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Synthesis of Enantiomerically Pure o-Amino Acids by Asymmetric a-Alkylation of
Chiral o-Aminoalkyloxazolines

Antje Rottmann and Jiirgen Liebscher*

Institut fiir Chemie, Humboldt-Universitit Berlin, Hessische Str. 1-2, D-10115 Berlin, Germany

Abstract: Enantiomerically pure a-alkyl-e-aminocarboxylic acids 5, 6 and the corresponding a-alkyllactams 7 are
synthesized starting from lactams 1 by ring transformation with a chiral aminoalcohol 2, asymmetric a-alkylation of
the resulting 2-(w-aminoalkyl)-oxazolines 3 and final hydrolysis.

(R)-4-Amino-2-methyl-butyric acid was used as building block in the synthesis of calyculine A. "2 1t was synthesized
by amination/decarboxylation of (R)-2-methylglutaric acid derivatives. Other routes used for the synthesis of a few
optically active a-alkyl-w-aminocarboxylic acids arc bascd on the reduction of corresponding w-azidocarboxylic acids
derived from o-halocarboxylic acids * and by resolution of racemates. * We report now a general synthesis of
enantiomerically pure a-alkyl-w-aminocarboxylic acids § and 6 and of corresponding lactams 7 via side chain
alkylation of chiral 2-(w-aminoalkyl)-oxazolines 3. * The precursors 3 can be obtained ®in enantiomerically pure form
starting from lactams 1 via corresponding lactam acctals or lactim ethers that are ring transformed with chiral amino
alcohols 2 adopting a known procedure reported for non-optically active 2-(w-aminoalkyl)oxazolines. 7 The 2-(w-
aminoalkyl)-oxazolines 3 were further submitted to the well-known a-alkylation of 2-alkyl-1,3-oxazolines developed
by Meyers based on a-lithiation and treatment of the resulting azacnolate with an alkyl halide. ¥ Since Meyers
asymmetric side chain alkylation is only highly stereoselective in cases of 4-MOM-substituted oxazolines we used
corresponding 2-(@-aminoalkyl)-4-methoxymethyl-5-phenyl-oxazolines 3 (R>=MOM, R*=R*=H, R®<Ph). Amazingly,
after the lithiation with LDA and further reaction with methyl iodide a stereoselectivity was observed that was
unacceptably low (see Table | entry 3) as compared with stereoselectivities attained with corresponding 2-
alkyloxazolines lacking the w-amino group (65 - 82% d.c.). Furthermore exchanging the MOM group by a non-
chelating group such as Mc (R*=Me, R*=R®=H, R*=Ph) gave rise to the formation of a major stercoisomer 4a of the
same configuration in a-position (see entry 1) , i. e. the MOM group (R*=MOM) acted as a non-chelating substituent.
This gives clear evidence that Meyers model can not be applied to the a-alkylation of ®-aminoalkyloxazolines 3.
Obviously the MOM group fails to chelate in the azacnolate formed after deprotonation with LDA because another
chelation is more favoured. We therefore propose the formadtion of a lithium azaenolate such as 8 (for a 4-(S)-
configured oxazoline) with the lithium being chelated by the terminal sulfonamino group. ® Consequently the £-
azacnolate is formed rather than the Z-isomer commonly observed with 2-alkyloxazolines lacking the @ -amino group.
19 Since the substituent R is generally passive (i. . non-chelating) the lithium is directed to the opposite side of the
oxazoline ring. Finally the alkyl halide attacks from the Li-substituted face (re in case of 8) directed by a Hal-Li-
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Table 1: Synthesis of 2-(o -Aminoalkyl)-oxazolines 4, a-Alkyl-®-aminocarboxylic Acids 5, 6 and
a-Alkyllactams 7

entry |reactant |addition |product | % yield/ entry |reactant | addition product | % yield/
of BEt, (% d.e.) of BEt, % d.c)
] 3a - 4a 52 (24) 9 3f + 4f 52 (>90)
2 3a + 4a" 58 (>90) 10 3g + 4g 68 (>90)
3 3b - 4b 69 (50) 11 |4a 3NHCI® 6a'2 |95 (>90%
4 3b + 4b 65 (72) 12 |4c 3NHCI® 6c" 95 (>90")
5 3c + 4c 58 (>90) 13 |4d 6N H,S0," |6d 93 (>90%)
6 3d + 4d 54 (>90) 14 |4e 1.6N H,S0," | 7¢" 90 (>90")
2.DCCI
7 3e - de 49 (28) 15 [af 6N H,80," |sf* 50 (>90")
8 3e + 4e 52 (>90) 16 |4g 3N HCI* 7g 66 (>90")
" conditions for hydrolysis ® %ee

The stereosclectivity of the a-alkylation of 2-(w-benzolsulfonylaminoalkyl)-oxazolines 3 can dramatically be
improved by the addition of triethylborane to the lithiumazaenolate primarily formed. Only one stereoisomer could be
detected by *C NMR spectroscopy also if other alkyl halides were used (see entries 2,5,6,8,9,10). By changing the
configuration of the chiral auxiliary 2 from R*#H, R*=H to R3=H, R*+H the opposite (si-attack) a-alkylation can bc

achieved (see entry 5 versus entry 2). Based on results in the borenolate chemistry 16. 17

as well as in BEt;-assisted
reactions of azaenolate derived from 2-methyloxadiazoles” the favourable effect of triethylborane can be explained
by a transmetallation of the azaenolate (¢. g. 8 — 9) occurring from the face opposite to the lithium followed by
elimination of ethene. In the resulting borazaenolate the borate-like moiety'® shields the corresponding face very
cfficiently thus directing the attack of the alkyl halide totally to the opposite side (e. g. re-attack in case of 9).

The oxazoline ring of the a-alkylated 2-(w-sulfonylaminoalkyl)-oxazolines 4 can easily be cleaved by acid hydrolysis
(see Table 1, entries 11 - 16). If the benzolsulfonylamino group is substituted (R? #H) hydrolysis results in 2-alkyl-@-
benzolsulfonylaminocarboxylic acids 6 or 2-alkyl-w-aminocarboxylic acids S. 2 N-Unsubstituted @-benzolsulfonyl-
aminoalkyloxazolines 4 (R*=H) are hydrolyzed either to analogous @ -sulfonylaminoacids 6 or to mixtures of 6 and
corresponding lactams 7. These mixtures can be converted to pure lactams 7 by additional treatment with DCCI (see
entry 14).

The aforementioned reaction sequence demonstrates an cfficient asymmetric synthesis of enantiomerically pure o-

amino carboxylic acids 5, 6 and corresponding lactams 7 of any desired configuration starting from lactams 1.
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