INFLUENCE OF SUPERSTRONG ELECTRONACCEPTING SUBSTITUENT CF₃S(0)=NSO₂CF₃ ON NUCLEOPHILIC SUBSTITUTION REACTIONS TN AROMATTC RING

V.Boiko, N.Kirii and L.Yagupolskii

Institute of Organic Chemistry of Academy of Sciences of Ukrainian SSR, Kiev, 252660, Ukrainian SSR

The $CF_3S(0)=NSO_2CF_3$ group is a superstrong electronaccepting substituent. With its O_p value 1,40 it is approximately equal to electronic influence of two nitro groups placed at ortho- and para-positions. Comparing reactivity of 1 and 2 with different nucleophiles has been studied. As it has turned out reactivity

of 1 and 2 with CH₃OH and CF₃CH₂OH in the presence of KHCO₃ are approximately equal. But with N₃ and p-0₂NC₆H₄NH₂ the 1 is not as strong as 2 and with anion I the former does not react at all under

conditions when 2 quantitatively converts to picryl iodide.

According to the relative mobility of chlorine in 1 and 2 (1/2) nucleophilic reagents settle down in the following order: $I^{-}(0) \leftarrow p - 0_2 \text{NC}_6 H_4 \text{NH}_2(0,13) \leftarrow N_3^{-}(0,47) \leftarrow \text{CF}_3 \text{CH}_2 \text{O}^{-}(1) \leftarrow \text{CH}_3 \text{O}^{-}$ (1,32), which indicates that CF3S(0)=NSO2CF3 group creats a hard reaction centre in contrast to the soft centre in case of nitro groups only.

The high electron-accepting power of CF₃S(0)=NSO₂CF₃ is also evidenced by the fact that chlorine in 1 is substituted quantitatively by $PhNH_2$ and $CF_3CH_2O^-$ whereas in 3 under the same conditions — only to 10%.