may be less sensitive than Na). Moreover, the absence of a W or Mo species (the experiments performed with a Na₂CO₃ catalyst) also demonstrated exclusive activity for the OH-mediated pathway with no measurable rates confirmed for the surface O*-mediated pathway. These data indicate that W or Mo is not essential for H₂O activation with O₂, but that alkali metal species (Na⁺, K⁺) are more likely (W or Mo stabilizes those alkali species). In the same experiment that uses quartz, no catalysis for CH₄ conversion was observed even in the presence of H₂O (CH₄ is inert in both the presence and absence of water). The site requirement is also related to the active oxygen species involved in the activation of CH₄ and H₂O, such as O^{*} or O_s $-O^*$ etc., which are currently difficult to discern except that the kinetic analyses indicate the involvement of dissociated O2. The alkali metal species, which are often in the molten salt state at the reaction temperature, generally have a high affinity for H₂O (to form hydroxides easily). These kinetic analyses demonstrate the universality and significance of the reaction mechanism involved in the OCM reaction that uses H₂O as a co-reactant (i.e., the C-H bond activation by OH radicals formed catalytically).

Catalyst characterization

As described previously, Na_2WO_4 and Na_2MOO_4 are in a molten state under the reaction conditions because their melting points are below the reaction temperature (\geq 1073 K; Table 3), which leads to a facile transfer of the crystal structure to a more rigid structure. The cristobalite phases dominate the samples, especially with the molten salts (Na_2WO_4 and Na_2MOO_4) and particularly after the OCM reactions (Figure 4). With the knowledge that alkali metals enhance the phase change, flux-assisted phase transformation is believed to occur **Table 3.** Salt melting points, BET surface areas, and C₂ selectivities $(C_2H_6+C_2H_4)$ at 2% CH₄ conversion for the various catalysts (0.1 g, 1073 K, 10 kPa CH₄, 1.7 kPa O₂, total pressure = 101 kPa balanced by He).

Catalyst	Salt m.p. [K]	BET surface area [m²g ⁻¹]	C_2 selectivity at 2% CH_4 conversion [%]	
$\label{eq:started} \begin{split} &Na_2WO_4/SiO_2\\ &Na_2MoO_4/SiO_2\\ &K_2WO_4/SiO_2\\ &Na_2WO_4/Al_2O_3 \end{split}$	971	1.9	88.0	
	960	1.7	45.0	
	1194	0.6	66.9	
	971	5.2	71.4	

Figure 4. XRD patterns of the K_2WO_4/SiO_2 , Na_2WO_4/SiO_2 , and Na_2MoO_4/SiO_2 catalysts before and after the reaction (AR).

at high temperatures. We do not consider this phase transfer to be critical to create a single active site for CH_4 coupling (or OH radical generation); however, it aids in the inhibition of the combustion activity on the surface. The reaction contains H_2O as a sintering-facilitation reagent, and the typical reaction time per sample is longer than 2 days. The catalytic performance remains unchanged during the measurements.

Dual-reactor experiments with Na_2WO_4/SiO_2 catalyst (high conversions)

A sequential dual-reactor system (Scheme 3) was used to achieve high conversions and yields by using Na₂WO₄/SiO₂, the most selective catalyst investigated, with the introduction of additional O_2 between the first and second reactors. The C_{2+} yields (all hydrocarbons except for the CH₄ reactant) measured at various reaction temperatures and pressures are shown in Figure 5. Some results of the CH₄ conversion, carbon selectivity, and C₂ and C₂₊ yields under various conditions are summarized in Table 4. In a single reactor with a CH_4/O_2 ratio of 3, the CH_4 conversion reached ~37% with a C_2 selectivity of ~64%. The C_{2+} yield thus exceeds 25% already with a single reactor. Further conversion of the CH_4 was attempted with the second reactor at various temperatures. The C₂₊ yields improved only slightly, as confirmed by the experiments under various O2 pressures and reaction temperatures in the second reactor. The insensitivity of the O₂ pressure at high CH₄ conversion to the C₂ selectivity implies that all hydrocarbons have the same oxygen dependence to form CO_x. Thus, the staged O₂ ap-

Scheme 3. Schematic image of the sequential dual-reactor system with O₂ addition.

