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Abstract: By using a very simple sequence of reactions such as al-
lylation, acetylation, chemoselective cross-metathesis, and elimina-
tion, even and odd conjugated all-(E)-polyenes can be synthesized
from very simple alkenes.
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navenone B

Conjugated all-(E)-polyenes are present in a great variety
of natural products of biological interest such as, for ex-
ample, antibiotics1 (filipin III), immunosuppressive
agents (pseudotrienic acid),2 and anticoagulants (tetra-
fibricin)3 (Figure 1). Among the different protocols that
have been reported to synthesize conjugated all-(E)-poly-
enes, we can cite iterative Wittig–Horner reactions,4 as
well as the Corey–Schlessinger–Mills-modified Peterson
olefination,5 iterative Pd-catalyzed cross-couplings such
as Stille coupling,6 Suzuki–Miyaura coupling,7 Negishi
coupling,8 Sonogashira coupling,9 treatment of dienic
benzoates with Na/Hg,10 Julia–Lythgoe olefination,11 or
ring opening of bicyclo[4.2.0]octadiene acetate with
LiAlH4.

12

Herein, we would like to report the synthesis of conjugat-
ed odd all-(E)-polyenes of type C as well as conjugated
even all-(E)-polyenes of type C¢13 from simple alkenes of
type A by using an iterative sequence of reactions involv-

ing allylations, acetylations, chemoselective cross-meta-
theses,14 and domino elimination.

Depending on the first transformation of alkenes of type
A either to an a,b-unsaturated aldehydes B (cross-meta-
thesis) or to aldehydes of type B¢ (oxidative cleavage of
the double bond), conjugated odd all-(E)-polyenes of type
C or conjugated even all-(E)-polyenes of type C¢ were
synthesized (Scheme 1).

Scheme 1

Alkene A, which at first was chosen to produce conjugat-
ed odd and even all-(E)-polyenes of type C and C¢, was
the protected but-1-en-3-ol 1. We have to point out that
the allylation of intermediate aldehydes of type B and B¢
were achieved using either allylmagnesium chloride or
allyltrichlorosilane15 in order to obtain the corresponding
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homoallylic alcohols. Concerning the elimination step,
the reagents used were either DBU, TBAF, or BF3·OEt2.
Only the reagents producing the best yields for the allyla-
tion and the elimination are reported.

In order to obtain conjugated odd all-(E)-polyenes of type
C, compound 1 was transformed to the unsaturated alde-
hyde 2 by treatment with acrolein (3 equiv) under cross-
metathesis (CM) conditions [Hoveyda–Grubbs second-
generation catalyst = Ru-II (5 mol%),16 CH2Cl2, r.t., 85%
yield]. Aldehyde 2 was then converted into triene 5 in four
steps. After addition of allylmagnesium chloride (Et2O,
0 °C), the obtained homoallylic alcohol was acetylated
(Ac2O, pyridine, DMAP, CH2Cl2, 0 °C) to produce the
corresponding acetate 3 (for the two steps, 87%) which
was then transformed to conjugated triene 5 in two steps.
Due to the presence of the acetyl group, a chemoselective
CM could be performed with ethyl acrylate14 [Ru-II (5
mol%), CH2Cl2, r.t.] and this reaction resulted in the for-
mation of the nonconjugated dienic ester 417 (69% yield)
which, after treatment with DBU (THF, 15 min), fur-
nished conjugated triene 518 in 54% yield. Having synthe-

sized 3, the latter compound was also transformed to
pentaene 8 by realizing a CM/allylation/acetylation/CM/
domino elimination sequence. Thus, after a chemoselec-
tive CM with acrolein [Ru-II (5 mol%), CH2Cl2, r.t.], a,b-
unsaturated aldehyde 6 was formed, which after an allyla-
tion (allylMgCl, Et2O, –78 °C)/acetylation sequence led
to 7 (58%). The latter compound was then converted into
8 after a chemoselective CM with ethyl acrylate followed
by an elimination step using TBAF. Another conjugated
odd all-(E)-polyene, heptaene 11, was also obtained from
the previously synthesized trienic diacetate 7. After a
chemoselective CM with acrolein in the presence of Ru-
II, followed by an allylation (allylSiCl3, DMF, 0 °C)/
acetylation sequence, 10 was isolated (70%) and then
transformed to heptaene 11 after a CM (ethyl acrylate)
followed by treatment with TBAF which induced a dom-
ino elimination (35% overall yield for the two steps)
(Scheme 2).

