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Chiral o)-Aminoalkyloxazolines 
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Abstract: Enantiomerically pure o~-alkyl-o-aminocarboxylic acids 5, 6 and the corresponding <~-alkyllactams 7 are 
synthesized starting from lactams 1 by ring transformation with a chiral aminoalcohol 2, asymmetric ct-alkylation of  
the resulting 2-(o-aminoalkyl)-oxazolines 3 and final hydrolysis. 

(R)-4-Amino-2-mcthyl-butyric acid was used as building block in the synthesis of  calyculine A. 1,2 It was synthesized 

by amination/decarboxylation o f  (R)-2-methylglutaric acid derivatives. Other routes used for the synthesis of  a few 

optically active ct-alkyl--~-an, inocarboxylic acids arc based on the reduction of  corresponding c0-azidocarboxylic acids 

derived from c0-halocarboxylic acids 3 and by resolution of  racemates. 4 We report now a general synthesis of  

enantiomerically pure c~-alkyl-o-aminocarboxylic acids 5 and 6 and of  corresponding lactams 7 via side chain 

alkylation ofchiral  2-(0~-aminoalkyl)-oxazolines 3.5 The precursors 3 can be obtained 6 in enantiomerically pure form 

starting from lact,ams 1 via corresponding lactam acetals or lactim ethers that axe ring transformed with chiral amino 

alcohols 2 adopting a known procedure reported for non-optically active 2-(c0-aminoalkyl)oxazolines. 7 The 2-(o- 

aminoalkyl)-oxazolines 3 wcre further submitted to the well-known ct-alkylation of  2-alkyl-l,3-oxazolines developed 

by Meyers based on ~t-lithiation and treatment of  the resulting azaenolate with an alkyl halide, s Since Meyers 

asymmetric side chain alkylation is only highly stereoselective in cases o f  4-MOM-substituted oxazolines we used 

corresponding 2-(o-aminoalkyl)-4-methoxymethyl-5-phenyl-oxazolines 3 (R3=MOM, R4=RS=H, R6=ph). Amazingly, 

after the lithiation with LDA and further reaction with methyl iodide a stereoselectivity was observed that was 

unacceptably low (see Table 1 entry 3) as compared with stereoselectivities attained with corresponding 2- 

alkyloxazolines lacking the o-amino group (65 - 82% d.e.). Furthermore exchanging the MOM group by a non- 

chelating group such as Mc (R3=Me, R4=R6=H, Rs=Ph) gave rise to the formation o f  a major stereoisomer 4a of  the 

same configuration in ct-position (see entry 1), i. e. the MOM group (R3=MOM) acted as a non-chelating substituent. 

This gives clear evidence that Meyers model can not be applied to the cL-alkylation o f  c0-aminoalkyloxazolines 3. 

Obviously the MOM group fails to chelate in the azacnolatc formed after dcprotonation with LDA because another 

chelation is more favoured. We therefore propose the form~ition o f  a lithium azaenolate such as 8 (for a 4-(S)- 

configured oxazoline) with the lithium being chelated by the terminal sulfonamino group. 9 Consequently the E- 

azacnolatc is formed rather than the Z-isomer commonly observed with 2-alkyloxazolines lacking the o-amino group. 

~.10 Since the substituent R 3 is generally passive (i. e. non-chelating) the lithium is directed to the opposite side of  the 

oxazoline ring. Finally the alkyl halide attacks from the Li-substituted face (re in case o f  8) directed by a Hal-Li- 

interaction. 
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Table 1: Synthesis o f  2-(o)-Aminoalkyl)-oxazolines 4, ct-Alkyl-to-aminocarboxylic Acids 5, 6 and 
ct-Alkyllactams 7 

entry 

1 

2 

3 

4 

5 

6 

7 

8 

reactant addition product %yield/  
o f  BEta (% d.c.) 

i3a 4a 52 (24) 

3a + 4a II 58 (>90) 

3b 4b 69 (50) 

3b + 4b 65 (72) 

entry reactant addition 
o f  BEta 

9 3f + 

110 3g + 

I 1 4a i 3N HCi " 

12 4c 3N HCI • 

product 

4f  

4g 

6a 12 

6c 13 

3c + 4c 58 (>90) 

3d + 4d 54 (>90) 

3e 4e 49 (28) 

3e + 4e 52 (>90) 

13 

14 

15 

16 

4d 6N H2SO 4 • 6d 

4e i.6N H~SO4* 7e t4 

2. DCCI 
4f 6N H2SO4 a 5f 15 

4g 3N HCI* 7g 

a conditions for hydrolysis 

% yield/ 
(% d.c.) 
52 (>90) 

68 (>90) 

95 (>90 b) 

95 (>90 b) 

93 (>90 b) 

90 (>90 b) 

50 (>90 b) 

66 (>90 b) 

b % e e  

The stcreoselectivity o f  the ct-alkylation o f  2-(0)-benzolsulfonylaminoalkyl)-oxazolines 3 can dramatically bc 

improved by the addition o f  triethylborane to the lithiumaza~nolate primarily formed. Only one stereoisomer could be 

detected by '3C NMR  spectroscopy also if other alkyl halides were used (see entries 2,5,6,8,9,10). By changing the 

configuration o f  the chiral auxiliary 2 from R3;eH, R4=H to R3=H, R4;tH the opposite (si-attack) ct-alkylation can be 

achieved (see entry 5 versus entry 2). Based on results in the borenolate chemistry 16, 17 as well as in BEts-assisted 

reactions of  azacnolate derived from 2-methyloxadiazoles Is the favourable effect o f  triethylborane can be explained 

by a transmetallation of  the azaenolate (e. g. 8 ---> 9) occurring from the face opposite to the lithium followed by 

elimination o f  ethene. In the resulting borazaenolate the borate-like moiety w shields the corresponding face very 

efficiently thus directing the attack o f  the alkyl halide totally to the opposite side (e. g. re-attack in case of  9). 

The oxazoline ring o f  the ct-alkylated 2-(¢0-sulfonylaminoalkyl)-oxazolines 4 can easily be cleaved by acid hydrolysis 

(see Table I, entries 11 - 16). If the benzolsulfonylamino group is substituted (R 2 ;tH) hydrolysis results in 2-alkyl-0)- 

bcnzolsulfonylaminocarboxylic acids 6 or 2-alkyl-0~-aminocarboxylic acids 5. 2o N-Unsubstituted 0)-benzolsulfonyl- 

aminoalkyloxazolines 4 (R2=H) are hydrolyzed either to analogous to-sulfonylaminoacids 6 or to mixtures o f  6 and 

corresponding lactams 7. These mixtures can be converted to pure lactams 7 by additional treatment with D c c I  (see 

entry 14). 

The aforementioned reaction sequence demonstrates an efficient asymmetric synthesis o f  enantiomerically pure 0)- 

amino carboxylic acids 5, 6 and corresponding lactams 7 of  any desired configuration starting from lactams 1. 
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