Figure 5. C₂₊ yield as a function of the CH₄ conversion using a sequential dual reactor for the CH₄/O₂/H₂O reaction with a Na₂WO₄/SiO₂ catalyst (first reactor: 0.8 g, 1153 K, 10.0 kPa CH₄, 0.8–3.3 kPa O₂, 0–2.3 kPa H₂O; second reactor: 0.4 g, 1073–1153 K, 0.8–2.4 kPa O₂ added to the stream from the first reactor, total pressure = 101 kPa balanced by He).

proach (the O₂ membrane reactor) is only useful at low CH₄ conversions as discussed previously (Scheme 2). Under such conditions, a sufficient C₂ concentration triggers the C₂ activation to form C₃ (and C₄), which combust more rapidly (Scheme 1). The selectivity of C₃ or higher hydrocarbons (primarily C₃H₆) was ~3%. At 1123 K in the second reactor, the CH₄ conversion reached ~52% with a C₂H₄ selectivity of ~40%. Overall, the C₂₊ yield was 27.6%, which is higher than that reported over Mn/Na₂WO₄/SiO₂ (~26%),^(5b) and among the high-

est hydrocarbon yields reported for simple oxygen-addition experiments.

Among the most unique properties of the Na_2WO_4/SiO_2 catalyst is the high affinity of its surface for H_2O compared with hydrocarbons under steady-state conditions. As discussed in detail previously,^[5b] the absence of strong hydrocarbon adsorption prevents the preferential combustion of a C_2H_4 product (with

π electrons) on the surface. Moreover, the relative rates for the kinetically relevant C–H bond cleavage in each hydrocarbon through an OH radical pathway reflects only a Brønsted–Evans–Polanyi relationship, the C–H bond is stronger in C₂H₄ (452 kJmol⁻¹) than in CH₄ (439 kJmol⁻¹), to yield a comparative-ly lower rate of C–H abstraction by the OH radical for C₂H₄ than for CH₄ (1.2×10¹² or 1.6×10¹² cm³mol⁻¹s⁻¹, respectively, at 1073 K), which results in an improved C₂ yield.^[5b]

This study demonstrates the improved rates and yields of a methane coupling reaction under oxy-steam conditions. The kinetic analysis of the experiments that use a Na₂WO₄/SiO₂ catalyst is consistent with the quasi-equilibrated OH radical formation, which preferentially abstracts hydrogen from CH₄ over C₂H₄. The OCM reactions at high pressures remain a challenge because the carbon growth reactions are generally second order with respect to the hydrocarbon or relevant radical concentrations (Scheme 1).^[3g] The formation of higher hydrocarbons, the concentrations of which increase with high CH₄ conversion, leads to reduced C₂ yields because of their high rates of oxidation to CO_x.^[3g, 5b]

Conclusions

The presence of water in a CH_4/O_2 mixture enhanced both the CH_4 conversion rate and the C_2 selectivity for the oxidative coupling of methane (OCM) that used alkali-metal-based catalysts. The reaction mechanism is consistent with OH radical formation from a H_2O-O_2 reaction, followed by C–H activation in hydrocarbons with an OH radical. The contribution of this OH radical pathway that is selective for OCM over the surface O* pathway predominantly accounts for the different OCM selec-

Table 4. Catalytic results from experiments that used a Na_2WO_4/SiO_2 catalyst by using sequential dual reactors with O_2 added between the first and second reactors (first reactor: 0.8 g, 1153 K, 10.0 kPa CH₄, 3.3 kPa O₂, 2.3 kPa H₂O; second reactor: 0.4 g, 1073–1153 K, 2.4 kPa O₂ added to the stream from the first reactor, total pressure = 101 kPa balanced by He).^[a]

	Conversion [%]		Selectivity [%]				Yield	eld [%]
	CH_4	C_2H_4	C_2H_6	C ₃	CO ₂	СО	C ₂	C_{2+}
1 st reactor (only) 1153 K	36.9	48.0	15.8	4.3	13.9	17.8	23.5	25.2
2 nd reactor 1153 K	53.1	37.2	9.2	2.9	23.8	26.4	24.6	26.4
2 nd reactor 1123 K	51.7	39.5	10.6	2.9	21.8	24.7	25.9	27.6
2 nd reactor 1073 K	44.7	43.2	13.5	3.4	18.2	21.2	25.3	27.0
[a] H_2 was detected with a	selectivity below 6% for hyd	rogen balance.						

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ChemCatChem **0000**, 00, 1–8

These are not the final page numbers! **77**

tivities. The OH-mediated pathway also proceeded with catalysts without Mn, W, or Mo, which suggests clearly that these components are not essential as an OH radical generator from a H_2O/O_2 mixture. The universal mechanism for the selective OCM reaction is proposed to use the H_2O-O_2 reaction on supported alkali metal catalysts.