Compound 3 can be considered as a cornerstone in the
synthesis of conjugated odd all-(E)-polyenes, as it al-
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lowed an easy access to triene 5, pentaene 8, and heptaene
11 (Scheme 2).

In order to synthesize conjugated even all-(E)-polyenes of
type C¢, aldehyde 12 was prepared by oxidative cleavage
of the double bond (OsO4 then NaIO4, t-BuOH/H2O) of
the protected but-3-en-1-ol 1. As for the synthesis of con-
jugated odd all-(E)-polyenes, the same sequence of reac-
tions was used. Thus, trichloroallylsilane was added to 12
and the resulting homoallylic alcohol was involved in a
CM reaction with acrolein (3 equiv) in the presence of Ru-
II (5 mol%, CH2Cl2, r.t.) leading to 13 (49% overall
yield). Unsaturated aldehyde 13 was then transformed to
14 in two steps (allylation with allylMgCl and acetylation,
69% overall yield) and the latter compound was involved
in a CM (ethyl acrylate)/elimination (DBU) sequence to
afford the conjugated ester 15 (54% overall yield)
(Scheme 3).

Other homoallylic alcohols than 1 can be used to prepare
conjugated even all-(E)-polyenes. For example, homoal-
lylic alcohol 16 (prepared from p-methoxybenzaldehyde)
was transformed to 19 in five steps (Scheme 4). After a
CM reaction in the presence of acrolein (3 equiv) and Ru-
II (5 mol%, CH2Cl2, r.t.), homoallylic alcohol 16 was con-
verted into unsaturated aldehyde 17 (90%) which was
then treated with allylmagnesium chloride (Et2O, 0 °C)
and, the obtained diol was acetylated (DMAP, Ac2O,
CH2Cl2, r.t.) furnishing diacetate 18. This latter com-
pound was then treated with ethyl acrylate (3 equiv) in the
presence of Ru-II (5 mol%, CH2Cl2, r.t.) and the resulting
CM product 19 was transformed to tetraene 20 after a
domino elimination performed with TBAF (59% overall
yield from 18). Compound 18 was also transformed to 23
in five steps. After a CM reaction with acrolein, 21 was
isolated (61%) and this latter was transformed to 22 by ad-
dition of allyltrichlorosilane (DMF, 0 °C) and acetylation.

Scheme 3
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The resulting triacetate 22 (71% overall yield) was then
converted into the conjugated hexaene 23 (55% yield)
after a CM reaction realized with ethyl acrylate [Ru-II
(5 mol%), CH2Cl2, r.t.] and an elimination step performed
with TBAF (THF, r.t.) (Scheme 4).

If conjugated even all-(E)-polyenic esters, such as 15, 20,
and 23, were obtained easily when the last CM reaction
was achieved by utilizing ethyl acrylate, conjugated all-
(E)-polyenic aldehydes were also synthesized when the
last CM reaction was achieved with acrolein. Thus, com-
pound 21 was converted into 24 in 48% yield after treat-
ment with BF3·OEt2 (0 °C, CH2Cl2) (Scheme 5).

By using methyl vinyl ketone to achieve the last CM reac-
tion, conjugated all-(E)-polyenic ketones can be isolated.
This methodology was used to synthesize navenone B
which is an alarm pheromone secreted by the blind Pacific
opistobranch mollusk Navanax inermis.19,20 When under
duress, this mollusk secretes components which induce an
alarm avoidance response in other Navanax, and among
the compounds, navenone B was isolated. Navenone B
was obtained in five steps from homoallylic alcohol 25.
After a CM with acrolein, 25 was transformed into 26 and
by utilizing an allylation–acetylation sequence, 27 was
formed (74% yield) and converted into navenone B using
a chemoselective CM (involving methyl vinyl ketone)/
elimination (TBAF) sequence (51% overall yield from
27) (Scheme 6).

In conclusion, by using a very simple sequence of reac-
tions mainly chemoselective CM, allylation of aldehydes,
elimination, conjugated even and odd all-(E)-polyenes
can be synthesized from very simple alkenes.
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