
Accepted Manuscript

Access to new sulfolene derivatives via formylation of thiolan-3-one

Olga Gordivska, Dmytro Listunov, Kirill Popov, Tatyana Volovnenko, Yulian

Volovenko

PII: S0040-4039(13)00886-1

DOI: http://dx.doi.org/10.1016/j.tetlet.2013.05.107

Reference: TETL 43007

To appear in: Tetrahedron Letters

Received Date: 6 December 2012

Revised Date: 11 May 2013

Accepted Date: 24 May 2013

Please cite this article as: Gordivska, O., Listunov, D., Popov, K., Volovnenko, T., Volovenko, Y., Access to new

sulfolene derivatives via formylation of thiolan-3-one, Tetrahedron Letters (2013), doi: http://dx.doi.org/10.1016/

j.tetlet.2013.05.107

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tetlet.2013.05.107
http://dx.doi.org/http://dx.doi.org/10.1016/j.tetlet.2013.05.107
http://dx.doi.org/http://dx.doi.org/10.1016/j.tetlet.2013.05.107


  



  

Access to new sulfolene derivatives via formylation of thiolan-3-one 
 

Olga Gordivskaa,b, Dmytro Listunova, Kirill Popova,b*, Tatyana Volovnenkoa, 
Yulian Volovenkoa 

 

a Department of Ogranic Chemistry, Kiev National University, 64 Volodymirska str., Kiev 
01033, Ukraine 
b Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Getingevägen 
60, 221 00 Lund, Sweden 
 
*Corresponding Author:  
Dr. Kirill Popov 
Kiev National University, Ukraine  
Department of Ogranic Chemistry  
Hospitalny st. 1A apt. 54  
01133 Kiev  
Ukraine 
Phone: +380679436067 
Fax: not available 
E-mail: kirillpopov@bk.ru, Kirill.Popov@chem.lu.se  
 



  

Access to new sulfolene derivatives via formylation of thiolan-3-one 

 
Olga Gordivska, Dmytro Listunov, Kirill Popov*, Tatyana Volovnenko, Yulian Volovenko 

 

*Corresponding Author: Tel. +380679436067. E-mail address: kirillpopov@bk.ru (Popov K.) 
 

 

 
Abstract: New tetrahydrothiophene derivatives, which are demonstrated to be reactive towards various nucleophiles 

and provide access to [b]- and [c]-fused sulfolenes are described. Application of heterocyclic sulfides as o-

quinodimethane precursors is documented. 
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In our previous work
1-3

 we utilized the formylation of α-methyleneketones as 

a robust transformation providing access to a variety of heterocyclic derivatives. 

Our current study was influenced by a question: would the formylation of thiolan-

3-one (2) be consistent with a known anomaly in its keto-enol tautomerism? 

More specifically: while measurement of the kinetic acidity in 1-

(methylthio)propan-2-one (1) predictably demonstrates 137-fold faster C-1 proton-

deuterium exchange compared to C-3, thiolan-3-one (2) has the reverse kinetic 

acidity: the С-4 protons exchange 3.375-times faster than the С-2 hydrogen atoms 

(Scheme 1).
4 

The reason for such an anomaly is the remarkable steric hindrance between 

the hydrogen atoms at C-4 and C-5 in thiolanone 2. This strain is released upon 

enolisation at C-4, rendering this process highly preferable. 

Thus, the goal of current study was to establish the regioselectivity of the 

formylation of thiolan-3-one and to test the reactivity of the resulting derivatives. 

 

 
 

 We chose N,N-dimethylformamide dimethyl acetal (DMFDMA) as the 

formylating agent. The reaction of thiolan-3-one (2) with DMFDMA was found to 

afford mixtures of isomeric dimethylaminovinyl ketones 3 and 4 (Scheme 2).
5
 

Correlations between the product ratios of 3:4 with the reaction conditions were 

observed (Table 1). Treatment of 2 with phosphorus oxychloride under Vilsmeier 

conditions resulted in no reaction. 
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Reaction conditions 
Product distribution  

3 : 4 : 5 

Overall 

yield 

 

DMFDMA (1.2 eq.), PhH, 80 ˚C, 4 h 

 

~35:65:0 92% 

 

DMFDMA (1.2 eq.), PhCH3, 110 ˚C, 4 h 

 

~25:75:0 98% 

 

DMFDMA (1.2 eq.), PhCH3, 110 ˚C, 5-6 h 

 

~20:65:15 ~99% 

Table 1. The results of the reaction of 2 with DMFDMA, depending on the conditions. 

 

Formylation was found to occur in full compliance with the enolisation 

studies. Isomeric dimethylaminovinyl ketones 3 and 4 were formed in 1:2 to 1:3 

ratios with respect to the temperature. Upon extended heating (over 5 h) with 

excess DMFDMA, a new mixture of components was formed. This was 

established to be 2,4-bis[(dimethylamino)methylene]dihydrothiophen-3(2H)-one 

(5), which was previously synthesized by a different route.
6
 

Flash-chromatographic separation allowed the isolation of pure novel 

compounds 3 and 4. We found that dimethylaminovinyl ketones 3 and 4 were 

highly reactive towards 1,2- and 1,3-bis-nucleophiles. Treatment of 3 and 4 with 

hydrazines, amidines, guanidine and thiourea furnished isomeric fused pyrazoles 

and pyrimidines 6-9 (Scheme 3).
7-8 

 



  

 
 

Dimethylaminovinyl ketone 3 was found to be slightly more reactive than 4. 

The reactions of 3 with nucleophiles proceeded faster and gave higher yields 

(Scheme 3). Presumably, this was the result of sulfur atom influence on the 

electronic properties of the masked carbonyl group. 

It is noteworthy that the reactions with arylhydrazines were higher yielding 

compared to those with alkylhydrazines. Among the 1,3-bis-nucleophiles, 

guanidine and benzamidine were found to react more efficiently, while thiourea 

afforded the corresponding pyrimidine in only moderate yield, and urea gave no 

reaction. 

We next investigated the possibility of employing tetrahydrothiophenes 8 

and 9 as precursors for the synthesis of o-quinodimethanes (o-QDMs).
9-12

 

Oxidation of 8 and 9 using a modified literature procedure
13

 afforded the 

corresponding sulfolenes 10 and 11 in quantitative yields (Scheme 4).
14

 We 

observed a dramatic decrease in the conversion time (10 h to 2-3 h) upon the 

addition of vanadium dioxide as the catalyst (5 mol%). 

 



  

 
 

When heated to 215 ˚С in 1,2,4-trichlorobenzene (1,2,4-TCB) under 

microwave irradiation for 5 minutes, compounds 10 and 11 underwent cheletropic 

extrusion of sulfur dioxide
15

 yielding o-quinodimethanes. To the best of our 

knowledge, such a route to o-QDMs has not been reported. If a dienophile is 

present in the reaction mixture a very rapid Diels-Alder reaction occurs. 

Compounds 12 and 13 were isolated after flash-chromatographic purification 

(Scheme 5).
16

 When ethyl ester 10d was subjected to these reaction conditions, 

decarboxylation occurred yielding N-methyl adduct 12d. 

 

 
 

In conclusion, we have described new dimethylaminovinyl ketones 3 and 4, 

which are demonstrated to be reactive towards various nucleophiles and provide 

access to [b]- and [c]-fused sulfolenes. Heterocyclic sulfides 8 and 9 are useful as 

o-quinodimethane precursors. 
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