Experimental Section

For the catalyst preparation, SiO₂ (Sigma–Aldrich, Silica Gel, Davisil Grade 646, 35–60 mesh) or Al₂O₃ (Evonik, Fumed Aluminum oxide Aeroxide Alu130) was used as a support to immobilize 5 wt% Na₂WO₄·2 H₂O (Sigma–Aldrich, 99%), Na₂MoO₄·2 H₂O (Sigma–Aldrich, \geq 99.5%), K₂WO₄ (Sigma–Aldrich, 94%), or Na₂CO₃ (Fluka, \geq 99.9999%) by wet impregnation. This sample was heated under a flow of dry air at 1173 K for 8 h at a rate of 2 Kmin⁻¹.

The rates and selectivities of the $CH_4/O_2/H_2O$ reactions were measured by using flow reactors using a U-shaped quartz cell (4 mm I.D.). The samples (0.02 g) were held on quartz wool without dilution. The temperature was maintained by using a Honeywell controller coupled to a resistively heated furnace and measured with a K-type thermocouple set outside the catalyst bed. The CH_4 (99.9995%), 20% O_2 in He, and He (99.999%) were purchased from Abdullah Hashim Industrial Gases & Equipment Co., Ltd (AHG) and used after further purification by filtration. The flow was regulated by mass flow controllers. A saturator with a well-controlled temperature (278–293 K) was used to introduce the H₂O gas.

The reactant and product concentrations were measured by using a VARIAN gas chromatograph 450GC with a programmed system that involved a molecular sieve 5 A column and a HayeSep Q column with a thermal conductivity detector, and a VARIAN CP-Wax 52 CB capillary column with a flame ionization detector. This configuration enables the differentiation of all C₁–C₄ hydrocarbons. For H₂ detection, a micro-gas chromatograph (Agilent Technologies 3000A) equipped with thermally conductive molecular and plot U columns was used. Conversions, selectivities, and yields are reported on a carbon basis as cumulative integral values as follows [Eqs. (6)–(9)]:

Methane conv. [%] =
$$\frac{\text{(total mols of carbon in products)}}{\text{(total mols of CH4 in)}} \times 100$$
(6)

or
$$\frac{\text{(total mols of carbon in products)}}{\text{(total mols out including CH4)}} \times 100$$
 (7)

Select. [%] =
$$\frac{(\text{mols of carbon in the specific product})}{(\text{total mols of carbon in products})} \times 100$$
 (8)

$$Yield [\%] = Methane \ conversion [\%] \times Selectivity [\%]/100$$
(9)

For rigorous kinetic analysis, linear regression was used to extrapolate the rates measured at various conversions to the rates at zero conversion. The obtained rates at zero conversion reflect the input conditions with the given reactant pressures strictly, which also minimizes the contribution of the heat generated by the reaction at low conversion levels. The XRD patterns of the products before and after the OCM reaction were obtained by using a Bruker DMAX 2500 X-ray diffractometer using CuK_{α} radiation (λ =0.154 nm). The N₂ sorption studies were conducted by using a Micromeritics ASAP 2420 to determine the BET surface area. The results are compiled in the Supporting Information.

Keywords: alkali metals • kinetics • radicals • oxidative coupling • reaction mechanisms • supported catalysts

- a) J. S. Lee, S. T. Oyama, *Catal. Rev. Sci. Eng.* **1988**, *30*, 249–280; b) Z. Zhang, X. E. Verykios, M. Baerns, *Catal. Rev. Sci. Eng.* **1994**, *36*, 507–556; c) J. H. Lunsford, *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 970–980; *Angew. Chem.* **1995**, *107*, 1059–1070; d) M. Yu. Sinev, Z. T. Fattakhova, V. I. Lomonosov, Yu. A. Gordienko, *J. Nat. Gas Chem.* **2009**, *18*, 273–287; e) U. Zavyalova, M. Holena, R. Schlögl, M. Baerns, *ChemCatChem* **2011**, *3*, 1935–1947.
- [2] K. Takanabe, J. Jpn. Pet. Inst. 2012, 55, 1-12.
- [3] a) G. E. Keller, M. M. Bhasin, J. Catal. 1982, 73, 9-19; b) T. Ito, J.-X. Wang, C.-H. Lin, J. H. Lunsford, J. Am. Chem. Soc. 1985, 107, 5062-5068; c) K. Otsuka, A. A. Said, K. Jinno, T. Komatsu, Chem. Lett. 1987, 77-80; d) K. Machida, M. Enyo, J. Chem. Soc. Chem. Commun. 1987, 1639-1640; e) J. A. Labinger, K. C. Ott, J. Phys. Chem. 1987, 91, 2682-2684; f) K. D. Campbell, J. H. Lunsford, J. Phys. Chem. 1988, 92, 5792-5796; g) J. A. Labinger, Catal. Lett. 1988, 1, 371-376; h) J. M. DeBoy, R. F. Hicks, J. Chem. Soc. Chem. Commun. 1988, 982-984; i) E. Morales, J. H. Lunsford, J. Catal. 1989, 118, 255-265; i) G. J. Hutchings, J. R. Woodhouse, M. S. Scurrell, J. Chem. Soc. Faraday Trans. 1 1989, 85, 2507-2523; k) J. A. Roos, S. J. Korf, R. H. J. Veehof, J. G. van Ommen, J. R. H. Ross, Appl. Catal. 1989, 52, 131-145; I) S. C. Reyes, E. Iglesia, C. P. Kelkar, Chem. Eng. Sci. 1993, 48, 2643-2661; m) S. C. Reyes, C. P. Kelkar, E. Iglesia, Catal. Lett. 1993, 19, 167-180; n) C. A. Mims, R. Mauti, A. M. Dean, K. D. Rose, J. Phys. Chem. 1994, 98, 13357-13372; o) S. Lacombe, H. Zanthoff, C. Mirodatos, J. Catal. 1995, 155, 106–116; p) P. M. Couwenberg, Q. Chen, G. B. Marin, Ind. Eng. Chem. Res. 1996, 35, 3999-4011; q) A. J. Colussi, V. T. Amorebieta, J. Catal. 1997, 169, 301-306; r) J. Coronas, J. Santamaría, Catal. Today 1999, 51, 377-389; s) Y. S. Su, J. Y. Ying, W. H. Green, J. Catal. 2003, 218, 321-333.
- [4] a) C. A. Jones, J. J. Leonard, J. A. Sofranko, J. Catal. 1987, 103, 311–319;
 b) X. Fang, S. Li, J. Lin, J. Gu, D. Yang, J. Mol. Catal. 1992, 6, 427; c) D. Wang, M. P. Rosynek, J. H. Lunsford, J. Catal. 1995, 155, 390–402; d) A. Palermo, J. P. H. Vazquez, A. F. Lee, M. S. Tikhov, R. M. Lambert, J. Catal. 1998, 177, 259–266; e) S. Pak, P. Qiu, J. H. Lunsford, J. Catal. 1998, 179, 222–230; f) S. Pak, J. H. Lunsford, Appl. Catal. A 1998, 168, 131–137; g) S. Ji, T. Xiao, S. Li, L. Chou, B. Zhang, C. Xu, R. Hou, A. P. E. York, M. L. H. Green, J. Catal. 2003, 220, 47–56; h) S. Hou, Y. Cao, W. Xiong, H. Liu, Y. Kou, Ind. Eng. Chem. Res. 2006, 45, 7077–7083; i) M. R. Lee, M.-J. Park, W. Jeon, J.-W. Choi, Y. W. Suh, D. J. Suh, Fuel Process. Technol. 2012, 96, 175–182.
- [5] a) K. Takanabe, E. Iglesia, Angew. Chem. Int. Ed. 2008, 47, 7689–7693;
 Angew. Chem. 2008, 120, 7803–7807; b) K. Takanabe, E. Iglesia, J. Phys. Chem. C 2009, 113, 10131–10145; c) V. Lomonosov, Yu. Gordienko, M. Sinev, Top. Catal. 2013, 56, 1858–1866.
- [6] A. Palermo, J. P. H. Vazquez, R. M. Lambert, Catal. Lett. 2000, 68, 191– 196.
- [7] a) L. C. Anderson, M. Xu, C. E. Mooney, M. P. Rosynek, J. H. Lunsford, J. Am. Chem. Soc. 1993, 115, 6322–6326; b) K. B. Hewett, L. C. Anderson, M. P. Rosynek, J. H. Lunsford, J. Am. Chem. Soc. 1996, 118, 6992–6997; c) K. B. Hewett, M. P. Rosynek, J. M. Lunsford, Catal. Lett. 1997, 45, 125–128.

Received: January 8, 2014 Revised: February 3, 2014 Published online on

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

FULL PAPERS

Y. Liang, Z. Li, M. Nourdine, S. Shahid, K. Takanabe*

Methane Coupling Reaction in an Oxy-Steam Stream through an OH Radical Pathway by using Supported Alkali Metal Catalysts

Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H_2O-O_2 reaction, followed by C–H activation in CH_4 with an OH radical.